A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Domain under Study
2.2. Computational Mesh
2.3. Mathematical Modeling
2.3.1. Multiphase Model for the Fluid Medium
- Newtonian and incompressible fluid;
- Flow in permanent and isothermal regime;
- Mass transfer, interfacial momentum and mass sources were neglected;
- The non-drag interfacial forces (lift forces, wall lubrication, virtual mass, turbulent dispersion, and solid pressure) were neglected;
- There is no transfer of interfacial mass;
- The module walls are static and null roughness;
- The water stream is considered to be a mixture of water and oil;
- The viscosity and density of the mixture and other physical and chemical properties are constant;
- The porous medium (ceramic membrane) has an isotropic distribution of pores and permeability; and
- There is no reaction or adsorption of the solute on the contact surface in the porous medium.
2.3.2. Multiphase Model for Porous Media
2.3.3. Boundary Conditions
- (a)
- Module Input
- (b) Concentrate and Permeate Outlets
- (c) Module Wall and Membrane Surface
2.3.4. Numerical Solution Method and Simulation Parameters
2.4. Plans and Points Studied Inside the Module
3. Results and Discussions
3.1. Relative Volume Fraction of Oil in the Filtration Module
3.2. Pressure in the Filtration Module
3.3. Mixing Speed in the Filtration Module
4. Conclusions
- (a)
- The proposed mathematical modeling proved be effective in predicting the fluid dynamic behavior of the oil and water phases inside the separation module in the separation process;
- (b)
- the new configuration of the ceramic membrane module showed major performance compared to one ceramic membrane alone operating in the same conditions;
- (c)
- the volumetric fraction of oil increases from the entrance of the module to the exit of the concentrate and decreases inside the membrane, from the external surface to the exit of the permeate;
- (d)
- the pressure inside the module decreases from the feed inlet to the outlets of the concentrate and permeate, being higher in the vicinity of the lower inner surface of the hull; and
- (e)
- the transmembrane pressure was almost constant along the longitudinal length of the membranes, indicating an efficient system in maintaining the same pressure throughout the filtration module, favoring the mass transfer and oil retention.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiménez, S.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. Chemosphere 2018, 192, 186–208. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.Z.; Xie, Y.F.; Tang, H.L. Formation of disinfection by-products under influence of shale gas produced water. Sci. Total Environ. 2019, 647, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef] [PubMed]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.A.; Hisham, S.; Ghasemi, M. Oil field produced water recovery and boosting the quality for using in membrane less fuel cell. SN Appl. Sci. 2019, 1, 510. [Google Scholar] [CrossRef] [Green Version]
- CONAMA Resolution No 430 Art. 4. 2011. Available online: http://www.adasa.df.gov.br/images/stories/anexos/8Legislacao/Res_CONAMA/Resolucao_CONAMA_430_2011.pdf (accessed on 29 April 2020). (In Portuguese)
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Yu, L.; Han, M.; He, F. A review of treating oily wastewater. Arab. J. Chem. 2017, 10, S1913–S1922. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, K.; Hansen, L.; Mai, C.; Yang, Z. Challenges of membrane filtration for produced water treatment in offshore oil & gas production. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; IEEE: Monterey, CA, USA, 2016; pp. 1–8. [Google Scholar]
- Syarifah Nazirah, W.I.; Norhaniza, Y.; Farhana, A.; Nurasyikin, M. A review of oilfield wastewater treatment using membrane filtration over conventional technology. Malays. J. Anal. Sci 2017, 21, 643–658. [Google Scholar] [CrossRef]
- Padaki, M.; Murali, R.S.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Almojjly, A.; Johnson, D.; Hilal, N. Investigations of the effect of pore size of ceramic membranes on the pilot-scale removal of oil from oil-water emulsion. J. Water Process Eng. 2019, 31, 100868. [Google Scholar] [CrossRef]
- Kwasny, J.A.; Krylow, M.; Balcerzak, W. Oily wastewater treatment using a zirconia ceramic membrane-a literature review. Arch. Environ. Prot. 2018, 44, 3–10. [Google Scholar] [CrossRef]
- da Biron, D.S.; Zeni, M.; Bergmann, C.P.; dos Santos, V. Analysis of Composite Membranes in the Separation of Emulsions Sunflower oil/water. Mater. Res. 2017, 20, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.Z.; Qiu, L.P.; Liu, G.C.; Qiu, Q.; Han, Q.; Wang, Y. Application Prospect of Ceramic Membrane Coupling Process in Refinery Wastewater. MS E 2018, 392, 22038. [Google Scholar] [CrossRef]
- Fard, A.K.; Bukenhoudt, A.; Jacobs, M.; McKay, G.; Atieh, M.A. Novel hybrid ceramic/carbon membrane for oil removal. J. Membr. Sci. 2018, 559, 42–53. [Google Scholar] [CrossRef]
- Mohammadi, T.; Kazemimoghadam, M.; Saadabadi, M. Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination 2003, 157, 369–375. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Liu, H.; Liu, S.; Yeung, K.L. Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. J. Membr. Sci. 2008, 325, 420–426. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Zhou, S.; Xing, W.; Wong, F.-S. Resistance analysis for ceramic membrane microfiltration of raw soy sauce. J. Membr. Sci. 2007, 299, 122–129. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, Q.; Wang, Y.; Wang, J.; Meng, G. Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Sep. Purif. Technol. 2010, 75, 243–248. [Google Scholar] [CrossRef]
- Hua, F.L.; Tsang, Y.F.; Wang, Y.J.; Chan, S.Y.; Chua, H.; Sin, S.N. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem. Eng. J. 2007, 128, 169–175. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Tai, Z.S.; Othman, M.H.D.; Harun, Z.; Jamalludin, M.R.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications. Sep. Purif. Technol. 2019, 217, 71–84. [Google Scholar] [CrossRef]
- Shirazian, S.; Rezakazemi, M.; Marjani, A.; Moradi, S. Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 2012, 286, 290–295. [Google Scholar] [CrossRef]
- Shirazian, S.; Pishnamazi, M.; Rezakazemi, M.; Nouri, A.; Jafari, M.; Noroozi, S.; Marjani, A. Implementation of the finite element method for simulation of mass transfer in membrane contactors. Chem. Eng. Technol. 2012, 35, 1077–1084. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Shirazian, S.; Ashrafizadeh, S.N. Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 2012, 285, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.L. Treatment of Effluents from the Petroleum Industry via Ceramic Membranes—Modeling and Simulation. Doctoral Thesis, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil, 2014. (In Portuguese). [Google Scholar]
- Souza, J.S. Theoretical Study of the Microfiltration Process in Ceramic Membranes. Doctoral Thesis, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil, 2014. (In Portuguese). [Google Scholar]
- Magalhaes, H.L.F.; de Lima, A.G.B.; de Farias Neto, S.R.; Alves, H.G.; de Souza, J.S. Produced water treatment by ceramic membrane: A numerical investigation by computational fluid dynamics. Adv. Mech. Eng. 2017, 9, 1687814016688642. [Google Scholar] [CrossRef] [Green Version]
- Rezakazemi, M. CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination 2018, 443, 323–332. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS Fluent Theory Guide 15.0; ANSYS, Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Kleinstreuer, C. Two-Phase Flow: Theory and Applications; Taylor & Francis: New York, NY, USA, 2003; ISBN 1591690005. [Google Scholar]
- Habert, A.C.; Borges, C.P.; Nobrega, R. Escola Piloto em Engenharia Química: Processos de separação com membranas. In Escola Piloto em Engenharia Química; E-Papers Serviços Editoriais Ltd., Coppe/UFRJ: Rio de Janeiro, Brazil, 2006. [Google Scholar]
- Cipollina, A.; Di Miceli, A.; Koschikowski, J.; Micale, G.; Rizzuti, L. CFD simulation of a membrane distillation module channel. Desalin. Water Treat. 2009, 6, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.; Rai, C.; Majumdar, G.C.; DasGupta, S.; De, S. Resistance in series model for ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice in a stirred continuous mode. J. Membr. Sci. 2006, 283, 116–122. [Google Scholar] [CrossRef]
Parameters | Module Dimensions (mm) |
---|---|
Separator module length | 150 |
Useful length of each membrane | 114 |
Length of each membrane support | 18 |
Diameter of separation module | 80 |
Inner diameter of each membrane | 10 |
Outer diameter of each membrane | 20 |
Outside diameter of each support | 22 |
Inlet duct diameter | 10 |
Outlet duct diameter | 10 |
Inlet duct length | 60 |
Outlet duct length | 60 |
Membrane thickness | 10 |
Mesh | Orthogonality (ANSYS) | Deformation (ANSYS) | Number of Elements | ||
---|---|---|---|---|---|
Minimum | Average | Maximum | Average | ||
1 | 0.205 | 0.897 | 0.848 | 0.203 | 218,704 |
2 | 0.146 | 0.897 | 0.872 | 0.196 | 508,325 |
3 | 0.192 | 0.904 | 0.847 | 0.179 | 853,536 |
Constants | Numeric Value |
---|---|
1.176 | |
1.0 | |
2.0 | |
1.168 | |
6 | |
1 | |
0.075 | |
0.0828 | |
2.95 | |
0.41 | |
1.5 | |
8 | |
0.09 |
Regions | Boundary Condition |
---|---|
Separator inlet | Prescribed mass flow |
Separator outlets (permeate 1, 2, 3, and 4 and concentrate) | Prescribed pressure |
Internal and external surfaces of membranes | Interior (Software) |
External surfaces of the hull | Wall (zero velocity) |
Support surfaces | Wall (zero velocity) |
Membrane ends, hull and permeate | Wall (zero velocity) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Neto, G.L.; Oliveira, N.G.N.; Delgado, J.M.P.Q.; Nascimento, L.P.C.; Gomez, R.S.; Cabral, A.S.; Cavalcante, D.C.M.; Miranda, V.A.M.; Farias Neto, S.R.; Lima, A.G.B. A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation. Membranes 2020, 10, 403. https://doi.org/10.3390/membranes10120403
Oliveira Neto GL, Oliveira NGN, Delgado JMPQ, Nascimento LPC, Gomez RS, Cabral AS, Cavalcante DCM, Miranda VAM, Farias Neto SR, Lima AGB. A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation. Membranes. 2020; 10(12):403. https://doi.org/10.3390/membranes10120403
Chicago/Turabian StyleOliveira Neto, Guilherme L., Nívea G. N. Oliveira, João M. P. Q. Delgado, Lucas P. C. Nascimento, Ricardo S. Gomez, Adriano S. Cabral, Daniel C. M. Cavalcante, Vansostenes A. M. Miranda, Severino R. Farias Neto, and Antonio G. B. Lima. 2020. "A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation" Membranes 10, no. 12: 403. https://doi.org/10.3390/membranes10120403
APA StyleOliveira Neto, G. L., Oliveira, N. G. N., Delgado, J. M. P. Q., Nascimento, L. P. C., Gomez, R. S., Cabral, A. S., Cavalcante, D. C. M., Miranda, V. A. M., Farias Neto, S. R., & Lima, A. G. B. (2020). A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation. Membranes, 10(12), 403. https://doi.org/10.3390/membranes10120403