Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process
Abstract
:1. Introduction
2. Thermodynamic Limitations and Exergy Analysis of Brackish Water RO Desalination Plant of the APC
2.1. General Overview of the RO System of the APC and Tested Locations
2.2. Mathematical Model: Exergy Analysis
2.3. Discussion of Exergy Distribution of the RO System
- Using highly water permeable membranes of higher membrane surface area would improve the productivity;
- Optimise the RO process to investigate the optimal operating condition that suits the lowest pressure drop throughout the modules;
- Utilise an energy recovery device of a high efficiency to absorb the surplus energy from the brine stream;
- Replacing the existing pumps with higher efficiency pumps;
- Scale-up the RO process into a larger size. Basically, a large scale RO process consumes lower energy per kg of pure water produced, compared to a small size RO system;
- Maintain a scheduled membrane cleaning regime to prevent the propensity of fouling.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Emam, R.S.; Dincer, I. Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery. Energy 2014, 64, 154–163. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Toth, A.J. Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources. Membranes 2020, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H. A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination 2011, 270, 1–8. [Google Scholar] [CrossRef]
- Ahmad, G.E.; Schmid, J. Feasibility study of brackish water desalination in the Egyptian deserts and rural regions using PV systems. Energy Convers. Manag. 2002, 43, 2641–2649. [Google Scholar] [CrossRef]
- Alsarayreh, A.A.; Al-Obaidi, M.A.; Farag, S.K.; Patel, R.; Mujtaba, I.M. Performance evaluation of a medium-scale industrial reverse osmosis brackish water desalination plant with different brands of membranes. A simulation study. Desalination 2021, 503, 114927. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I.; Carrascosa-Chisvert, M.D.; Santana, J.J. Simulations of BWRO systems under different feedwater characteristics. Analysis of operation windows and optimal operating points. Desalination 2020, 491, 114582. [Google Scholar] [CrossRef]
- García Latorre, F.J.; Pérez Báez, S.O.; Gómez Gotor, A. Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination 2015, 366, 146–153. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I. Long-term intermittent operation of a full-scale BWRO desalination plant. Desalination 2020, 489, 114526. [Google Scholar] [CrossRef]
- Goh, P.S.; Matsuura, T.; Ismail, A.F.; Hilal, N. Recent trends in membranes and membrane processes for desalination. Desalination 2016, 391, 43–60. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Alsarayreh, A.A.; Al-Hroub, A.M.; Alsadaie, S.; Mujtaba, I.M. Performance analysis of a medium-sized industrial reverse osmosis brackish water desalination plant. Desalination 2018, 443, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Ritt, C.L.; Deshmukh, A.; Wang, Z.; Qin, M.; Epsztein, R.; Elimelech, M. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 2020, 13, 1694–1710. [Google Scholar] [CrossRef] [Green Version]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Significant energy savings by optimising membrane design in the multi-stage reverse osmosis wastewater treatment process. Environ. Sci. Water Res. Technol. 2018, 4, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Alsarayreh, A.A.; Al-Obaidi, M.A.; Al-Hroub, A.M.; Patel, R.; Mujtaba, I.M. Evaluation and minimisation of energy consumption in a medium-scale reverse osmosis brackish water desalination plant. J. Clean. Prod. 2020, 248, 119220. [Google Scholar] [CrossRef]
- Bouguecha, S.; Hamrouni, B.; Dhahbia, M. Operating analysis of a direct energy coupled desalination family prototype. Desalination 2004, 168, 95–100. [Google Scholar] [CrossRef]
- Cerci, Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination 2002, 142, 257–266. [Google Scholar] [CrossRef]
- Fellaou, S.; Ruiz-Garcia, A.; Gourich, B. Enhanced exergy analysis of a full-scale brackish water reverse osmosis desalination plant. Desalination 2021, 506, 114999. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Aljundi, I.H. Second-law analysis of a reverse osmosis plant in Jordan. Desalination 2009, 239, 207–215. [Google Scholar] [CrossRef]
- Al-Zahrani, A.; Orfi, J.; Al-Suhaibani, Z.; Salim, B.; Al-Ansary, H. Thermodynamic Analysis of a Reverse Osmosis Desalination Unit with Energy Recovery System. Procedia Eng. 2012, 33, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Villafafila, A.; Mujtaba, I.M. Fresh water by reverse osmosis based desalination: Simulation and optimisation. Desalination 2003, 155, 1–13. [Google Scholar] [CrossRef]
- Zhao, L.; Chang, P.C.Y.; Ho, W.S.W. High-flux reverse osmosis membranes incorporated with hydrophilic additives for brackish water desalination. Desalination 2013, 308, 225–232. [Google Scholar] [CrossRef]
- Kahraman, N.; Cengel, Y.A.; Wood, B.; Cerci, Y. Exergy analysis of a combined RO, NF, andEDR desalination plant. Desalination 2005, 171, 217–232. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Cerci, Y.; Wood, B. Second law analysis of separation processes of mixtures. In Proceedings of the ASME Advanced Energy Systems Division, Nashville, TN, USA, 14–19 November 1999; Volume 39, pp. 537–543. [Google Scholar]
- Klotz, I.M. Chemical Thermodynamics: Basic Theory and Methods; Benjamin/Cummings Publishing: San Francisco, CA, USA, 1964. [Google Scholar]
- Kahraman, N.; Cengel, Y.A. Exergy analysis of a MSF distillation plant. Energy Convers. Manag. 2005, 46, 2625–2636. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach 6th Editon (SI Units); McGraw-hill: New York, NY, USA, 2011. [Google Scholar]
- Wark, K. Advanced Thermodynamics for Engineers; McGraw-Hill: New York, NY, USA, 1995; Volume 5. [Google Scholar]
Parameter | Value |
---|---|
Membrane type and configuration | TMG20D-400, ultra low pressure BWRO, spiral wound, polyamide thin-film composite |
Feed and permeate spacer thickness | 8.6 × 10−4 (34 mils), 5.5 × 10−4 (m) |
Hydraulic diameter of the feed spacer channel | 8.126 × 10−4 (m) |
Membrane area | 37.2 (m2) |
Maximum operating pressure | 40.464 (atm) |
Maximum operating temperature | 45 (°C) |
Minimum salt rejection | 99.5% |
Water transport parameter at 25 °C | 9.6203 × 10−7 (m/atm s) |
Solute transport parameter at 25 °C | 1.61277 × 10−7 (m/s) |
Spacer type | NALTEX-129 |
length of filament in the spacer mesh | 2.77 × 10−3 (m) |
Temperature (°C) | Pressure (atm) | Salinity (ppm) | Flow Rate (kg/s) |
---|---|---|---|
25 | 9.22 | 1098.62 | 20.49 |
Component | Location | Temperature (°C) | Pressure (kPa) | Mass Rate (kg/s) | Salinity (ppm) | Chemical Exergy (kJ/kg) | Physical Exergy (kJ/kg) | Specific Exergy Ex (kJ/kg) | Exergy Rate X (kJ/kg) | Rate of Exergy Change ΔX (kW) | ΔX (kW) |
---|---|---|---|---|---|---|---|---|---|---|---|
Pump for tank | 0 | 25 | 101.32 | 17.72 | 950.16 | 0 | 0 | 0 | 0 | 25.162 | 25.162 |
Pump for tank | 1 | 25 | 934.22 | 17.72 | 950.16 | −0.08 | 1.5 | 1.42 | 25.1624 | −17.577 | -- |
Mixing with opening valve | 2 | 30 | 934.22 | 20.49 | 1098.62 | −0.1037 | 0.4739 | 0.3702 | 7.5853 | −0.8777 | 0.8778 |
Before 1st pass pump 1st stage | 3 | 25 | 923.07 | 10.25 | 549.31 | −0.0531 | 0.7075 | 0.6544 | 6.7076 | 0.0030 | 0.0031 |
After 1st pass pump 1st stage | 4 | 30 | 934.22 | 10.25 | 549.31 | −0.0529 | 0.7076 | 0.6547 | 6.7106 | −6.3939 | 6.3939 |
Permeate of RO membrane | 5 | 29.6 | 934.22 | 0.213 | 60.49 | −0.0062 | 1.4931 | 1.4869 | 0.3167 | −0.5500 | 0.5500 |
Retentate of RO membrane | 6 | 29.6 | 905.85 | 1.142 | 2414.17 | −1.495 | 1.2907 | −0.2043 | −0.2333 | 0.3826 | 0.3826 |
Permeate of RO membrane | 7 | 25 | 934.22 | 0.213 | 60.49 | −0.0061 | 0.7071 | 0.701 | 0.1493 | −0.3833 | 0.3833 |
Retentate of RO membrane | 8 | 30 | 905.85 | 1.142 | 2414.17 | −1.5767 | 1.3718 | −0.2049 | −0.2339 | 0.3833 | 0.3833 |
Permeate of RO membrane | 9 | 25 | 934.22 | 0.213 | 60.49 | −0.0061 | 0.7071 | 0.701 | 0.1493 | −0.3831 | 0.3832 |
Retentate of RO membrane | 10 | 29.9 | 905.85 | 1.142 | 2414.17 | −1.5561 | 1.3513 | −0.2048 | −0.2338 | 0.3831 | 0.3832 |
Permeate of RO membrane | 11 | 25 | 934.22 | 0.213 | 60.49 | −0.0061 | 0.7071 | 0.701 | 0.1493 | −0.3831 | 0.3832 |
Retentate of RO membrane | 12 | 29.9 | 905.85 | 1.142 | 2414.17 | −1.5561 | 1.3513 | −0.2048 | −0.2338 | 0.3354 | 0.3354 |
Permeate of RO membrane | 13 | 25 | 934.22 | 0.147 | 163.55 | −0.0163 | 0.7071 | 0.6908 | 0.1015 | −0.4829 | 0.4829 |
Retentate of RO membrane | 14 | 29.9 | 879.50 | 1.221 | 4426.27 | −1.5575 | 1.2451 | −0.3124 | −0.3814 | 0.4829 | 0.4829 |
Permeate of RO membrane | 15 | 25 | 934.22 | 0.147 | 163.55 | −0.0163 | 0.7071 | 0.6908 | 0.1015 | −0.4829 | 0.4829 |
Retentate of RO membrane | 16 | 29.9 | 879.5 | 1.221 | 4426.27 | −1.5575 | 1.2451 | −0.3124 | −0.3814 | 1.9309 | 1.9309 |
Mixing of permeate stream | 17 | 30 | 934.22 | 4.258 | 106.89 | −0.0109 | 0.3748 | 0.3639 | 1.5494 | −5.8744 | 5.8745 |
Mixing of retentate stream and disposal | 18 | 25 | 934.22 | 4.882 | 4426.27 | −1.006 | 0.1201 | −0.8859 | −4.3249 | 7.5659 | 7.5659 |
Before 2nd pass pump 1st stage | 19 | 30 | 879.50 | 2.129 | 534.5 | −0.053 | 1.575 | 1.522 | 3.241 | 0 | 0 |
After 2nd pass pump 1st stage | 20 | 30 | 996.03 | 2.129 | 534.4 | −0.053 | 1.575 | 1.522 | 3.241 | −3.035 | 3.035 |
Permeate of RO membrane | 21 | 25 | 934.22 | 0.291 | 2.00 | −0.0002 | 0.707 | 0.707 | 0.206 | 1.875 | 1.875 |
Retentate of RO membrane | 22 | 30 | 933.2 | 2.104 | 106.2 | −1.575 | 2.564 | 0.989 | 2.081 | −1.488 | 1.488 |
Permeate of RO membrane | 23 | 25 | 934.22 | 0.291 | 2.00 | −0.0002 | 2.037 | 2.037 | 0.593 | 2.059 | 2.059 |
Retentate of RO membrane | 24 | 30 | 933.20 | 2.104 | 106.2 | −1.303 | 2.564 | 1.260 | 2.6526 | 0.568 | 0.567 |
Retentate of RO membrane | 25 | 30 | 856.19 | 2.568 | 172.2 | −1.303 | 2.557 | 1.254 | 3.219 | −2.686 | 2.686 |
Permeate of RO membrane | 26 | 25 | 934.22 | 0.262 | 3.66 | −0.0004 | 2.037 | 2.037 | 0.534 | 1.989 | 1.989 |
Retentate of RO membrane | 27 | 30 | 856.19 | 2.568 | 172.2 | −1.575 | 2.557 | 0.982 | 2.523 | −1.988 | 1.988 |
Permeate of RO membrane | 28 | 25 | 923.07 | 0.262 | 3.66 | −0.0004 | 2.04 | 2.039 | 0.534 | −0.621 | 0.621 |
Mixing of retentate stream | 27′ | 30 | 934.22 | 2.118 | 409.2 | −1.554 | 1.514 | −0.041 | −0.087 | 6.127 | 6.126 |
Mixing of permeate stream or product | 30 | 30 | 934.22 | 13.85 | 2.00 | 0.011 | 0.425 | 0.436 | 6.039 | −9.031 | 9.031 |
Throttling valve | 31 | 30 | 1400 | 2.118 | 409.2 | −1.453 | 0.041 | −1.412 | −2.991 | 2.991 | 2.991 |
Throttling valve | 32 | 30 | 1400 | 2.118 | 409.2 | 0 | 0 | 0 | 0 | 0 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsarayreh, A.A.; Al-Obaidi, M.A.; Ruiz-García, A.; Patel, R.; Mujtaba, I.M. Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process. Membranes 2022, 12, 11. https://doi.org/10.3390/membranes12010011
Alsarayreh AA, Al-Obaidi MA, Ruiz-García A, Patel R, Mujtaba IM. Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process. Membranes. 2022; 12(1):11. https://doi.org/10.3390/membranes12010011
Chicago/Turabian StyleAlsarayreh, Alanood A., Mudhar A. Al-Obaidi, Alejandro Ruiz-García, Raj Patel, and Iqbal M. Mujtaba. 2022. "Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process" Membranes 12, no. 1: 11. https://doi.org/10.3390/membranes12010011
APA StyleAlsarayreh, A. A., Al-Obaidi, M. A., Ruiz-García, A., Patel, R., & Mujtaba, I. M. (2022). Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process. Membranes, 12(1), 11. https://doi.org/10.3390/membranes12010011