Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis
Abstract
:Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Multisectorial Accountability Framework to Accelerate Progress to End Tuberculosis by 2030. 2019. Available online: https://www.who.int/tb/WHO_Multisectoral_Framework_web.pdf (accessed on 15 August 2021).
- World Health Organization. Global Tuberculosis Report 2020. Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 16 August 2021).
- Mustafa, A.S. BCG pros and cons and new/improved vaccines for tuberculosis. In Text Book of Biochemistry, Biotechnology, Allied and Molecular Medicine, 4th ed.; Talwar, G.P., Hasnain, S.E., Sarin, S.K., Eds.; PHI Learning Private Limited: Delhi, India, 2016; pp. 1347–1353. [Google Scholar]
- BCG Vaccines. 2017. Available online: https://www.who.int/immunization/sage/meetings/2017/october/1_BCG_report_revised_version_online.pdf?ua=1 (accessed on 16 August 2021).
- Syggelou, A.; Spyridis, N.; Benetatou, K.; Kourkouni, E.; Kourlaba, G.; Tsagaraki, M.; Maritsi, D.; Eleftheriou, I.; Tsolia, M. BCG vaccine protection against TB Infection among children older than 5 Years in close contact with an infectious adult TB Case. J. Clin. Med. 2020, 9, 3224. [Google Scholar] [CrossRef]
- Ying, W.; Sun, J.; Liu, D.; Hui, X.; Yu, Y.; Wang, J.; Wang, X. Clinical characteristics and immunogenetics of BCGosis/BCGitis in Chinese children: A 6 year follow-up study. PLoS ONE 2014, 9, e94485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Busaidi, N.; Kp, P.; Al-Jardani, A.; Al-Sukaiti, N.; Al Tamemi, S.; Al-Rawahi, B.; Al Hinai, Z.; Alyaquobi, F.; Al-Abri, S.; Al-Maani, A. The spectrum of Bacille Calmette-Guérin diseases in children-a decade of data from neonatal vaccination settings. Vaccines 2021, 9, 150. [Google Scholar] [CrossRef]
- Zimmermann, P.; Finn, A.; Curtis, N. Does BCG Vaccination Protect Against Nontuberculous Mycobacterial Infection? A Systematic Review and Meta-Analysis. J. Infect. Dis. 2018, 218, 679–687. [Google Scholar] [CrossRef]
- Ahmed, A.; Rakshit, S.; Adiga, V.; Dias, M.; Dwarkanath, P.; D’Souza, G.; Vyakarnam, A. A century of BCG: Impact on tuberculosis control and beyond. Immunol. Rev. 2021, 301, 98–121. [Google Scholar] [CrossRef]
- Mustafa, A.S. BCG as a Vector for novel recombinant vaccines against infectious diseases and cancers. Vaccines 2020, 8, 736. [Google Scholar] [CrossRef]
- Mustafa, A.S. Vaccine Potential of Mycobacterial antigens against Asthma. Med. Princ. Pract. 2020, 29, 404–411. [Google Scholar] [CrossRef]
- Drick, N.; Seeliger, B.; Welte, T.; Fuge, J.; Suhling, H. Anti-IL-5 therapy in patients with severe eosinophilic asthma—clinical efficacy and possible criteria for treatment response. BMC Pulm. Med. 2018, 18, 119. [Google Scholar] [CrossRef]
- Ji, N.F.; Xie, Y.C.; Zhang, M.S.; Zhao, X.; Cheng, H.; Wang, H.; Arozena, A.C.; Adachi, H.; Adams, C.M.; Adams, P.D.; et al. Ligustrazine corrects Th1/Th2 and Treg/Th17 imbalance in a mouse asthma model. Int. Immunopharmacol. 2014, 21, 76–81. [Google Scholar] [CrossRef]
- Erb, K.J.; Holloway, J.W.; Sobeck, A.; Moll, H.; Le Gros, G. Infection of Mice with Mycobacterium bovis–Bacillus Calmette-Guérin (BCG) Suppresses Allergen-induced Airway Eosinophilia. J. Exp. Med. 1998, 187, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Biet, F.; Kremer, L.; Wolowczuk, I.; Delacre, M.; Locht, C. Mycobacterium bovis BCG Producing Interleukin-18 Increases Antigen-Specific Gamma Interferon Production in Mice. Infect. Immun. 2002, 70, 6549–6557. [Google Scholar] [CrossRef] [Green Version]
- Biet, F.; Duez, C.; Kremer, L.; Marquillies, P.; Amniai, L.; Tonnel, A.-B.; Locht, C.; Pestel, J. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction. Allergy 2005, 60, 1065–1072. [Google Scholar] [CrossRef]
- Szpakowski, P.; Biet, F.; Locht, C.; Paszkiewicz, M.; Rudnicka, W.; Druszczyńska, M.; Allain, F.; Fol, M.; Pestel, J.; Kowalewicz-Kulbat, M. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults. J. Immunol. Res. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kowalewicz-Kulbat, M.; Szpakowski, P.; Krawczyk, K.T.; Kowalski, M.L.; Kosinski, S.; Biet, F.; Rudnicka, W.; Locht, C. Decrease of IL-5 Production by Naive T Cells Cocultured with IL-18-Producing BCG-Pulsed Dendritic Cells from Patients Allergic to House Dust Mite. Vaccines 2021, 9, 277. [Google Scholar] [CrossRef]
- Dockrell, H.M.; Smith, S.G. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front. Immunol. 2017, 8, 1134. [Google Scholar] [CrossRef]
- Mustafa, A.S. Vaccine potential of Mycobacterium tuberculosis-specific genomic regions: In vitro studies in humans. Expert Rev. Vaccines 2009, 8, 1309–1312. [Google Scholar] [CrossRef] [Green Version]
- Safar, H.A.; Mustafa, A.S.; Amoudy, H.A.; El-Hashim, A. The effect of adjuvants and delivery systems on Th1, Th2, Th17 and Treg cytokine responses in mice immunized with Mycobacterium tuberculosis-specific proteins. PLoS ONE 2020, 15, e0228381. [Google Scholar] [CrossRef]
- Franco, A.R.; Peri, F. Developing New Anti-Tuberculosis Vaccines: Focus on Adjuvants. Cells 2021, 10, 78. [Google Scholar] [CrossRef]
- Han, J.; Ma, Y.; Ma, L.; Tan, D.; Niu, H.; Bai, C.; Mi, Y.; Xie, T.; Lv, W.; Wang, J.; et al. Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine. Vaccines 2021, 9, 126. [Google Scholar] [CrossRef]
- Agger, E.M. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv. Drug Deliv. Rev. 2016, 102, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Stewart, E.; Triccas, J.A.; Petrovsky, N. Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019, 7, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.S. Immunological characterization of proteins expressed by genes located in Mycobacterium tuberculosis-specific genomic regions encoding the ESAT6-like proteins. Vaccines 2021, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Day, T.A.; Penn-Nicholson, A.; Luabeya, A.K.K.; Fiore-Gartland, A.; Du Plessis, N.; Loxton, A.G.; Vergara, J.; Rolf, T.A.; Reid, T.D.; Toefy, A.; et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: A randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir. Med. 2021, 9, 373–386. [Google Scholar] [CrossRef]
- Penn-Nicholson, A.; Tameris, M.; Smit, E.; Day, T.A.; Musvosvi, M.; Jayashankar, L.; Vergara, J.; Mabwe, S.; Bilek, N.; Geldenhuys, H.; et al. Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: A randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir. Med. 2018, 6, 287–298. [Google Scholar] [CrossRef]
- Coler, R.N.; Day, T.A.; Ellis, R.; Piazza, F.M.; Beckmann, A.M.; Vergara, J.; Rolf, T.; Lu, L.; Alter, G.; Hokey, D.; et al. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: First-in-human trial. NPJ Vaccines 2018, 3, 34. [Google Scholar] [CrossRef]
- Hussein, J.; Zewdie, M.; Yamuah, L.; Bedru, A.; Abebe, M.; Dagnew, A.F.; Chanyalew, M.; Yohannes, A.G.; Ahmed, J.; Engers, H.; et al. A phase I, open-label trial on the safety and immunogenicity of the adjuvanted tuberculosis subunit vaccine H1/IC31® in people living in a TB-endemic area. Trials 2018, 19, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mearns, H.; Geldenhuys, H.D.; Kagina, B.M.; Musvosvi, M.; Little, F.; Ratangee, F.; Mahomed, H.; Hanekom, W.A.; Hoff, S.T.; Ruhwald, M.; et al. H1:IC31 vaccination is safe and induces long-lived TNF-α+IL-2+CD4 T cell responses in M. tuberculosis infected and uninfected adolescents: A randomized trial. Vaccine 2017, 35, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Suliman, S.; Luabeya, A.K.K.; Geldenhuy, S.H.; Tameris, M.; Hoff, S.T.; Shi, Z.; Tait, D.; Kromann, I.; Ruhwald, M.; Rutkowski, K.T.; et al. Dose Optimization of H56:IC31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 220–231. [Google Scholar] [CrossRef]
- Bekker, L.G.; Dintwe, O.; Fiore-Gartland, A.; Middelkoop, K.; Hutter, J.; Williams, A.; Randhawa, A.K.; Ruhwald, M.; Kromann, I.; Andersen, P.L.; et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine 2020, 21, 100313. [Google Scholar] [CrossRef] [Green Version]
- Norrby, M.; Vesikari, T.; Lindqvist, L.; Maeurer, M.; Ahmed, R.; Mahdavifar, S.; Bennett, S.; McClain, J.B.; Shepherd, B.M.; Li, D.; et al. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine 2017, 35, 1652–1661. [Google Scholar] [CrossRef]
- Nemes, E.; Geldenhuys, H.; Rozot, V.; Rutkowski, K.T.; Ratangee, F.; Bilek, N.; Mabwe, S.; Makhethe, L.; Erasmus, M.; Toefy, A.; et al. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N. Engl. J. Med. 2018, 379, 138–149. [Google Scholar] [CrossRef]
- Whitlow, E.; Mustafa, A.S.; Hanif, S.N.M. An Overview of the Development of New Vaccines for Tuberculosis. Vaccines 2020, 8, 586. [Google Scholar] [CrossRef]
- Ullah, I.; Bibi, S.; Ul Haq, I.; Safia; Ullah, K.; Ge, L.; Shi, X.; Bin, M.; Niu, H.; Tian, J.; et al. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01E and MVA85A. Front. Immunol. 2020, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Weerasuriya, C.K.; Clark, R.A.; White, R.G.; Harris, R.C. New tuberculosis vaccines: Advances in clinical development and modelling. J. Intern. Med. 2020, 288, 661–681. [Google Scholar] [CrossRef]
- Safar, H.A.; Mustafa, A.S.; McHugh, T.D. COVID-19 vaccine development: What lessons can we learn from TB? Ann. Clin. Microbiol. Antimicrob. 2020, 19, 56. [Google Scholar] [CrossRef]
- Vasina, D.V.; Kleymenov, D.A.; Manuylov, V.A.; Mazunina, E.P.; Koptev, E.Y.; Tukhovskaya, E.A.; Murashev, A.N.; Gintsburg, A.L.; Gushchin, V.A.; Tkachuk, A.P. First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumaran, D.; Blatner, G.; Bakken, R.; Hokey, D.; Ritz, C.; Jenum, S.; Grewal, H.M.S. A 2-Dose AERAS-402 Regimen Boosts CD8+ Polyfunctionality in HIV-Negative, BCG-Vaccinated Recipients. Front. Immunol. 2021, 12, 673532. [Google Scholar] [CrossRef]
- Manjaly Thomas, Z.R.; Satti, I.; Marshall, J.L.; Harris, S.A.; Lopez Ramon, R.; Hamidi, A.; Minhinnick, A.; Riste, M.; Stockdale, L.; Lawrie, A.M.; et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial. PLoS Med. 2019, 16, e1002790. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, M.; Satti, I.; Minhinnick, A.; Harris, S.; Riste, M.; Ramon, R.L.; Sheehan, S.; Thomas, Z.M.; Wright, D.; Stockdale, L.; et al. A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime—MVA85A boost in healthy UK adults. Vaccine 2020, 38, 779–789. [Google Scholar] [CrossRef] [PubMed]
Subunit Vaccine Antigens | Adjuvant a/Delivery System b | Vaccine Designation | Reference |
---|---|---|---|
Rv2608, Rv3619c, Rv3620c, Rv1813 | GLA-SE | ID93/GLA-SE | [27,28,29] |
Ag85B, ESAT6 | IC31 | H1:IC31 | [30,31] |
Ag85B, ESAT6, Rv2660c | IC31 | H56:IC31 | [32,33] |
Ag85B, TB10.4 | IC31 | H4:IC31/AERAS 404 | [34,35,36] |
Mtb32A, Mtb39A | AS01E | M72/ AS01E | [37,38] |
Ag85b, ESAT6, CFP10 | CpG and aluminum salt | AEC/BC02 | [39] |
Ag85B, ESAT6, CFP10 | BCG | Gam TBvac | [36,40] |
Ag85A, Ag85B, TB10.4 | Ad35 | AERAS-402 | [41] |
Ag85A | MVA | MVA85A | [42] |
Ag85A | MVA, ChAdOx1 | MVA85A, ChAdOx1 85A | [43] |
Ag85A, ESAT6 | Flu-04L | TB/Flu-04L | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.S. Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis. Vaccines 2021, 9, 972. https://doi.org/10.3390/vaccines9090972
Mustafa AS. Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis. Vaccines. 2021; 9(9):972. https://doi.org/10.3390/vaccines9090972
Chicago/Turabian StyleMustafa, Abu Salim. 2021. "Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis" Vaccines 9, no. 9: 972. https://doi.org/10.3390/vaccines9090972
APA StyleMustafa, A. S. (2021). Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis. Vaccines, 9(9), 972. https://doi.org/10.3390/vaccines9090972