Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review
Abstract
:1. Introduction
2. Overview of Copper
2.1. Properties and Toxic Mechanism
2.2. Copper-Based Materials and Relevant Features
3. Polymeric Membranes Modified by Copper Incorporation
3.1. Reverse Osmosis (RO) Membranes
3.2. Forward Osmosis (FO) Membranes
3.3. Nanofiltration (NF) Membranes
3.4. Ultrafiltration (UF) Membranes
3.5. Microfiltration (MF) Membranes
4. New Challenges and Perspectives
4.1. Improvements in Membrane Modification Procedures for the Effective Incorporation of Copper Species
4.2. Scale Up Implementation and Environmental Impact
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MF | Microfiltration |
UF | Ultrafiltration |
NF | Nanofiltration |
FO | Forward Osmosis |
RO | Reverse Osmosis |
Ag | Silver |
Cu | Copper |
Fe | Iron |
GO | Graphene Oxide |
TiO2 | Titanium Dioxide |
Zn | Zinc |
NPs | Nanoparticles |
Cu-NPs | Copper Metallic Nanoparticles |
CuO-NPs | Copper Oxides Nanoparticles |
Cu-Al LDH | Copper-aluminum Layered Double Hydroxide |
CuBTC | Copper Benzene-1,3,5-tricarboxylate |
CuCl2 | Copper Chloride |
Cu2+-HNTs | Halloysite nanotubes loaded with copper ions |
Cu-MPD | Cu-meta-phenylendiamine Oligomers |
Cu(NO3)2 | Copper Nitrate |
Cu(OH)2 | Copper Hydroxide |
CuSO4 | Copper Sulfate |
Cu/TNT | Copper-modified Titanate Nanotubes |
rGOC | Reduced Graphene Oxide-copper |
TA-Cu2+ | Tannic Acid-cupric Acetate Complex |
ATP | Adenosine-5-triphosphate |
BSA | Bovine Serum Albumin |
MBC | Minimum Bactericidal Concentration |
MBR | Membrane Bioreactors |
MIC | Minimum Inhibitory Concentration |
NOM | Natural Organic Matter |
PBS | Phosphate-Buffered Saline |
ROS | Reactive Oxygen Species |
CA | Cellulose Acetate |
Catechol | 1,2-dihydroxyphenyl |
CCTS | Carboxylate Chitosan |
CS | Chitosan |
CTA | Cellulose Triacetate |
CTAB | Cetyltrimethylammonium bromide |
Cys | Cysteamine |
GA | Glutaraldehyde |
SI-ATRP | Surface-initiated Atom Transfer Radical Polymerization |
SSLbL | Spin-assisted Layer-by-layer Self-assembly |
DS | Draw Solutions |
FS | Feed Solution |
FRR | Flux Recovery Ratio |
ICP | Internal Concentration Polarization |
IMA | Immobilized Metal Affinity |
MWCO | Minimal Molecular Weight Cut-off |
Gallol | 1,2,3-trihydroxyphenyl |
g-C3N4 | Graphitic Carbon Nitride |
GMA | Glycidyl Methacrylate |
HA | Humic Acid |
HEPES | 4-(2-hydroxyethyl)-1-piperazine ethanesulfonate |
IDA | Iminodiacetic Acid |
LDH | Layered Double Hydroxide |
MPD | m-phenylendiamine |
MOFs | Metal Organic Frameworks |
MWCNTs | Multiwall Carbon Nanotubes |
NLDH | Nanolayered Double Hydroxide |
P4VP | poly(4-vinylpyridine) |
PA | Polyamide |
PAA | Poly(acrylic) Acid |
PAN | Polyacrylonitrile |
PANI | Polyaniline |
PDA | Polydopamine |
PDVF | Poly (vinylidene fluoride) |
PEI | Polycation Polyethylenimine |
PES | Polyethersulfone |
PHMB | Poly (hexamethylene biguanide) Hydrochloride |
PLA | Polylactic Acid |
Ply-PIP | poly (piperazineamide) |
PPE | Polyphosphoester |
PPSU | Polyphenylsulfone |
PS | Polystyrene |
PSf | Polysulfone |
PVA | poly(vinyl alcohol) |
PVD | Physical Vapor Deposition |
PVDF-HFP | Poly (vinylidene fluoride-co-hexa-fluoropropylene) |
SA | Sodium Alginate |
SPAES | Sulfonated Poly (aryl ether sulfone) |
SPP | Polyphosphate |
TFC | Thin-Film Composite |
TMC | Trimesoyl Chloride |
TNT | Nanotubes |
ALDS | Atomic layer deposition |
ATRA | Atomic Transfer Radical Addition |
IPP | Interfacial Polymerization Process |
LbL | LbL, Layer by Layer |
NIPS | Non-solvent Induced Phase Separation |
O/W | Oil/Water |
PWF | Pure Water Flux |
S | Thickness |
US EPA | United States Environmental Protection Agency |
WHO | World Health Organization |
WWT | Wastewater Treatment |
X | Tortuosity/porosity |
References
- Richey, A.S.; Thomas, B.F.; Lo, M.; Reager, J.T.; Famiglietti, J.S.; Voss, K.A.; Swenson, S.C.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Buruga, K.; Song, H.; Shang, J.; Bolan, N.; Jagannathan, T.K.; Kim, K.-H. A review on functional polymer-clay based nanocomposite membranes for treatment of water. J. Hazard. Mater. 2019, 379, 120584. [Google Scholar] [CrossRef] [PubMed]
- Riegels, N.; Vairavamoorthy, K.; Herrick, J.; Kauppi, L.; Mcneely, J.A.; Mcglade, J.; Eboh, E.; Smith, M.; Acheampong, E.; Pengue, W.; et al. Options for Decoupling Economic Growth From Water Use and Water. 2015. Available online: http://idaea.csic.es/sites/default/files/Options_for_decoupling_economic_growth_from_water_use_and_water_pollution__A_report_of_the_Water_Working_Group_of_the_International_Resource_Panel-20.pdf (accessed on 28 January 2021).
- Nasir, A.; Masood, F.; Yasin, T.; Hameed, A. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J. Ind. Eng. Chem. 2019, 79, 29–40. [Google Scholar] [CrossRef]
- Shon, H.K.; Phuntsho, S.; Chaudhary, D.S.; Vigneswaran, S.; Cho, J. Nanofiltration for water and wastewater treatment—A mini review. Drink. Water Eng. Sci. 2013, 6, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel-Hamid, S.M.S.; Drioli, E. A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Guerra, K.; Pellegrino, J. Development of a Techno-Economic Model to Compare Ceramic and Polymeric Membranes. Sep. Sci. Technol. 2013, 48, 51–65. [Google Scholar] [CrossRef]
- Kim, J.; Van Der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [Green Version]
- Karkhanechi, H.; Razi, F.; Sawada, I.; Takagi, R.; Ohmukai, Y.; Matsuyama, H. Improvement of antibiofouling performance of a reverse osmosis membrane through biocide release and adhesion resistance. Sep. Purif. Technol. 2013, 105, 106–113. [Google Scholar] [CrossRef]
- Matin, A.; Khan, Z.; Zaidi, S.M.J.; Boyce, M.C. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination 2011, 281, 1–16. [Google Scholar] [CrossRef]
- Kang, G.D.; Cao, Y. ming Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef] [PubMed]
- Buonomenna, M.G. Nano-enhanced reverse osmosis membranes. Desalination 2013, 314, 73–88. [Google Scholar] [CrossRef]
- García, A.; Rodríguez, B.; Oztürk, D.; Rosales, M.; Diaz, D.I.; Mautner, A. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym. Bull. 2018, 75, 2053–2069. [Google Scholar] [CrossRef]
- Al-Amoudi, A.; Lovitt, R.W. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 2007, 303, 4–28. [Google Scholar] [CrossRef]
- Ong, C.S.; Goh, P.S.; Lau, W.J.; Misdan, N.; Ismail, A.F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination 2016, 393, 2–15. [Google Scholar] [CrossRef]
- Abdelkader, B.A.; Antar, M.A.; Khan, Z. Nanofiltration as a Pretreatment Step in Seawater Desalination: A Review. Arab. J. Sci. Eng. 2018, 43, 4413–4432. [Google Scholar] [CrossRef]
- Angelé-Martínez, C.; Nguyen, K.V.T.; Ameer, F.S.; Anker, J.N.; Brumaghim, J.L. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 2017, 11, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Microfiltration membrane processes: A review of research trends over the past decade. J. Water Process Eng. 2019, 32. [Google Scholar] [CrossRef]
- Li, L.; Visvanathan, C. Membrane technology for surface water treatment: Advancement from microfiltration to membrane bioreactor. Rev. Environ. Sci. Biotechnol. 2017, 16, 737–760. [Google Scholar] [CrossRef]
- García, A.; Rodríguez, B.; Ozturk, D.; Rosales, M.; Paredes, C.; Cuadra, F.; Montserrat, S. Desalination Performance of Antibiofouling Reverse Osmosis Membranes. Mod. Environ. Sci. Eng. 2016, 2, 481–489. [Google Scholar] [CrossRef]
- García, A.; Quintero, Y.; Vicencio, N.; Rodríguez, B.; Ozturk, D.; Mosquera, E.; Corrales, T.P.; Volkmann, U.G. Influence of TiO2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes. RSC Adv. 2016, 6, 82941–82948. [Google Scholar] [CrossRef]
- Lee, H.S.; Im, S.J.; Kim, J.H.; Kim, H.J.; Kim, J.P.; Min, B.R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 2008, 219, 48–56. [Google Scholar] [CrossRef]
- Garcia, A.; Quintero, Y.; Quezada, R.; Rodriguez, B.; Estay, H.; Duguet, J. Influence of copper species on anti-biofouling and desalination performance of copper-modified thin-film composite reverse osmosis membranes. In Proceedings of the 24th International Conference on Advanced Materials and Nanothecnology, Rome, Italy, 21–22 October 2019. [Google Scholar]
- Mitra, D.; Kang, E.-T.; Neoh, K.G. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS Appl. Mater. Interfaces 2019, 12, 21159–21182. [Google Scholar] [CrossRef]
- Parveen, F.; Sannakki, B.; Mandke, M.V.; Pathan, H.M. Copper nanoparticles: Synthesis methods and its light harvesting performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. [Google Scholar] [CrossRef]
- Rodríguez, B.; Oztürk, D.; Rosales, M.; Flores, M.; García, A. Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex. J. Mater. Sci. 2018, 53, 6325–6338. [Google Scholar] [CrossRef]
- Akar, N.; Asar, B.; Dizge, N.; Koyuncu, I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J. Membr. Sci. 2013, 437, 216–226. [Google Scholar] [CrossRef]
- Faúndez, G.; Troncoso, M.; Navarrete, P.; Figueroa, G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Romanos, G.E.; Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K.; Dionysiou, D.D.; Likodimos, V.; Falaras, P. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J. Hazard. Mater. 2012, 211–212, 304–316. [Google Scholar] [CrossRef]
- Yang, Z.; Hao, X.; Chen, S.; Ma, Z.; Wang, W.; Wang, C.; Yue, L.; Sun, H.; Shao, Q.; Murugadoss, V.; et al. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J. Colloid Interface Sci. 2019, 533, 13–23. [Google Scholar] [CrossRef]
- Ben-Sasson, M.; Zodrow, K.R.; Genggeng, Q.; Kang, Y.; Giannelis, E.P.; Elimelech, M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 2014, 48, 384–393. [Google Scholar] [CrossRef]
- Al Mayyahi, A. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance. Membranes 2018, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iranizadeh, S.T.; Chenar, M.P.; Mahboub, M.N.; Namaghi, H.A. Preparation and characterization of thin-film composite reverse osmosis membrane on a novel aminosilane-modified polyvinyl chloride support. Braz. J. Chem. Eng. 2019, 36, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Kotlhao, K.; Lawal, I.A.; Moutloali, R.M.; Klink, M.J. Antifouling properties of silver-zinc oxide polyamide thin film composite membrane and rejection of 2-chlorophenol and 2,4-dichlorophenol. Membranes 2019, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Armendariz Ontiveros, M.; Quintero, Y.; Llanquilef, A.; Morel, M.; Martínez, L.A.; García, A.G.; Garcia, A. Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes modified with copper and iron nanoparticles. Materials 2019, 12, 2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, B.E.; Armendariz-Ontiveros, M.M.; Quezada, R.; Huitrón-Segovia, E.A.; Estay, H.; García García, A.; García, A. Influence of Multidimensional Graphene Oxide (GO) Sheets on Anti-Biofouling and Desalination Performance of Thin-Film Composite Membranes: Effects of GO Lateral Sizes and Oxidation Degree. Polymers 2020, 12, 2860. [Google Scholar] [CrossRef]
- Kielemoes, J.; Verstraete, W. Influence of copper-alloying of austenitic stainless steel on multi-species biofilm development. Lett. Appl. Microbiol. 2001, 33, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency; Antimicrobial Copper Alloys Group. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/082012-00002-20101110.pdf (accessed on 28 January 2021).
- Ben-Sasson, M.; Lu, X.; Nejati, S.; Jaramillo, H.; Elimelech, M. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 2016, 388, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bogdanović, U.; Vodnik, V.; Mitrić, M.; Dimitrijević, S.; Škapin, S.D.; Žunič, V.; Budimir, M.; Stoiljković, M. Nanomaterial with high antimicrobial efficacycopper/polyaniline nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 1955–1966. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Uliana, A.A.; Tian, M.; Zhang, Y.; Zhang, Y.; Volodin, A.; Simoens, K.; Yuan, S.; Li, J.; et al. Mussel-Inspired Architecture of High-Flux Loose Nanofiltration Membrane Functionalized with Antibacterial Reduced Graphene Oxide-Copper Nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 28990–29001. [Google Scholar] [CrossRef] [PubMed]
- Arumugham, T.; Amimodu, R.G.; Kaleekkal, N.J.; Rana, D. Nano CuO/g-C 3 N 4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. J. Environ. Sci. 2019, 82, 57–69. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, R.; Wei, A.; Zhao, J.; He, J. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration. Appl. Nanosci. 2019, 9, 1991–2000. [Google Scholar] [CrossRef]
- Park, H.M.; Oh, H.; Jee, K.Y.; Lee, Y.T. Synthesis of PVDF/MWCNT nanocomplex microfiltration membrane via atom transfer radical addition (ATRA) with enhanced fouling performance. Sep. Purif. Technol. 2020, 246, 116860. [Google Scholar] [CrossRef]
- Dasari, A.; Quirós, J.; Herrero, B.; Boltes, K.; García-Calvo, E.; Rosal, R. Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J. Membr. Sci. 2012, 405–406, 134–140. [Google Scholar] [CrossRef]
- Ghalamchi, L.; Aber, S.; Vatanpour, V.; Kian, M. Development of an antibacterial and visible photocatalytic nanocomposite microfiltration membrane incorporated by Ag3PO4/CuZnAl NLDH. Sep. Purif. Technol. 2019, 226, 218–231. [Google Scholar] [CrossRef]
- Fazullin, D.D.; Mavrin, G.V. Preparation methods of bactericidal microfiltration membranes modified with compounds of silver, copper, and iodine. Int. J. Green Pharm. 2017, 11, S827–S830. [Google Scholar] [CrossRef]
- Szyma, K.; Darowna, D.; Sienkiewicz, P.; Jose, M.; Szyma, K.; Mozia, S. Novel polyethersulfone ultra fi ltration membranes modi fi ed with Cu/titanate nanotubes. J. Water Process Eng. 2020, 33. [Google Scholar] [CrossRef]
- Krishnamurthy, P.H.; Yogarathinam, L.T.; Gangasalam, A.; Ismail, A.F. Influence of copper oxide nanomaterials in a poly(ether sulfone) membrane for improved humic acid and oil–water separation. J. Appl. Polym. Sci. 2016, 133, 1–10. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Aber, S. Improving the permeability and antifouling property of PES ultrafiltration membranes using the drying method and incorporating the CuO-ZnO nanocomposite. J. Water Process Eng. 2019, 31. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Liu, J.; Zhang, H.; Wang, K. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem. Eng. J. 2012, 210, 298–308. [Google Scholar] [CrossRef]
- Gul, S.; Rehan, Z.A.; Khan, S.A.; Akhtar, K.; Khan, M.A.; Khan, M.I.; Rashid, M.I.; Asiri, A.M.; Khan, S.B. Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. J. Mol. Liq. 2017, 230, 616–624. [Google Scholar] [CrossRef]
- Zhao, C.; Lv, J.; Xu, X.; Zhang, G.; Yang, Y.; Yang, F. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J. Colloid Interface Sci. 2017, 505, 341–351. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Chen, S.; Li, J.; Han, W.; Sun, X.; Wu, D.; Hu, Z.; Wang, L. Enhanced antifouling and antibacterial properties of poly(ether sulfone) membrane modified through blending with sulfonated poly(aryl ether sulfone) and copper nanoparticles. Appl. Surf. Sci. 2018, 434, 806–815. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Aber, S.; Mahmoodi, N.M. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep. Purif. Technol. 2018, 192, 369–382. [Google Scholar] [CrossRef]
- Isawi, H. Evaluating the performance of different nano-enhanced ultrafiltration membranes for the removal of organic pollutants from wastewater. J. Water Process Eng. 2019, 31. [Google Scholar] [CrossRef]
- Sri Abirami Saraswathi, M.S.; Rana, D.; Divya, K.; Gowrishankar, S.; Sakthivel, A.; Alwarappan, S.; Nagendran, A. Highly permeable, antifouling and antibacterial poly(ether imide) membranes tailored with poly(hexamethylenebiguanide) coated copper oxide nanoparticles. Mater. Chem. Phys. 2020, 240. [Google Scholar] [CrossRef]
- Xu, J.; Feng, X.; Chen, P.; Gao, C. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. J. Membr. Sci. 2012, 413–414, 62–69. [Google Scholar] [CrossRef]
- Qiu, J.H.; Zhang, Y.W.; Zhang, Y.T.; Zhang, H.Q.; Liu, J.D. Synthesis and antibacterial activity of copper-immobilized membrane comprising grafted poly(4-vinylpyridine) chains. J. Colloid Interface Sci. 2011, 354, 152–159. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Aber, S.; Vatanpour, V.; Mahmoodi, N.M. Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance. Mater. Chem. Phys. 2019, 222, 338–350. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Aber, S.; Vatanpour, V.; Mahmoodi, N.M. The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes. Compos. Part B Eng. 2018, 154, 388–409. [Google Scholar] [CrossRef]
- Asapu, S.; Pant, S.; Gruden, C.L.; Escobar, I.C. An investigation of low biofouling copper-charged membranes for desalination. Desalination 2014, 338, 17–25. [Google Scholar] [CrossRef]
- Zhu, J.; Uliana, A.; Wang, J.; Yuan, S.; Li, J.; Tian, M.; Simoens, K.; Volodin, A.; Lin, J.; Bernaerts, K.; et al. Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles: Via fast bioinspired deposition. J. Mater. Chem. A 2016, 4, 13211–13222. [Google Scholar] [CrossRef]
- Chakrabarty, T.; Pérez-Manríquez, L.; Neelakanda, P.; Peinemann, K.V. Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes. Sep. Purif. Technol. 2017, 184, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Isloor, A.M.; Ganesh, B.M.; Isloor, S.M.; Ismail, A.F.; Nagaraj, H.S.; Pattabi, M. Studies on copper coated polysulfone/modified poly isobutylene alt-maleic anhydride blend membrane and its antibiofouling property. Desalination 2013, 308, 82–88. [Google Scholar] [CrossRef]
- Misdan, N.; Ramlee, N.; Hairom, N.H.H.; Ikhsan, S.N.W.; Yusof, N.; Lau, W.J.; Ismail, A.F.; Nordin, N.A.H.M. CuBTC metal organic framework incorporation for enhancing separation and antifouling properties of nanofiltration membrane. Chem. Eng. Res. Des. 2019, 148, 227–239. [Google Scholar] [CrossRef]
- Tajuddin, M.H.; Yusof, N.; Wan Azelee, I.; Wan Salleh, W.N.; Ismail, A.F.; Jaafar, J.; Aziz, F.; Nagai, K.; Razali, N.F. Development of copper-aluminum layered double hydroxide in thin film nanocomposite nanofiltration membrane for water purification process. Front. Chem. 2019, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zareei, F.; Hosseini, S.M. A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property. Sep. Purif. Technol. 2019, 226, 48–58. [Google Scholar] [CrossRef]
- Sumisha, A.; Arthanareeswaran, G.; Ismail, A.F.; Kumar, D.P.; Shankar, M. V Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv. 2015, 5, 39464–39473. [Google Scholar] [CrossRef]
- Zhao, G.; Hao, Y.; He, B.; Song, Y.; Ji, Y.; Zhang, Y.; Bo, L.; Li, J. xin A chitosan-separation-layer nanofiltration membrane prepared through homogeneous hybrid and copper ion enhancement. Sep. Purif. Technol. 2020, 234, 116084. [Google Scholar] [CrossRef]
- Lee, J.Y.; She, Q.; Huo, F.; Tang, C.Y. Metal-organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Membr. Sci. 2015, 492, 392–399. [Google Scholar] [CrossRef]
- Zirehpour, A.; Rahimpour, A.; Khoshhal, S.; Firouzjaei, M.D.; Ghoreyshi, A.A. The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Adv. 2016, 6, 70174–70185. [Google Scholar] [CrossRef]
- Dai, R.; Zhang, X.; Liu, M.; Wu, Z.; Wang, Z. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. J. Membr. Sci. 2019, 573, 46–54. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Y.; Liu, C.; Zhou, Z. Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem. Commun. 2016, 52, 12245–12248. [Google Scholar] [CrossRef] [PubMed]
- Karkhanechi, H.; Takagi, R.; Ohmukai, Y.; Matsuyama, H. Enhancing the antibiofouling performance of RO membranes using Cu(OH)2 as an antibacterial agent. Desalination 2013, 325, 40–47. [Google Scholar] [CrossRef]
- Khajouei, M.; Jahanshahi, M.; Peyravi, M. Biofouling mitigation of TFC membrane by in-situ grafting of PANI/Cu couple nanoparticle. J. Taiwan Inst. Chem. Eng. 2018, 85, 237–247. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Y.; Pan, G.; Xu, J.; Yan, H.; Liu, Y. In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties. Sep. Purif. Technol. 2017, 176, 164–172. [Google Scholar] [CrossRef]
- Ma, W.; Soroush, A.; Luong, T.V.A.; Rahaman, M.S. Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance. J. Colloid Interface Sci. 2017, 501, 330–340. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Y.; Wu, Z.; Liu, M.; Wang, Z. Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. J. Membr. Sci. 2019, 582, 289–297. [Google Scholar] [CrossRef]
- Sri Abirami Saraswathi, M.S.; Rana, D.; Divya, K.; Gowrishankar, S.; Nagendran, A. Versatility of hydrophilic and antifouling PVDF ultrafiltration membranes tailored with polyhexanide coated copper oxide nanoparticles. Polym. Test. 2020, 84, 106367. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, Y.; Wang, J.; Zhang, F.; Li, J.; Jin, J. Layer-by-Layer Construction of Cu2+/Alginate Multilayer Modified Ultrafiltration Membrane with Bioinspired Superwetting Property for High-Efficient Crude-Oil-in-Water Emulsion Separation. Adv. Funct. Mater. 2018, 28, 1–11. [Google Scholar] [CrossRef]
- Padmavathy, N.; Samantaray, P.K.; Ghosh, L.D.; Madras, G.; Bose, S. Selective cleavage of the polyphosphoester in crosslinked copper based nanogels: Enhanced antibacterial performance through controlled release of copper. Nanoscale 2017, 9, 12664–12676. [Google Scholar] [CrossRef]
- Kar, S.; Subramanian, M.; Ghosh, A.K.; Bindal, R.C.; Prabhakar, S.; Nuwad, J.; Pillai, C.G.S.; Chattopadhyay, S.; Tewari, P.K. Potential of nanoparticles for water purification: A case-study on anti-biofouling behaviour of metal based polymeric nanocomposite membrane. Desalin. Water Treat. 2011, 27, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Quezada, R.; Quintero, Y.; Salgado, J.C.; Estay, H.; García, A. Understanding the phenomenon of copper ions release from copper-modified TFC membranes: A mathematical and experimental methodology using shrinking core model. Nanomaterials 2020, 10, 1130. [Google Scholar] [CrossRef]
- Stanisławek, E.; Kaźmierczak, B.; Kacprzyńska-Gołacka, J.; Kowalik-Klimczak, A.; Wieciński, P. The polyamide membranes modified by copper oxide using PVD techniques. J. Mach. Constr. Maintenance. Probl. Eksploat. 2018, 3, 49–55. [Google Scholar]
- Ma, W.; Soroush, A.; Van Anh Luong, T.; Brennan, G.; Rahaman, M.S.; Asadishad, B.; Tufenkji, N. Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Res. 2016, 99, 188–199. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals; Academic Press: Cambridge, MA, USA, 2014; ISBN 0123973392. [Google Scholar]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- Anyaogu, K.C.; Fedorov, A.V.; Neckers, D.C. Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 2008, 24, 4340–4346. [Google Scholar] [CrossRef]
- Mehtar, S.; Wiid, I.; Todorov, S.D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study. J. Hosp. Infect. 2008, 68, 45–51. [Google Scholar] [PubMed]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 2006, 72, 4239–4244. [Google Scholar] [CrossRef] [Green Version]
- Sagripanti, J.L.; Routson, L.B.; Lytle, C.D. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl. Environ. Microbiol. 1993, 59, 4374–4376. [Google Scholar] [CrossRef] [Green Version]
- Sagripanti, J.-L. Metal-based formulations with high microbicidal activity. Appl. Environ. Microbiol. 1992, 58, 3157–3162. [Google Scholar] [CrossRef] [Green Version]
- Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A.; Santhoshkumar, T.; Kirthi, A.V.; Jayaseelan, C.; Marimuthu, S. Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol. Res. 2011, 109, 1403–1415. [Google Scholar] [CrossRef]
- Park, Y.-J.; Song, Y.-H.; An, J.-H.; Song, H.-J.; Anusavice, K.J. Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. J. Dent. 2013, 41, 1251–1258. [Google Scholar]
- Vincent, M.; Hartemann, P.; Engels-Deutsch, M. Antimicrobial applications of copper. Int. J. Hyg. Environ. Health 2016, 219, 585–591. [Google Scholar] [CrossRef]
- Aruoja, V.; Dubourguier, H.C.; Kasemets, K.; Kahru, A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef]
- Chang, Y.N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 2012, 5, 2850–2871. [Google Scholar] [CrossRef] [Green Version]
- Wilks, S.A.; Michels, H.; Keevil, C.W. The survival of Escherichia coli O157 on a range of metal surfaces. Int. J. Food Microbiol. 2005, 105, 445–454. [Google Scholar] [CrossRef]
- Kasemets, K.; Ivask, A.; Dubourguier, H.C.; Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. Vitr. 2009, 23, 1116–1122. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 1–20. [Google Scholar] [CrossRef]
- Midander, K.; Cronholm, P.; Karlsson, H.L.; Elihn, K.; Möller, L.; Leygraf, C.; Wallinder, I.O. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(ll) oxide particles: A cross-disciplinary study. Small 2009, 5, 389–399. [Google Scholar] [CrossRef]
- Chapman, J.S. Biocide resistance mechanisms. Int. Biodeterior. Biodegrad. 2003, 51, 133–138. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Bagchi, B.; Dey, S.; Bhandary, S.; Das, S.; Bhattacharya, A.; Basu, R.; Nandy, P. Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates. Mater. Sci. Eng. C 2012, 32, 1897–1905. [Google Scholar] [CrossRef]
- Kaweeteerawat, C.; Chang, C.H.; Roy, K.R.; Liu, R.; Li, R.; Toso, D.; Fischer, H.; Ivask, A.; Ji, Z.; Zink, J.I.; et al. Cu Nanoparticles Have Different Impacts in Escherichia coli and Lactobacillus brevis than Their Microsized and Ionic Analogues. ACS Nano 2015, 9, 7215–7225. [Google Scholar] [CrossRef] [Green Version]
- Mathews, S.; Hans, M.; Mücklich, F.; Solioz, M. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl. Environ. Microbiol. 2013, 79, 2605–2611. [Google Scholar] [CrossRef] [Green Version]
- Outten, F.W.; Huffman, D.L.; Hale, J.A.; O’Halloran, T.V. The Independent cue and cus Systems Confer Copper Tolerance during Aerobic and Anaerobic Growth in Escherichia coli. J. Biol. Chem. 2001, 276, 30670–30677. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of copper oxides in contact killing of bacteria. Langmuir 2013, 29, 16160–16166. [Google Scholar]
- Nies, D.H.; Silver, S. Molecular Microbiology of Heavy Metals; Springer Science & Business Media: Berlin, Germany, 2007; Volume 6, ISBN 3540697713. [Google Scholar]
- Gawande, M.B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 15009. [Google Scholar] [CrossRef]
- Lisiecki, I.; Bjoerling, M.; Motte, L.; Ninham, B.; Pileni, M.P. Synthesis of copper nanosize particles in anionic reverse micelles: Effect of the addition of a cationic surfactant on the size of the crystallites. Langmuir 1995, 11, 2385–2392. [Google Scholar] [CrossRef]
- Silva, N.; Ramírez, S.; Díaz, I.; Garcia, A.; Hassan, N. Easy, quick, and reproducible sonochemical synthesis of CuO nanoparticles. Materials 2019, 12, 804. [Google Scholar] [CrossRef] [Green Version]
- Safonov, A.; Sulyaeva, V.; Timoshenko, N.; Starinskiy, S. Synthesis of copper nanoparticles in a fluoropolymer matrix by annealing in vacuum. Phys. Lett. A 2017, 381, 2103–2106. [Google Scholar] [CrossRef]
- Sadrolhosseini, A.R.; Abdul Rashid, S.; Zakaria, A.; Shameli, K. Green fabrication of copper nanoparticles dispersed in walnut oil using laser ablation technique. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef]
- Effenberger, F.B.; Sulca, M.A.; Machini, M.T.; Couto, R.A.; Kiyohara, P.K.; Machado, G.; Rossi, L.M. Copper nanoparticles synthesized by thermal decomposition in liquid phase: The influence of capping ligands on the synthesis and bactericidal activity. J. Nanoparticle Res. 2014, 16, 2588. [Google Scholar] [CrossRef]
- Siddiqui, H.; Qureshi, M.S.; Haque, F.Z. Effect of copper precursor salts: Facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik 2016, 127, 4726–4730. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 2016, 6, 21–26. [Google Scholar]
- Chatterjee, A.K.; Sarkar, R.K.; Chattopadhyay, A.P.; Aich, P.; Chakraborty, R.; Basu, T. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 2012, 23, 85103. [Google Scholar] [CrossRef]
- Vrijenhoek, E.M.; Hong, S.; Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2001, 188, 115–128. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Z.; Pinnau, I. Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux. J. Membr. Sci. 2007, 290, 173–181. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Rana, D.; Matsuura, T.; Lan, C.Q. Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes. Desalination 2015, 369, 75–84. [Google Scholar] [CrossRef]
- Pulyalina, A.; Faykov, I.; Nesterova, V.; Goikhman, M.; Podeshvo, I.; Loretsyan, N.; Novikov, A.; Gofman, I.; Toikka, A.; Polotskaya, G. Novel polyester amide membranes containing biquinoline units and complex with Cu(I): Synthesis, characterization, and approbation for n-heptane isolation from organic mixtures. Polymers 2020, 12, 645. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M. Assembly Chemistry of Coordination Polymers. Mod. Inorg. Synth. Chem. 2011, 207–225. [Google Scholar] [CrossRef]
- Armendáriz-Ontiveros, M.M.; Sánchez, J.Á.; Isiordia, G.E.D.; Garcia, A.; Weihs, G.A.F. Effect of seawater variability on endemic bacterial biofouling of a reverse osmosis membrane coated with iron nanoparticles (FeNPs). Chem. Eng. Sci. 2020, 115753. [Google Scholar] [CrossRef]
- Weaver, R.; Howells, M.; Brown, H. IDA Water Security Handbook: 2018–2019. Water Desalination Report. 2019. Available online: https://idadesal.org/ida-water-security-handbook-points-to-robust-increase-in-desalination-and-water-reuse-for-2019/ (accessed on 28 January 2021).
- Suslick, K.S. Encyclopedia of Physical Science and Technology. In Sonoluminescence Sonochemistry, 3rd ed.; Academic Press, Inc.: San Diego, CA, USA, 2001. [Google Scholar]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar]
- Xu, G.R.; Wang, J.N.; Li, C.J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination 2013, 328, 83–100. [Google Scholar] [CrossRef]
- Pankratz, T. Copper Oligomers Halt Biofouling. Water Desalination Report. 2020. Available online: https://www.desalination.com/articles/12cdaf67-003b-4ae7-839b-b2d81e664678 (accessed on 28 January 2021).
- Palza, H.; Nuñez, M.; Bastías, R.; Delgado, K. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int. J. Antimicrob. Agents 2018, 51, 912–917. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Mo, L. Copper Oxide Nanoparticles Are Highly Toxic A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes—Chemical Research in Toxicology (ACS Publications). Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Seyedpour, S.F.; Rahimpour, A.; Najafpour, G. Facile in-situ assembly of silver-based MOFs to surface functionalization of TFC membrane: A novel approach toward long-lasting biofouling mitigation. J. Membr. Sci. 2019, 573, 257–269. [Google Scholar] [CrossRef]
- Cady, N.C.; Behnke, J.L.; Strickland, A.D. Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv. Funct. Mater. 2011, 21, 2506–2514. [Google Scholar] [CrossRef]
- Hans, M.; Mathews, S.; Mücklich, F.; Solioz, M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 2016, 11, 018902. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.E.A.; Hassan, F.M.; Feng, X. Improving the performance of TFC membranes: Via chelation and surface reaction: Applications in water desalination. J. Mater. Chem. A 2016, 4, 6620–6629. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Johnson, D.; Hilal, N. Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. J. Water Process Eng. 2019, 31, 100886. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef] [Green Version]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015, 364, 17–32. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Oatley-Radcliffe, D.L.; Walters, M.; Ainscough, T.J.; Williams, P.M.; Mohammad, A.W.; Hilal, N. Nanofiltration membranes and processes: A review of research trends over the past decade. J. Water Process Eng. 2017, 19, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Tul Muntha, S.; Kausar, A.; Siddiq, M. Advances in Polymeric Nanofiltration Membrane: A Review. Polym. Plast. Technol. Eng. 2017, 56, 841–856. [Google Scholar] [CrossRef]
- Su, Y.; Mu, C.; Li, C.; Jiang, Z. Antifouling property of a weak polyelectrolyte membrane based on poly(acrylonitrile) during protein ultrafiltration. Ind. Eng. Chem. Res. 2009, 48, 3136–3141. [Google Scholar] [CrossRef]
- Cancino-Madariaga, B.; Ruby, R.; Astudillo Castro, C.; Saavedra Torrico, J.; Lutz Riquelme, M. Analysis of the membrane fouling mechanisms involved in clarified grape juice ultrafiltration using statistical tools. Ind. Eng. Chem. Res. 2012, 51, 4017–4024. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Daraei, P.; Badieh, M.M.S.; Falsafi, M.; Vatanpour, V. Fabrication and modification of polysulfone nanofiltration membrane using organic acids: Morphology, characterization and performance in removal of xenobiotics. Sep. Purif. Technol. 2012, 96, 214–228. [Google Scholar] [CrossRef]
- Arefi-Oskoui, S.; Vatanpour, V.; Khataee, A. Development of a novel high-flux PVDF-based ultrafiltration membrane by embedding Mg-Al nanolayered double hydroxide. J. Ind. Eng. Chem. 2016, 41, 23–32. [Google Scholar] [CrossRef]
- Shenvi, S.; Ismail, A.F.; Isloor, A.M. Enhanced permeation performance of cellulose acetate ultrafiltration membranes by incorporation of sulfonated poly(1,4-phenylene ether ether sulfone) and poly(styrene- Co -maleic anhydride). Ind. Eng. Chem. Res. 2014, 53, 13820–13827. [Google Scholar] [CrossRef]
- Rahimpour, A. UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 2011, 265, 93–101. [Google Scholar] [CrossRef]
- Cheng, C.; Li, S.; Zhao, W.; Wei, Q.; Nie, S.; Sun, S.; Zhao, C. The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. J. Membr. Sci. 2012, 417–418, 228–236. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, S.; Luan, J.; Mu, Y.; Du, Y.; Wang, G. Fabrication of ultrafiltration membranes with enhanced antifouling capability and stable mechanical properties via the strategies of blending and crosslinking. J. Membr. Sci. 2017, 539, 116–127. [Google Scholar] [CrossRef]
- Singh, R.; Purkait, M.K. Microfiltration Membranes. In Membrane Separation Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–146. ISBN 9780128128152. [Google Scholar]
- Kumar, R.; Ismail, A.F. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Wang, Z.; Crandall, C.; Sahadevan, R.; Menkhaus, T.J.; Fong, H. Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer 2017, 114, 64–72. [Google Scholar] [CrossRef]
- Cioffi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, P.G.; Traversa, E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 2005, 17, 5255–5262. [Google Scholar] [CrossRef]
Strain | MBC (mg/L) | |
---|---|---|
Cu-NPs | CuO-NPs | |
Staphylococcus aureus (Golden) | 1000 | 2500 |
S. aureus (Oxford) | 250 | 100 |
Escherichia coli NCTC 9001 | 250 | 250 |
Proteus spp. | 2500 | 5000 |
Pseudomonas aeruginosa PAOI | 2500 | 5000 |
Base Polymer/ Membrane | Cu-Type | Modification Method | Performance Characteristics | Ref. | ||
---|---|---|---|---|---|---|
Antibacterial Efficiency (%) | Anti-Adhesion Efficiency(%) | Flux/Conditions | ||||
Commercial TFC-RO | Cu(OH)2 | Coating | 98 (E. coli) | -- | Modified = 5.1 L m−2 h−1 atm−1 /NaCl 500 ppm, 7.5 bar | [76] |
Commercial TFC-RO | Cu-NPs | Coating | - | 87 (E. Coli) 96 (P. aeruginosa) 79.5 (S. aureus) | Modified = 0.34 L m−2 h−1 /(NaCl 2922.5 ppm, 27.6 bar) | [32] |
Commercial TFC-RO | Cu-NPs | Coating | - | 89.6 | Modified = 2.97 L m−2 h−1 bar−1 /(NaCl 2922.5 ppm, 27.6 bar) | [40] |
Commercial TFC-RO | PANI-CuNPs | Grafting | - | - | Modified = 17.2 L m−2 h−1 /(NaCl 2000 ppm, 3 bar) | [77] |
PA/PS | Chitosan-CuNPs | Grafting | 99 (E. coli) | - | - | [78] |
Commercial TFC-RO | Cysteamine-CuNPs | Grafting | 85 (E. coli) | 97 | - | [79] |
PA/PS | CuO-NPs | Immobilization in PA layer | 55 (E. coli) | 88 | Modified = 2.18 L m−2 h−1 bar−1 /(NaCl 1000 ppm, 20.7 bar) | [14] |
PA/PS | Cu-NPs | Immobilization in PA layer | >99 (E. coli) | 97 | Modified = 0.42 L m−2 h−1 bar−1 /(NaCl 1000 ppm, 20.7 bar) | [36] |
PA/PS | Cu-mPD | Immobilization in PA layer | 99 (E. coli) | 99 | Modified = 1.6 L m−2 h−1 bar−1 /(NaCl 1000 ppm, 20.7 bar) | [27] |
PA/PS | Cu-NPsCuO-NPsCu-mPD | Immobilization in PA layer | 99 (E. coli) 99 (E. coli) 99 (E. coli) | - | - | [85] |
PA/PES | CuBTTri-MOF | Immobilization in PA layer | 96.6 (P. aeruginosa) | - | Modified = 3.38 L m−2 h−1 bar−1 /(NaCl 1000 ppm, 20.7 bar) | [80] |
PA/PS | CuO-NPs | PVD | 99 (E. coli) | - | - | [86] |
Commercial TFC-RO | PEI-CuNPs | SSLbL | 99 (E. coli) | - | - | [87] |
Base Polymer/ Membrane | Cu-Type | Modification Method | Performance Characteristics | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Antibacterial Efficiency (%) | Contact Angle (°) | Water Permeability | Salt Rejection (%) | |||||
Polyacrylonitrile (PAN) | Cu-BTC MOF | LbL-Phase Inversion | - | 29 ± 2 | 132 ± 10 (L m−2 h−1) | 75 ± 5 | 190 ± 20 | [72] |
Cellulose Acetate/Triacetate (CA/CTA) | Cu-BTC MOF | Phase Inversion-Immersion Precipitation | - | 55 ± 1 | 1.41 (L m−2 h−1 bar−1) | - | 136 | [73] |
Polyamide TFC-FO | Cu-BTC MOF 2D | Interfacial Polymerization | - | 55 ± 5 | 3.13 ± 0.30 (L m−2 h−1 bar−1) | 50 ± 5 | 366 ± 41 | [74] |
Polyamide TFC-FO | Cu2+-DOPA complex | One-pot chelating-Mussel | 97.6 (S. aureus) | 50 ± 5 | 0.7 ± 0.1 (Normalized water flux TFC-FO) | 30 ± 10 | - | [75] |
Base Polymer/ Membrane | Cu-Type | Modification Method | Performance Characteristics | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Antibacterial Efficiency (%) | Contact Angle (°) | Pure Water Flux | Rejection | Application | ||||
CA/GMA/IDA | Cu2+ ions | Homopolymerization-Phase inversion-IMA | 27% biofilm area (P. fluorescens) | 43° | 11 (69 bar) | BSA, Lipase (non-determined) | WWT | [63] |
PAN-UF | DOPA-Cu2+ /PEI-CuNPs | Mussel-inspired PDA-Two-step deposition and Co-deposition | 93.7% (E. coli) | 35° (max.) 18.5° (min.) | 18.2 bar−1 (max.) | 18% Na2SO4, 2% NaCl, ~99% Dyes (0.6–2 kDa) | WWT | [64] |
HPAN-UF | PDA-rGO-Cu | In situ reduction-Mussel-inspired PDA | 97.9% (E. coli) | 41.7° | 22.8 bar−1 | 7.4% Na2SO4, 2.5% NaCl, 99.4% Dye (RB2) | WWT | [42] |
HPAN-UF | TA-Cu2+ | Co-deposition | - | 54.5° | 52 bar−1 (max.) | 22.5% Na2SO4, 10% NaCl, ~99% Dyes (0.6kDa) | WWT | [65] |
PSf/mPIAM | Elemental Cu | Phase Inversion-PVD | - | 65° | 36 (8 bar) | 96% (3500 ppm NaCl) | Desalination | [66] |
PSf-poly(PIP) | CuBTC (0.25–0.75 wt%) | Blending-Interfacial Polymerization-Phase inversion | - | 59.02° (min.) | 5.17 bar−1 (max.) | 97.3% MgSO4, 36.2% NaCl 99.9% BSA | Desalination | [67] |
PSf-poly(PIP) | Cu-Al LDH (0.1 wt%) | Interfacial polymerization | - | 37.25° (min.) | 7.01 bar−1 (max.) | 96.8% Na2SO4 95.4% MgSO4, 95.6% MgCl2, 60.8% NaCl | Desalination | [68] |
PES-PVP | CoFe2O4/CuO-NPs (0.05–1 wt%) | Blending-Phase inversion | - | 35° (min.) | 34.5 (max.) | 95% Na2SO4, 72% NaCl, >85% Cu2+, Ni2+, Pb2+ | Desalination | [69] |
PEI (polyetherimide) | Cu-TNT | Blending-Phase inversion | - | 60.3° (min.) | 1.25 bar−1 (max.) | 80% K2SO4, 75% NaCl, 45% CaCl2 | Desalination | [70] |
HPAN-CS-SPP | CuSO4 | LbL-Ionic crosslinking-Deposition | 100% (E. coli) | 53.1° (max.) 25.2° (min.) | 74.8 | 93.3% Na2SO4, 77.7% MgSO4, 20,3% NaCl, 90% PEG (0.4 kDa) | Desalination | [71] |
Base Polymer/ Membrane | Cu-Type | Modification Method | Performance Characteristics | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Antibacterial Efficiency (%) | Contact Angle (°) | PWF * (L/m2 h) | Rejection (%) | FRR ** (%) | ||||
PES | Cu-NPs | Phase inversion- Immersion precipitation | - | 55.3 | 34.5 | 86.3 (BSA) | 23.8 | [28] |
PES/SPAES | Cu-NPs | Phase inversion- Immersion precipitation | 78.9 (E. coli) | 52.0 | 193 | 98 (BSA) | 79 | [55] |
PES | CuO NPs | non-solvent induced phase separation | - | 64.0 | 869.9 (Kg/m2 h) | >97% (BSA) | 64.2 | [61] |
PES | Cu2O NPs | Addition in phase inversion | - | 72.40 | 59.5 | 90 (BSA) 95 (HA) 86 (O/W) | 64 73 58 | [50] |
PES | CuO NPs | Dispersion in phase inversion | - | ~62.5 | 886 | -- (BSA) | 38.0 | [62] |
PES | CuO/ZnO Nanocomposite | non-solvent induced phase separation | - | 65.5 | 679 | 95 (BSA) | 50.1 | [51,56] |
PES | Cu/TNTs | Dispersion in phase inversion | - | - | 215 (L/m2 h bar) | 99 (BSA) | - | [49] |
PES | Cu2+ ions | Dispersion in phase inversion | 100 (E. coli and S. aureus) | 69.8 | 120.1 | - | - | [52] |
PES-CA PES-CA-Ag2O | Cu NPs Cu NPs | Casting method | 10 (E. coli) 82 (E. coli) | 68.5 60.3 | 72.5 100.2 | 88.1 (BSA) 89.5 (BSA) | - - | [53] |
PSF | Cu NPS | Dispersion in phase inversion | - | 69.8 | 39.5 | 90 (PEO 200 KDa) | - | [84] |
PVDF | CuxO | Dispersion in phase inversion | >90 (E. coli) | 65.8 | 23.5 | 80.7 (BSA) | 92.09 | [54] |
PVDF/PVA | CuO | Dispersion in phase inversion | - | 66.4 | 585 | 88.3 (HA) | - | [57] |
PVDF | P–CuO NPs | Dispersion in phase inversion | - | 52.5 | 152.5 | 99.5 (BSA) 98.4 (HA) | 99.5 (BSA) 98.5 (HA) | [81] |
PAA-g-PVDF | Cu2+ions | non-solvent induced phase separation and Layer by layer self-assembly | 99.1 (E. coli) | - | 99.8 (oil-in-water emulsions) | 83.3 *** | [82] | |
PVDF/SMA | CuO-PPE NPs | Grafting | 98 (E. coli) | 54.5 | 1300 | (BSA) | - | [83] |
PEI | PHMB-c-CuO | Coating surface | - | 60.7 | 192.5 | 98.2 (BSA) 97.4 (HA) 98.8 (O/W) | 99.5 98.5 98.6 | [58] |
PAN/PEI | Cu2+ ions | Coating Surface | 71.5 (E. coli) | 47.7 | 594 (L/m2 MPa) | 99 (HA) | - | [59] |
PPSU | CuO/g-C3N4 | Phase inversion | - | 53 | 202 | 96 (BSA) | 79 | [43] |
CMPSF/P4VP | Cu2+ ions | Grafting | 100 (E. coli) | -- | - | - | - | [60] |
Base Polymer/ Membrane | Cu-Type | Modification Method | Performance Characteristics | Ref. | ||
---|---|---|---|---|---|---|
Antibacterial Efficiency (%) | MF Performance H2O Pure | FRR Max. | ||||
PVDF-HFP | CuO-Nanosheets | Electrospinning-Heating-Hydrothermal | - | 2360.19 | 98.1% | [44] |
PVDF | Cu[DNDP]3MWCNT | ATRA-NIPS | - | 2137 | 92.7% | [45] |
PLA | Cu(26 wt%)/Sepiolite | Blending-Electrospinning | 85 (S. cereviciae) 35 (P. putida) | 16.4 | 50.0% | [46] |
PES | Ag3PO4/ZnAlCu-NLDH | Co-precipitation-NIPS | E. coli S. aureus B. anthraus | 269.5 | 89.6% | [47] |
Nylon (PA) | CuSO4/Cu-NPs | Immersion-Aging | ~100 (Gram +/− mix.) | 8.80 cm3 cm−2 min−1 | - | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, A.; Rodríguez, B.; Giraldo, H.; Quintero, Y.; Quezada, R.; Hassan, N.; Estay, H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. Membranes 2021, 11, 93. https://doi.org/10.3390/membranes11020093
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. Membranes. 2021; 11(2):93. https://doi.org/10.3390/membranes11020093
Chicago/Turabian StyleGarcía, Andreina, Bárbara Rodríguez, Hugo Giraldo, Yurieth Quintero, Rodrigo Quezada, Natalia Hassan, and Humberto Estay. 2021. "Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review" Membranes 11, no. 2: 93. https://doi.org/10.3390/membranes11020093
APA StyleGarcía, A., Rodríguez, B., Giraldo, H., Quintero, Y., Quezada, R., Hassan, N., & Estay, H. (2021). Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. Membranes, 11(2), 93. https://doi.org/10.3390/membranes11020093