Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Seeds and Seeding on Tubular Substrates
2.3. Membrane Synthesis
2.4. Characterization of Seeds and Membranes
2.5. Evaluation of Membrane Performance
3. Results
3.1. Characterization of the Seed
3.2. Effect of Seeding on Tubular Substrates
3.3. Effect of Na2WO4 Concentration in Precursor Sol on the Orientation of h-WO3 Membrane
3.4. PV Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahdi, T.; Ahmad, A.; Nasef, M.M.; Ripin, A. State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2016, 44, 308–330. [Google Scholar] [CrossRef]
- Wee, S.L.; Tye, C.T.; Bhatia, S. Membrane separation process—Pervaporation through zeolite membrane. Sep. Purif. Technol. 2008, 63, 500–516. [Google Scholar] [CrossRef]
- Jullok, N.; Luis, P.; Degrève, J.; Bruggen, B.V. Cascaded pervaporation process for dehydration of acetic acid. Chem. Eng. Sci. 2014, 105, 208–212. [Google Scholar] [CrossRef]
- Huang, Y.; Baker, R.W.; Vane, L.M. Low-energy distillation-membrane separation process. Ind. Eng. Chem. Res. 2010, 49, 3760–3768. [Google Scholar] [CrossRef]
- Kunnakorn, D.; Rirksomboon, T.; Siemanond, K.; Aungkavattana, P.; Kuanchertchoo, N.; Chuntanalerg, P.; Hemra, K.; Kulprathipanja, S.; James, R.B.; Wongkasemjit, S. Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation. Renew. Energ. 2013, 51, 310–316. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef]
- Ray, S.K.; Sawant, S.B.; Joshi, J.B.; Pangarkar, V.G. Dehydration of acetic acid by pervaporation. J. Membr. Sci. 1998, 138, 1–17. [Google Scholar] [CrossRef]
- Matsukata, M. Jouryuu–mukimaku hiburido purosesu niyoru enerugi sakugen no kanousei. Petrotech 2010, 33, 402–406. (In Japanese) [Google Scholar]
- Zhang, Y.; Qiu, X.; Hong, Z.; Du, P.; Song, Q.; Gu, X. All-silica DD3R zeolite membrane with hydrophilic-functionalized surface for efficient and highly-stable pervaporation dehydration of acetic acid. J. Membr. Sci. 2019, 581, 236–242. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Hu, N.; Zhang, F.; Wu, T.; Chen, X.; Kita, H. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures. J. Membr. Sci. 2018, 564, 174–183. [Google Scholar] [CrossRef]
- Zhu, M.H.; Xia, S.L.; Hua, X.M.; Feng, Z.J.; Hu, N.; Zhang, F.; Kumakiri, I.; Lu, Z.H.; Chen, X.S.; Kita, H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes. Ind. Eng. Chem. Res. 2014, 53, 19168–19174. [Google Scholar] [CrossRef]
- Li, G.; Kikuchi, E.; Matsukata, M. Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane. Sep. Purif. Technol. 2003, 186, 199–206. [Google Scholar] [CrossRef]
- Masuda, T.; Otani, S.; Tsuji, T.; Kitamura, M.; Mukai, S.R. Preparation of hydrophilic and acid-proof silicalite-1 zeolite membrane and its application to selective separation of water from water solutions of concentrated acetic acid by pervaporation. Sep. Purif. Technol. 2003, 32, 181–189. [Google Scholar] [CrossRef]
- Li, G.; Kikuchi, E.; Matsukata, M. A study on the pervaporation of water–Acetic acid mixtures through ZSM-5 zeolite membranes. J. Membr. Sci. 2003, 218, 185–194. [Google Scholar] [CrossRef]
- Sano, T.; Ejiri, S.; Yamada, K.; Kawakami, Y.; Yanagishita, H. Separation of acetic acid-water mixtures by pervaporation through silicalite membrane. J. Membr. Sci. 1997, 213, 225–233. [Google Scholar] [CrossRef]
- Nagase, T.; Kiyozumi, Y.; Hasegawa, Y.; Inoue, T.; Ikeda, T.; Fujio, M. Dehydration of Concentrated Acetic Acid Solutions by Pervaporation Using Novel MER Zeolite Membranes. Chem. Lett. 2007, 36, 594–595. [Google Scholar] [CrossRef]
- Yamanaka, N.; Itakura, M.; Kiyozumi, Y.; Ide, Y.; Sadakane, M.; Sano, T. Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous Mesoporous Mater. 2012, 158, 141–147. [Google Scholar] [CrossRef]
- Yamanaka, N.; Itakura, M.; Kiyozumi, Y.; Ide, Y.; Sadakane, M.; Sano, T. Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bull. Chem. Soc. Jpn. 2013, 86, 1333–1340. [Google Scholar] [CrossRef]
- Yajima, K.; Hagio, T.; Miyahara, M.; Takahashi, N.; Niino, M.; Isomura, M.; Yoshida, S. Development of DDR-type Zeolite Membrane on Multichanneled Support Having Large Membrane Area. Zeolite 2014, 31, 125–130. (In Japanese) [Google Scholar]
- Zhang, Y.; Chen, S.; Shi, R.; Du, P.; Qiu, X.; Gu, X. Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane. Sep. Purif. Technol. 2018, 204, 234–242. [Google Scholar] [CrossRef]
- Miao, B.; Zeng, W.; Hussain, S.; Mei, Q.; Xu, S.; Zhang, H.; Li, Y.; Li, T. Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Mater. Lett. 2015, 15, 12–15. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, J.; Ke, L.; Sun, X.W.; Demir, H.V. Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. ACS Appl. Mater. Interfaces 2011, 3, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Yeung, M.T.; Lech, A.T.; Lin, C.W.; Lee, C.; Li, T.; Duan, X.; Zhou, J.; Kaner, R.B. High surface area tunnels in hexagonal WO3. Nano Lett. 2015, 15, 4834–4838. [Google Scholar] [CrossRef] [PubMed]
- Bowen, T.C.; Noble, R.D.; Falconer, J.L. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 2004, 245, 1–33. [Google Scholar] [CrossRef]
- Takacs, M.; Ducso, C.; Pap, A.E. Fine-tuning of gas sensitivity by modification of nano-crystalline WO3 layer morphology. Sens. Actuators B Chem. 2015, 221, 281–289. [Google Scholar] [CrossRef]
- Kunishi, H.; Hagio, T.; Wada, S.; Kamimoto, Y.; Ichino, R. Development of novel nanoporous hexagonal tungsten oxide membrane for separation of water/acetic acid mixtures via pervaporation. J. Membr. Sci. 2020, in press. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Wang, A.; Wang, J. Factors affecting the formation of zeolite seed layers and the effects of seed layers on the growth of zeolite silicalite-1 membranes. Front. Chem. Eng. China 2007, 1, 172–177. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Yeung, K.L. Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth. Mater. Chem. Phys. 2006, 96, 42–50. [Google Scholar] [CrossRef]
- Aminabhavi, T.M.; Toti, U.S. Pervaporation separation of water–acetic acid mixtures using polymeric membranes. Des. Monomers. Polym. 2003, 6, 211–236. [Google Scholar] [CrossRef]
- Aminabhavi, T.M.; Naik, H.G. Synthesis of Graft Copolymeric Membranes of Poly(vinyl alcohol) and Polyacrylamide for the Pervaporation Separation of Water/Acetic Acid Mixtures. J. Appl. Polym. Sci. 2002, 83, 244–258. [Google Scholar] [CrossRef]
- Jullok, N.; Darvishmanesh, S.; Luis, P.; Bruggen, B.V. The potential of pervaporation for separation of acetic acid and water mixtures using polyphenylsulfone membranes. Chem. Eng. J. 2011, 175, 306–315. [Google Scholar] [CrossRef]
- Tanaka, S.; Yasuda, T.; Katayama, Y.; Miyake, Y. Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J. Membr. Sci. 2011, 379, 52–59. [Google Scholar] [CrossRef]
- Sommer, S.; Melin, T. Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents. Chem. Eng. Process. 2005, 44, 1138–1156. [Google Scholar] [CrossRef]
- Zhang, Y.; Nakasaka, Y.; Tago, T.; Hirata, A.; Sato, Y.; Masuda, T. Preparation and optimization of mordenite nanocrystal-layered membrane for dehydration by pervaporation. Microporous Mesoporous Mater. 2015, 207, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.H.; Kumakiri, I.; Tanaka, K.; Kita, H. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane. Microporous Mesoporous Mater. 2013, 181, 47–53. [Google Scholar] [CrossRef]
Membrane No. | Amount of Na2WO4 in Precursor Sol | CH3COOH/Water in Feed | T | α | Total Flux | Permeance (mol∙m−2∙s−1∙Pa−1) | |
---|---|---|---|---|---|---|---|
(mmol) | (wt %:wt %) | (K) | (-) | (g∙m−2∙h−1) | Water | CH3COOH | |
M1 | 3.5 | 90:10 | 353 | 32.7 | 95.4 | 1.38 × 10−7 | 4.99 × 10−9 |
M2 | 5.0 | 90:10 | 353 | 40.0 | 100.0 | 1.53 × 10−7 | 4.48 × 10−9 |
M3 | 6.0 | 90:10 | 353 | 8.0 | 52.5 | 5.13 × 10−8 | 6.93 × 10−9 |
M4 | 7.0 | 90:10 | 353 | 12.3 | 43.5 | 5.20 × 10−8 | 4.45 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunishi, H.; Wada, S.; Kamimoto, Y.; Ichino, R.; Lin, Y.; Kong, L.; Li, L.; Hagio, T. Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances. Membranes 2021, 11, 38. https://doi.org/10.3390/membranes11010038
Kunishi H, Wada S, Kamimoto Y, Ichino R, Lin Y, Kong L, Li L, Hagio T. Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances. Membranes. 2021; 11(1):38. https://doi.org/10.3390/membranes11010038
Chicago/Turabian StyleKunishi, Hiroto, Shintaro Wada, Yuki Kamimoto, Ryoichi Ichino, Yan Lin, Long Kong, Liang Li, and Takeshi Hagio. 2021. "Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances" Membranes 11, no. 1: 38. https://doi.org/10.3390/membranes11010038
APA StyleKunishi, H., Wada, S., Kamimoto, Y., Ichino, R., Lin, Y., Kong, L., Li, L., & Hagio, T. (2021). Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances. Membranes, 11(1), 38. https://doi.org/10.3390/membranes11010038