Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Wafer Composition, Fabrication, and System Setup
2.3. Size Reduction for IR 120 Na
2.4. Particle Image Analysis
2.5. WE-EDI Chamber Setup and Sample Collection
2.6. Statistical Analysis
2.7. FTIR-ATR Spectroscopy
3. Results and Discussion
3.1. Current Efficiency
3.2. Selectivity
3.3. FTIR-ATR Spectroscopy Analysis
3.4. Performance Comparison of the Powdered and Bead Form IR 120 Na+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Risk, C.W. 8 Things You Should Know about Water & Semiconductors. 11 July 2013. Available online: http://www.chinawaterrisk.org/resources/analysis-reviews/8-things-you-should-know-about-water-and-semiconductors/ (accessed on 30 October 2019).
- Armstrong, D. Measurement of Ultra-Pure Water in the Semiconductor Industry. 1 January 2008. Available online: https://www.watertechonline.com/home/article/14171506/measurement-of-ultrapure-water-in-the-semiconductor-industry (accessed on 21 September 2020).
- Denchak, M. Fracking 101. 19 April 2019. Available online: https://www.nrdc.org/stories/fracking-101 (accessed on 2 June 2020).
- Greenpeace, Fracking’s Environmental Impacts: Water. Available online: https://www.greenpeace.org/usa/global-warming/issues/fracking/environmental-impacts-water/ (accessed on 2 June 2020).
- Nicot, J.P.; Scanlon, B.R.; Reedy, R.C.; Costley, R.A. Costley, Source and fate of hydraulic fracturing water in the Barnett shale: A historical perspective. Environ. Sci. Technol. 2014, 48, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Kausley, S.B.; Malhotra, C.P.; Pandit, A.B. Treatment and reuse of shale gas wastewater: Electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations. J. Water Process Eng. 2017, 16, 149–162. [Google Scholar] [CrossRef]
- Saltworks, Frack & Shale Produced Water Management, Treatment Costs, & Options. 25 October 2019. Available online: https://www.saltworkstech.com/articles/frac-shale-produced-water-management-treatment-costs-and-options/ (accessed on 7 June 2020).
- Strathmann, H. Ion Exchange Membrane Separation Processes, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 9, p. 360. [Google Scholar]
- Drioli, E.; di Profio, G.; Fontananova, E. Membrane separations for process intensification and sustainable growth. Fluid Part Sep. J. 2004, 16, 1–18. [Google Scholar]
- Drioli, E.; Romano, M. Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth. Ind. Eng. Chem. Res. 2001, 40, 1277–1300. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Golemme, G.; Perrotta, E. Membrane Operations for Industrial Applications. In Advances in Chemical Engineering; InTechOpen: London, UK, 2012; pp. 543–562. [Google Scholar]
- Lopez, A.M.; Demydov, D.; Rogers, B.; Cleous, H.; Tran, L.; Smith, C.; Williams, M.; Schmelzle, J.; Hestekin, J.A. Economic comparison of pressure driven membrane processes to electrically driven processes for use in hydraulic fracturing. Sep. Sci. Technol. 2017, 53, 767–776. [Google Scholar] [CrossRef]
- Glueckauf, E. Electrodeionization through a packed bed. Br. Chem. Eng. 1959, 4, 646–651. [Google Scholar]
- Houldsworth, D.W. Demineralization of whey by means of ion exchange and electrodialysis. Int. J. Dairy Technol. 2007, 30, 143–156. [Google Scholar] [CrossRef]
- Ganzi, G.C.; Egozy, Y.; Guiffrida, A.J. Deionization-high-purity water by electrodeionization performance of the ion-pure continuous deionization system. Ultrapure Water 1987, 4, 43–50. [Google Scholar]
- Ganzi, G.C.; Jha, A.D.; Dimasco, F.; Wood, J.H. Electrodeionization theory and practice of continuous electrodeion-ization. Ultrapure Water 1997, 14, 64–69. [Google Scholar]
- Ganzi, G.C.; Wood, J.H.; Griffin, C.S. Water purification and recycling using the CDI process. Environ. Prog. 1992, 11, 49–53. [Google Scholar] [CrossRef]
- Lopez, A.M.; Williams, M.; Paiva, M.; Demydov, D.; Do, T.D.; Fairey, J.L.; Lin, Y.J.; Hestekin, J.A. Potential of elec-trodialytic techniques in brackish desalination and recovery of industrial process water for reuse. Desalination 2017, 409, 108–114. [Google Scholar] [CrossRef]
- Meyer, N.; Parker, W.J.; van Geel, P.J.; Adiga, M. Development of an electrodeionization process for removal of nitrate from drinking water. Part 2: Multi-species testing. Desalination 2005, 175, 167–177. [Google Scholar] [CrossRef]
- Pan, S.Y.; Snyder, S.W.; Ma, H.W.; Lin, Y.J.; Chiang, P.C. Development of a resin wafer electrodeionization process for impaired water desalination with high energy efficiency and productivity. ACS Sustain. Chem. Eng. 2017, 5, 2942–2948. [Google Scholar] [CrossRef]
- Vu, H.T.; Koshchuh, W.; Kulbe, K.D.; Kromus, S.; Krotscheck, C.; Novaldin, S. Desalination of high salt content mixture by two-stage electrodialysis as the first step of separating valuable substances from grass silage. Desalination 2004, 162, 343–353. [Google Scholar]
- Zheng, X.Y.; Pan, S.Y.; Tseng, P.C.; Zheng, H.L.; Chiang, P.C. Optimization of resin wafer electrodeionization for brackish water desalination. Sep. Purif. Technol. 2018, 194, 346–354. [Google Scholar] [CrossRef]
- Ho, T.; Kurup, A.; Davis, T.; Hestekin, J. Wafer Chemistry and properties for ion removal by wafer enhanced electro-deionization. Sep. Sci. Technol. 2010, 45, 433–446. [Google Scholar] [CrossRef]
- Menzal, T.; Beusshausen, S. Deionization improvements of semiconductor water treatment using spiral-wound EDI. Ultrapure Water 2006, 23, 31–35. [Google Scholar]
- Lacher, C.; Franzreb, M.; Holl, W.H. Improving the efficiency of electrodeionization by means of magnetic ion exchange resins. Powerpl. Chem. 2004, 6, 465–471. [Google Scholar]
- Arora, M.B.; Hestekin, J.A.; Snyder, S.W.; Martin, E.J.S.; Lin, Y.J.; Donnelly, M.I.; Millard, C.S. The separative bioreactor: A continuous separation process for the simultaneous production and direct capture of organic acids. Sep. Sci. Technol. 2007, 42, 2519–2538. [Google Scholar] [CrossRef]
- Arora, M.; Hestekin, J.; Lin, Y.; Martin, E.S.; Snyder, S. Porous Solid Ion Exchange Wafer for Immobilizing Biomolecules. U.S. Patent 7,306,934 B2, 11 December 2007. [Google Scholar]
- Palakkal, V.M.; Valentino, L.; Lei, Q.; Kole, S.; Lin, Y.K.; Arges, C.G. Advancing electrodeionization with conductive ionomer binders that immobilize ion-exchange resin particles into porous wafer substrates. npj Clean Water 2020, 3, 5. [Google Scholar] [CrossRef]
- Lopez, A.M.; Hestekin, J.A. Improved organic acid purification through wafer enhancedelectrodeionization utilizing ionic liquids. J. Membr. Sci. 2015, 493, 200–205. [Google Scholar] [CrossRef]
- Franco, P.E.; Veit, M.T.; Borba, C.E.; Gonçalves, G.d.; Fagundes-Klen, M.R.; Bergamasco, R.; da Silva, E.A.; Suzaki, P.Y.R. Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: Ion exchange equilibrium and kinetics. Chem. Eng. J. 2013, 221, 426–435. [Google Scholar] [CrossRef]
- Borba, E.; Santos, G.H.F.; Silva, E.A. Mathematical modeling of a ternary Cu–Zn–Na ion exchange system in a fixed-bed column using Amberlite IR 120. Chem. Eng. J. 2012, 189, 49–56. [Google Scholar] [CrossRef]
- Fernándex-González, R.; Martín-Lara, M.A.; Blázquez, G.; Tenorio, G.; Calero, M. Hydrolyzed olive cake as novel adsorbent for copper removal from fertilizer industry wastewater. J. Clean. Prod. 2020, 268, 121935. [Google Scholar] [CrossRef]
- Gomelya, M.; Hrabitchenko, V.; Trokhymenko, A.; Shabliy, T. Research into ion exchange softening of highly miner-alized waters. East. Eur. J. Enterp. Technol. 2016, 4, 4–9. [Google Scholar]
- Hosseini, M.S.; Sarab, A.R.R. Cr(III)/Cr(VI) speciation in water samples by extractive separation using Amberlite CG-50 and final determination by FAAS. Int. J. Environ. Anal. Chem. 2007, 85, 375–385. [Google Scholar] [CrossRef]
- Alayoubi, A.; Daihom, B.; Adhikari, H.; Mishra, S.R.; Helms, R.; Almoazen, H. Development of A Taste Masked Oral Suspension of Clindamycin HCl Using Ion exchange Resin Amberlite IRP 69 for Use in Pediatrics. Drug Dev. Ind. Pharm. 2016, 46, 1579–1589. [Google Scholar] [CrossRef]
- Al-Shams, J.K.K.; Hussein, M.A.K.; Alhakeim, H.K. Activity and stability of urease enzyme immobilized on Amberlite resin. Ovidius Univ. Ann. Chem. 2020, 31. [Google Scholar] [CrossRef]
- Swoboda, B.E.P.; Massey, V. Purification and Properties of the Glucose Oxidase from Aspergillus niger. J. Biol. Chem. 1965, 240, 2209–2215. [Google Scholar] [CrossRef]
- Aldrich, S. Particle Size Conversion Table. Available online: https://www.sigmaaldrich.com/chemistry/stockroom-reagents/learning-center/technical-library/particle-size-conversion.html (accessed on 17 September 2020).
- Rasband, W. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 1997.
- Luo, G.S.; Wu, F.Y. Concentration of formic acid solution by electro-electrodialysis. Sep. Sci. Technol. 2000, 35, 2485–2496. [Google Scholar] [CrossRef]
- Ion Exchange. Approximate Selectivity Scales—Cation Exchange Resins. 16 October 2012. Available online: http://dardel.info/IX/other_info/selectivity_c.html (accessed on 28 December 2020).
- Kunin, R.; Barry, R.E. Carboxylic, weak acid type, cation exchange resin. Ind. Eng. Chem. 1949, 41, 1269–1272. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, A. Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization. Sep. Purif. Technol. 2016, 164, 107–113. [Google Scholar] [CrossRef]
- Rogers, B. Electrodeionization Versus electrodialysis: A Clean-Up of Produced Water in Hydraulic Fracturing. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, August 2016. Available online: http://scholarworks.uark.edu/etd/1692?utm_source=scholarworks.uark.edu%2Fetd%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages (accessed on 3 January 2021).
- Lazar, L.; Bandrabur, B.; Tataru-Fārmus, R.-E.; Drobotā, M.; Bulgariu, L.; Gutt, G. FTIR analysis of ion exchange resins with application in permanent hard water softening. Environ. Eng. Manag. J. 2014, 13, 2145–2152. [Google Scholar] [CrossRef]
- Singare, P.U.; Lokhande, R.S.; Madyal, R.S. Thermal degradation studies of some strongly acidic cation exchange resins. Open J. Phys. Chem. 2011, 1, 45–54. [Google Scholar] [CrossRef]
- Smith, B.C. The C=O bond, part III: Carboxylic acids. Spectroscopy 2017, 33, 14–20. [Google Scholar]
- Trigg, E.B.; Gaines, T.W.; Maréchal, M.; Moed, D.E.; Rannou, P.; Wagener, K.B.; Stevens, M.J.; Winey, K.I. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 2018, 17, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Alghunaim, A.; Newby, B.M.Z. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material. Colloids Surf. B Biointerfaces 2016, 140, 514–522. [Google Scholar] [CrossRef]
Name | Functional Group | Matrix | Particle Size (Mesh) * | Exchange Capacity (eq/L) |
---|---|---|---|---|
Amberlite IR120 Na+ | Sulfonic Acid | Styrene-divinylbenzene (gel) | 16–50 mesh (0.297 to 1.19 mm) | ≥2.0 |
Amberlite IRP 69 | Sulfonic Acid | Crosslinked styrene-divinylbenzene | 100–200 mesh (0.074 to 0.149 mm) | 5 |
Dowex MAC 3 H+ | Carboxylic Acid | Polyacrylic-divinylbenzene (gel) | 16–50 mesh (0.297 to 1.19 mm) | 3.8 |
Amberlite CG 50 | Carboxylic Acid | Methacrylic (macroporous) | 100–200 mesh (0.074 to 0.149 mm) | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulusoy Erol, H.B.; Hestekin, C.N.; Hestekin, J.A. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization. Membranes 2021, 11, 45. https://doi.org/10.3390/membranes11010045
Ulusoy Erol HB, Hestekin CN, Hestekin JA. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization. Membranes. 2021; 11(1):45. https://doi.org/10.3390/membranes11010045
Chicago/Turabian StyleUlusoy Erol, Humeyra B., Christa N. Hestekin, and Jamie A. Hestekin. 2021. "Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization" Membranes 11, no. 1: 45. https://doi.org/10.3390/membranes11010045
APA StyleUlusoy Erol, H. B., Hestekin, C. N., & Hestekin, J. A. (2021). Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization. Membranes, 11(1), 45. https://doi.org/10.3390/membranes11010045