Electrospun Magnetic Nanocellulose–Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Nanocellulose
2.3. Preparation of Magnetic Nanoparticles and Magnetic Nanocellulose
2.4. Fabrication of Electrospun Nanofibrous Membranes
2.5. Immobilization of AOL on the MNC/PES Fibers
2.6. Protein Content, Immobilization Efficiency and Lipase Activity
2.7. Morphological and Structural Characterization of MNC, MNC/PES Fibers and MNC/PES-AOL Biocatalysts
2.8. Synthesis of Ethyl Valerate Catalyzed by MNC/PES-AOL
2.9. Taguchi L9 Orthogonal Array-Assisted Optimization of AOL Immobilization
2.10. Operational Stability of MNC/PES-AOL and Free AOL
3. Results and Discussion
3.1. Production of NC, MNPs and MNC
3.2. Fabrication of ENMs-MNC/PES Support and Immobilization of AOL on the MNC/PES Fiber
3.3. Protein Content, Immobilization Yield and Lipase Activity
3.4. Characterization of MNC/PES and MNC/PES-AOL Biocatalyst
3.4.1. FTIR:ATR Spectroscopy
3.4.2. Raman Spectroscopy
3.4.3. FESEM-EDX
3.4.4. TGA and DTG
3.5. Optimization of Immobilization Protocol Using the Taguchi Design
3.5.1. Statistical Analysis
3.5.2. Regression of Model Equation and Analysis of Experimental Data
3.5.3. Optimization and Model Verification
3.6. Operational Stability of MNC/PES-AOL Membrane
3.6.1. Thermal Stability
3.6.2. Reusability
3.6.3. Half-Life
3.6.4. Leaching
3.7. Comparative Study of Ethyl Valerate Production Using Other Enzymes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zdarta, J.; Jankowska, K.; Bachosz, K.; Kijeńska-Gawrońska, E.; Zgoła-Grześkowiak, A.; Kaczorek, E.; Jesionowski, T. A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catal. Today 2020, 348, 127–136. [Google Scholar] [CrossRef]
- Dash, A.; Banerjee, R. Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production. Energy 2021, 222, 119950. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Paitaid, P.; H-Kittikun, A. Enhancing immobilization of Aspergillus oryzae ST11 lipase on polyacrylonitrile nanofibrous membrane by bovine serum albumin and its application for biodiesel production. Prep. Biochem. Biotechnol. 2021, 51, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Al-Husaini, I.S.; Yusoff, A.R.M.; Lau, W.-J.; Ismail, A.F.; Al-Abri, M.Z.; Wirzal, M.D.H. Iron oxide nanoparticles incorporated polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chem. Eng. Res. Des. 2019, 148, 142–154. [Google Scholar] [CrossRef]
- Tang, C.; Saquing, C.D.; Sarin, P.K.; Kelly, R.M.; Khan, S.A. Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. J. Membr. Sci. 2014, 472, 251–260. [Google Scholar] [CrossRef]
- Yew, C.-H.T.; Azari, P.; Choi, J.R.; Li, F.; Pingguan-Murphy, B. Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay. Anal. Chim. Acta 2018, 1009, 81–88. [Google Scholar] [CrossRef]
- Abid, S.; Hussain, T.; Raza, Z.A.; Nazir, A. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater. Sci. Eng. C 2019, 97, 966–977. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Shahamirian, M.; John, D.; Ramaswamy, H. Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Mater. Sci. Eng. C 2019, 94, 393–402. [Google Scholar] [CrossRef]
- Jacob, A.G.; Wahab, R.A.; Mahat, N.A. Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate. Enzym. Microb. Technol. 2021, 148, 109807. [Google Scholar] [CrossRef]
- Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A. Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng. 2018, 91, 105–118. [Google Scholar] [CrossRef]
- Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A. Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. J. Biotechnol. 2018, 283, 81–96. [Google Scholar] [CrossRef]
- Elias, N.; Chandren, S.; Razak, F.I.A.; Jamalis, J.; Widodo, N.; Wahab, R.A. Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. Int. J. Biol. Macromol. 2018, 114, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Elias, N.; Wahab, R.A.; Jye, L.W.; Mahat, N.A.; Chandren, S.; Jamalis, J. Taguchi orthogonal design assisted immobilization of Candida rugosa lipase onto nanocellulose-silica reinforced polyethersulfone membrane: Physicochemical characterization and operational stability. Cellulose 2021, 28, 5669–5691. [Google Scholar] [CrossRef]
- Reichardt, C.; Utgenannt, S.; Stahmann, K.-P.; Klepel, O.; Barig, S. Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochem. Eng. J. 2018, 138, 63–73. [Google Scholar] [CrossRef]
- Kim, H.; Choi, N.; Oh, S.-W.; Kim, Y.; Hee Kim, B.; Kim, I.-H. Synthesis of α-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase. Food Chem. 2017, 237, 654–658. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiao, L.; Qiao, Y.; Wang, Y.; Xu, L.; Yan, J.; Yan, Y. Overexpression of GRAS Rhizomucor miehei lipase in Yarrowia lipolytica via optimizing promoter, gene dosage and fermentation parameters. J. Biotechnol. 2019, 306, 16–23. [Google Scholar] [CrossRef]
- Abd Manan, F.M.; Attan, N.; Zakaria, Z.; Mahat, N.A.; Abdul Wahab, R. Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J. Biotechnol. 2018, 280, 19–30. [Google Scholar] [CrossRef]
- Badgujar, V.C.; Badgujar, K.C.; Yeole, P.M.; Bhanage, B.M. Investigation of effect of ultrasound on immobilized C. rugosa lipase: Synthesis of biomass based furfuryl derivative and green metrics evaluation study. Enzyme Microb. Technol. 2021, 144, 109738. [Google Scholar] [CrossRef]
- Zhou, W.; Zhuang, W.; Ge, L.; Wang, Z.; Wu, J.; Niu, H.; Liu, D.; Zhu, C.; Chen, Y.; Ying, H. Surface functionalization of graphene oxide by amino acids for Thermomyces lanuginosus lipase adsorption. J. Colloid Interface Sci. 2019, 546, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Manan, F.M.A.; Rahman, I.N.A.; Marzuki, N.H.C.; Mahat, N.A.; Huyop, F.; Wahab, R.A. Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process. Biochem. 2016, 51, 249–262. [Google Scholar] [CrossRef]
- Rahman, I.N.A.; Attan, N.; Mahat, N.A.; Jamalis, J.; Abdul Keyon, A.S.; Kurniawan, C.; Wahab, R.A. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int. J. Biol. Macromol. 2018, 115, 680–695. [Google Scholar] [CrossRef]
- Elias, N.; Wahab, R.A.; Chandren, S.; Lau, W.J. Performance of Candida rugosa lipase supported on nanocellulose-silica-reinforced polyethersulfone membrane for the synthesis of pentyl valerate: Kinetic, thermodynamic and regenerability studies. Mol. Catal. 2021, 514, 111852. [Google Scholar] [CrossRef]
- Maccarini, M.; Atrei, A.; Innocenti, C.; Barbucci, R. Interactions at the CMC/magnetite interface: Implications for the stability of aqueous dispersions and the magnetic properties of magnetite nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2014, 462, 107–114. [Google Scholar] [CrossRef]
- Phanthong, P.; Ma, Y.; Guan, G.; Abudula, A. Extraction of nanocellulose from raw apple stem. J. Jpn. Inst. Energy 2015, 94, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Xiong, J.; Chen, G.; Tan, T. Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material. Int. J. Biol. Macromol. 2020, 158, 781–789. [Google Scholar] [CrossRef]
- Gu, H.; Zhou, X.; Lyu, S.; Pan, D.; Dong, M.; Wu, S.; Ding, T.; Wei, X.; Seok, I.; Wei, S.; et al. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J. Colloid Interface Sci. 2020, 560, 849–856. [Google Scholar] [CrossRef]
- Elias, N.; Wahab, R.A.; Chandren, S.; Abdul Razak, F.I.; Jamalis, J. Effect of operative variables and kinetic study of butyl butyrate synthesis by Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves. Enzyme Microb. Technol. 2019, 130, 109367. [Google Scholar] [CrossRef]
- Al-Husaini, I.S.; Yusoff, A.R.M.; Lau, W.J.; Ismail, A.F.; Al-Abri, M.Z.; Al-Ghafri, B.N.; Wirzal, M.D.H. Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution. Sep. Purif. Technol. 2019, 212, 205–214. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Y.; Hou, C.; Pan, D.; He, J.; Zhu, H. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. J. Nanopart. Res. 2016, 18, 32. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Asmat, S.; Husain, Q. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. Mater. Sci. Eng. C 2019, 99, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Badgujar, K.C.; Dhake, K.P.; Bhanage, B.M. Immobilization of Candida cylindracea lipase on poly lactic acid, polyvinyl alcohol and chitosan based ternary blend film: Characterization, activity, stability and its application for N-acylation reactions. Process. Biochem. 2013, 48, 1335–1347. [Google Scholar] [CrossRef]
- Elias, N.; Wahab, R.A.; Chandren, S.; Jamalis, J.; Mahat, N.A.; Jye, L.W. Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate. Carbohydr. Polym. 2020, 245, 116549. [Google Scholar] [CrossRef]
- Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012045. [Google Scholar] [CrossRef]
- Bilal, M.; Jing, Z.; Zhao, Y.; Iqbal, H.M.N. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal. Agric. Biotechnol. 2019, 19, 101174. [Google Scholar] [CrossRef]
- Cai, H.; Li, Y.; Zhao, M.; Fu, G.; Lai, J.; Feng, F. Immobilization, Regiospecificity Characterization and Application of Aspergillus oryzae Lipase in the Enzymatic Synthesis of the Structured Lipid 1,3-Dioleoyl-2-Palmitoylglycerol. PLoS ONE 2015, 10, e0133857. [Google Scholar] [CrossRef] [Green Version]
- Elias, N.; Chandren, S.; Attan, N.; Mahat, N.A.; Razak, F.I.A.; Jamalis, J.; Wahab, R.A. Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr. Polym. 2017, 176, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Helmiyati, Y.A. Nanocomposites Comprising Cellulose and Nanomagnetite as Heterogeneous Catalysts for the Synthesis of Biodiesel from Oleic Acid. Int. J. Technol. 2019, 10, 291–319. [Google Scholar] [CrossRef] [Green Version]
- Jodeh, S.; Hamed, O.; Melhem, A.; Salghi, R.; Jodeh, D.; Azzaoui, K.; Benmassaoud, Y.; Murtada, K. Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater. Environ. Sci. Pollut. Res. 2018, 25, 22060–22074. [Google Scholar] [CrossRef]
- Jafarian, F.; Bordbar, A.-K.; Razmjou, A.; Zare, A. The fabrication of a high-performance enzymatic hybrid membrane reactor (EHMR) containing immobilized Candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane. J. Membr. Sci. 2020, 613, 118435. [Google Scholar] [CrossRef]
- Onoja, E.; Wahab, R.A. Effect of glutaraldehyde concentration on catalytic efficacy of Candida rugosa lipase immobilized onto silica from oil palm leaves. Indones. J. Chem. 2019, 19, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhao, J.; Zhang, Z.; Jiang, Y.; Bilal, M.; Jiang, Y.; Jia, S.; Cui, J. Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem. Eng. J. 2020, 158, 107582. [Google Scholar] [CrossRef]
- Nady, D.; Zaki, A.H.; Raslan, M.; Hozayen, W. Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. Int. J. Biol. Macromol. 2020, 146, 1169–1179. [Google Scholar] [CrossRef]
- Slavov, L.; Abrashev, M.V.; Merodiiska, T.; Gelev, C.; Vandenberghe, R.E.; Markova-Deneva, I.; Nedkov, I. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J. Magn. Magn. Mater. 2010, 322, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
- Testa-Anta, M.; Ramos-Docampo, M.A.; Comesaña-Hermo, M.; Rivas-Murias, B.; Salgueiriño, V. Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv. 2019, 1, 2086–2103. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, D.V.; Ker, J.C.; Schaefer, C.E.R.; Rodet, M.J.; Guimarães, L.M.; Felix, J.F. Magnetite originating from bonfires in a Brazilian prehistoric Anthrosol: A micro-Raman approach. Catena 2018, 171, 552–564. [Google Scholar] [CrossRef]
- Wang, L.; Lin, K.; Ren, J.; Du, K.; Chang, Y.; Han, L.; Yao, P.; Tian, F. Direct synthesis of ultrasmall and stable magnetite nanoparticles coated with one single carbon layer for sensitive surface-enhanced Raman scattering. Appl. Surf. Sci. 2019, 478, 601–606. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Z.; Alsammarraie, F.K.; Lin, M.-H.; Kong, F.; Huang, M.; Lin, M. Development of cellulose nanofiber-based substrates for rapid detection of ferbam in kale by Surface-enhanced Raman spectroscopy. Food Chem. 2021, 347, 129023. [Google Scholar] [CrossRef] [PubMed]
- El-Shishtawy, R.M.; Aldhahri, M.; Almulaiky, Y.Q. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study. Int. J. Biol. Macromol. 2020, 163, 1353–1360. [Google Scholar] [CrossRef]
- Mohd Hussin, F.N.N.; Attan, N.; Wahab, R.A. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Enzym. Microb. Technol. 2020, 136, 109506. [Google Scholar] [CrossRef]
- Abed, S.M.; Elbandy, M.; Abdel-Samie, M.A.; Ali, A.H.; Korma, S.A.; Noman, A.; Wei, W.; Jin, Q. Screening of lipases for production of novel structured lipids from single cell oils. Process. Biochem. 2020, 91, 181–188. [Google Scholar] [CrossRef]
- Maharani, C.A.; Suharti, S.; Wonorahardjo, S. Optimizing the immobilization of lipase enzyme (Aspergillus oryzae) in the silica and silica-cellulose matrix by adsorption method. J. Phys. Conf. Ser. 2020, 1595, 012011. [Google Scholar] [CrossRef]
- Mohamad, N.; Buang, N.A.; Mahat, N.A.; Jamalis, J.; Huyop, F.; Aboul-Enein, H.Y.; Wahab, R.A. Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. J. Ind. Eng. Chem. 2015, 32, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Abed, S.M.; Wei, W.; Ali, A.H.; Korma, S.A.; Mousa, A.H.; Hassan, H.M.; Jin, Q.; Wang, X. Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. LWT 2018, 93, 306–315. [Google Scholar] [CrossRef]
- Kuperkar, V.V.; Lade, V.G.; Prakash, A.; Rathod, V.K. Synthesis of isobutyl propionate using immobilized lipase in a solvent free system: Optimization and kinetic studies. J. Mol. Catal. B Enzym. 2014, 99, 143–149. [Google Scholar] [CrossRef]
- Xie, W.; Huang, M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Convers. Manag. 2018, 159, 42–53. [Google Scholar] [CrossRef]
- Che Marzuki, N.H.; Mahat, N.A.; Huyop, F.; Aboul-Enein, H.Y.; Wahab, R.A. Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod. Process. 2015, 96, 211–220. [Google Scholar] [CrossRef]
- Park, S.; Oh, Y.; Yun, J.; Yoo, E.; Jung, D.; Oh, K.K.; Lee, S.H. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose 2020, 27, 2757–2773. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Bhanage, B.M. Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study. Process. Biochem. 2014, 49, 1304–1313. [Google Scholar] [CrossRef]
- Zare, A.; Bordbar, A.-K.; Razmjou, A.; Jafarian, F. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. J. Biotechnol. 2019, 289, 55–63. [Google Scholar] [CrossRef]
- Jacob, A.G.; Wahab, R.A.; Misson, M. Operational stability, regenerability, and thermodynamics studies on biogenic silica/magnetite/graphene oxide nanocomposite-activated Candida rugosa Lipase. Polymers 2021, 13, 3854. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Habibi, Z.; Gandomkar, S.; Yousefi, M. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports; Application for enantioselective resolution of rac-ibuprofen. Int. J. Biol. Macromol. 2018, 117, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Corradini, M.C.C.; Costa, B.M.; Bressani, A.P.P.; Garcia, K.C.A.; Pereira, E.B.; Mendes, A.A. Improvement of the enzymatic synthesis of ethyl valerate by esterification reaction in a solvent system. Prep. Biochem. Biotechnol. 2017, 47, 100–109. [Google Scholar] [CrossRef]
- Khoobi, M.; Motevalizadeh, S.F.; Asadgol, Z.; Forootanfar, H.; Shafiee, A.; Faramarzi, M.A. Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochem. Eng. J. 2014, 88, 131–141. [Google Scholar] [CrossRef]
- Padilha, G.S.; Barros, M.d.; Alegre, R.M.; Tambourgi, E.B. Production of ethyl valerate from Burkholderia cepacia lipase immobilized in alginate. Chem. Eng. Trans. 2013, 32, 1063–1068. [Google Scholar] [CrossRef]
- Asmat, S.; Husain, Q.; Shoeb, M.; Mobin, M. Tailoring a robust nanozyme formulation based on surfactant stabilized lipase immobilized onto newly fabricated magnetic silica anchored graphene nanocomposite: Aggrandized stability and application. Mater. Sci. Eng. C 2020, 112, 110883. [Google Scholar] [CrossRef]
(a) | Immobilization Parameter | |||
Total working volume (mL) | 20.0 | |||
Initial lipase content (mg) | 0.0722 | |||
Final lipase content (mg) | 0.008 | |||
Difference in protein content (mg) | 0.0642 | |||
Mass of support (g) | 1.0 | |||
Immobilized protein (mg/g) | 7.11 | |||
(b) | ||||
No | Type of Biocatalyst | Protein Concentration (mg/mL) | Specific Activity (U/g) | Residual Activity (%) |
1 | Free AOL | 7.11 | 6.61 ± 0.43 | 100 |
2 | MNC/PES-AOL | 7.11 | 10.60 ± 0.32 | 160 |
(a) | ||||||
Run | Reaction Volume (mL) | Incubation Temperature (°C) | Stirring Rate (rpm) | Protein Loading (mg/mL) | Actual Conversion (%) | Predicted Conversion (%) |
1 | 8 | 30 | 150 | 1.10 | 49.62 | 49.95 |
2 | 4 | 50 | 200 | 0.73 | 45.56 | 45.63 |
3 | 4 | 40 | 250 | 1.10 | 72.09 | 70.57 |
4 | 8 | 40 | 200 | 0.35 | 19.20 | 18.08 |
5 | 6 | 50 | 150 | 0.73 | 42.50 | 43.29 |
6 | 4 | 40 | 150 | 0.35 | 22.22 | 20.70 |
7 | 6 | 50 | 250 | 0.35 | 17.11 | 20.41 |
8 | 6 | 30 | 200 | 1.10 | 50.44 | 52.29 |
9 | 8 | 30 | 250 | 0.73 | 29.25 | 27.07 |
(b) Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value (Prob > F) | |
Model | 2615.00 | 4 | 653.75 | 101.63 | 0.0003 * | |
Reaction Volume | 291.21 | 1 | 291.21 | 45.27 | 0.0025 | |
Incubation Time | 169.39 | 1 | 169.39 | 26.33 | 0.0068 | |
Stirring Rate | 2.82 | 1 | 2.82 | 0.44 | 0.5444 | |
Protein Loading | 2151.58 | 1 | 2151.58 | 334.48 | <0.0001 * | |
Residual | 25.73 | 4 | 6.43 | |||
Corrected Total | 2640.73 | 8 | ||||
(c) Standard Deviation | 2.54 | R2 | 0.9903 | |||
Mean | 38.67 | Adjusted R2 | 0.9805 | |||
Coefficient of Variance (%) | 6.56 | Predicted R2 | 0.9307 | |||
PRESS | 182.90 | S/N Ratio | 27.767 |
No | Parameters | EV Conversion (%) | |||||
---|---|---|---|---|---|---|---|
A (mL) | B (°C) | C (rpm) | D (mg/mL) | Predicted | Actual | Deviation | |
1 | 4 | 50 | 250 | 1.10 | 70.57 | 72.09 | 1.52 |
2 | 4 | 48.05 | 250 | 1.10 | 69.80 | 68.94 | 0.86 |
3 | 6 | 30 | 200 | 1.10 | 52.29 | 51.96 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussin, N.H.; Wahab, R.A.; Elias, N.; Jacob, A.G.; Zainal-Abidin, M.H.; Abdullah, F.; Sulaiman, N.J.; Misson, M. Electrospun Magnetic Nanocellulose–Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate. Membranes 2021, 11, 972. https://doi.org/10.3390/membranes11120972
Hussin NH, Wahab RA, Elias N, Jacob AG, Zainal-Abidin MH, Abdullah F, Sulaiman NJ, Misson M. Electrospun Magnetic Nanocellulose–Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate. Membranes. 2021; 11(12):972. https://doi.org/10.3390/membranes11120972
Chicago/Turabian StyleHussin, Nurul Hidayah, Roswanira Abdul Wahab, Nursyafiqah Elias, Adikwu Gowon Jacob, Mohamad Hamdi Zainal-Abidin, Faizuan Abdullah, Nurul Jannah Sulaiman, and Mailin Misson. 2021. "Electrospun Magnetic Nanocellulose–Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate" Membranes 11, no. 12: 972. https://doi.org/10.3390/membranes11120972
APA StyleHussin, N. H., Wahab, R. A., Elias, N., Jacob, A. G., Zainal-Abidin, M. H., Abdullah, F., Sulaiman, N. J., & Misson, M. (2021). Electrospun Magnetic Nanocellulose–Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate. Membranes, 11(12), 972. https://doi.org/10.3390/membranes11120972