Willingness to Get the COVID-19 Vaccine among Residents of Slum Settlements
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worldbank, D. Population Living in Slums (% of Urban Population). Available online: https://data.worldbank.org/indicator/EN.POP.SLUM.UR.ZS (accessed on 18 July 2021).
- George, C.E.; Inbaraj, L.R.; Chandrasingh, S.; de Witte, L.P. High seroprevalence of COVID-19 infection in a large slum in South India; what does it tell us about managing a pandemic and beyond? Epidemiol. Infect. 2021, 149, e39. [Google Scholar] [CrossRef] [PubMed]
- Malani, A.; Shah, D.; Kang, G.; Lobo, G.N.; Shastri, J.; Mohanan, M.; Jain, R.; Agrawal, S.; Juneja, S.; Imad, S.; et al. Seroprevalence of SARS-CoV-2 in slums versus non-slums in Mumbai, India. Lancet Glob. Health 2021, 9, e110–e111. [Google Scholar] [CrossRef]
- Corburn, J.; Vlahov, D.; Mberu, B.; Riley, L.; Caiaffa, W.T.; Rashid, S.F.; Ko, A.; Patel, S.; Jukur, S.; Martínez-Herrera, E. Slum health: Arresting COVID-19 and improving well-being in urban informal settlements. J. Urban Health 2020, 97, 348–357. [Google Scholar] [CrossRef][Green Version]
- Horton, R. Offline: Managing the COVID-19 vaccine infodemic. Lancet 2020, 396, 1474. [Google Scholar] [CrossRef]
- Dubé, E.; Laberge, C.; Guay, M.; Bramadat, P.; Roy, R.; Bettinger, J. Vaccine hesitancy: An overview. Hum. Vaccin. Immunother. 2013, 9, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- McClure, C.C.; Cataldi, J.R.; O’Leary, S.T. Vaccine Hesitancy: Where We Are and Where We Are Going. Clin. Ther. 2017, 39, 1550–1562. [Google Scholar] [CrossRef][Green Version]
- Dror, A.A.; Eisenbach, N.; Taiber, S.; Morozov, N.G.; Mizrachi, M.; Zigron, A.; Srouji, S.; Sela, E. Vaccine hesitancy: The next challenge in the fight against COVID-19. Eur. J. Epidemiol. 2020, 35, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Goldani, L.Z. Measles outbreak in Brazil, 2018. Braz. J. Infect. Dis. 2018, 22, 359. [Google Scholar] [CrossRef]
- Nelson, R. US measles outbreak concentrated among unvaccinated children. Lancet Infect. Dis. 2019, 19, 248. [Google Scholar] [CrossRef]
- Winter, K.; Harriman, K.; Schechter, R.; Yamada, E.; Chavez, G. Pertussis-California, January–June 2010. Morb. Mortal. Wkly. Rep. 2010, 59, 817. [Google Scholar]
- Puri, N.; Coomes, E.A.; Haghbayan, H.; Gunaratne, K. Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Hum. Vaccin. Immunother. 2020, 16, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tu, P.; Beitsch, L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barraquer, I.; Costa, F.; Nascimento, E.J.M.; Nery, N.; Castanha, P.M.S.; Sacramento, G.A.; Cruz, J.; Carvalho, M.; De Olivera, D.; Hagan, J.E.; et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 2019, 363, 607–610. [Google Scholar] [CrossRef] [PubMed][Green Version]
- IBGE. Estimated Population 2017. Cities, Bahía, Salvador. Available online: https://cidades.ibge.gov.br/brasil/ba/salvador/panorama (accessed on 18 August 2021).
- Felzemburgh, R.D.; Ribeiro, G.S.; Costa, F.; Reis, R.B.; Hagan, J.E.; Melendez, A.X.; Fraga, D.; Santana, F.S.; Mohr, S.; dos Santos, B.L.; et al. Prospective study of leptospirosis transmission in an urban slum community: Role of poor environment in repeated exposures to the Leptospira agent. PLoS Negl. Trop. Dis. 2014, 8, e2927. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020, 27, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Makridis, C.A.; Wu, C. How social capital helps communities weather the COVID-19 pandemic. PLoS ONE 2021, 16, e0245135. [Google Scholar] [CrossRef]
- Wong, A.S.Y.; Kohler, J.C. Social capital and public health: Responding to the COVID-19 pandemic. Glob. Health 2020, 16, 88. [Google Scholar] [CrossRef]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, H. Chinese Public Attention to COVID-19 Epidemic: Based on Social Media. medRxiv 2020, 22, e18825. [Google Scholar]
- Arghittu, A.; Dettori, M.; Dempsey, E.; Deiana, G.; Angelini, C.; Bechini, A.; Bertoni, C.; Boccalini, S.; Bonanni, P.; Cinquetti, S.; et al. Health Communication in COVID-19 Era: Experiences from the Italian VaccinarSì Network Websites. Int. J. Environ. Res. Public Health 2021, 18, 5642. [Google Scholar] [CrossRef] [PubMed]
Characteristic | No. of Responses | Survey Sample 1 (N = 985) | Willingness to Receive a COVID-19 Vaccine 2 | p-Value 3 Yes vs. Not Sure | p-Value 3 Yes vs. No | ||
---|---|---|---|---|---|---|---|
Yes (n = 650) | Not Sure (n= 78) | No (n = 257) | |||||
Mean (SD) or n (%) | |||||||
Demographic characteristics | |||||||
Age in years | 985 | 39 (14) | 40 (15) | 38 (15) | 35 (13) | 0.4 | <0.001 |
Gender | 0.33 | 0.43 | |||||
Male | 985 | 394 (40) | 258 (65) | 26 (6.6) | 110 (28) | ||
Female | 985 | 591 (60) | 392 (66) | 52 (8.8) | 147 (25) | ||
Ethnicity | 0.057 | 0.47 | |||||
Black | 985 | 531 (54) | 354 (67) | 37 (7.0) | 140 (26) | ||
Brown | 985 | 396 (40) | 261 (66) | 34 (8.6) | 101 (26) | ||
White | 985 | 51 (5.2) | 33 (65) | 5 (9.8) | 13 (25) | ||
Others | 985 | 7 (0.7) | 2 (29) | 2 (29) | 3 (43) | ||
Schooling | 0.39 | 0.63 | |||||
0–6 years | 985 | 342 (35) | 226 (66) | 31 (9.1) | 85 (25) | ||
≥7 years | 985 | 643 (65) | 424 (66) | 47 (7.3) | 172 (27) | ||
Married or stable union | 0.92 | 0.44 | |||||
Yes | 985 | 358 (36) | 242 (68) | 28 (7.8) | 88 (25) | ||
No | 985 | 627 (64) | 408 (65) | 50 (8.0) | 169 (27) | ||
Employment | 0.21 | 0.018 | |||||
Formal | 985 | 309 (31) | 190 (61) | 27 (8.7) | 92 (30) | ||
Informal | 985 | 182 (18) | 137 (75) | 10 (5.5) | 35 (19) | ||
Unemployed | 985 | 494 (50) | 323 (65) | 41 (8.3) | 130 (26) | ||
Per capita daily household income (USD) | 985 | 5.2 (5.5) | 5.6 (5.8) | 4.1 (4.6) | 4.5 (5.0) | 0.011 | 0.007 |
Lost employment during pandemic | 0.008 | 0.62 | |||||
Yes | 952 | 400 (42) | 278 (70) | 19 (4.8) | 103 (26) | ||
No | 952 | 552 (58) | 356 (64) | 52 (9.4) | 144 (26) | ||
Underlying medical condition 4 | 0.38 | 0.01 | |||||
Yes | 985 | 216 (22) | 159 (74) | 15 (6.9) | 42 (19) | ||
Received influenza vaccine in 2020 | 0.004 | <0.001 | |||||
Yes | 665 | 253 (38) | 186 (74) | 18 (7.1) | 49 (19) | ||
No | 665 | 412 (62) | 235 (57) | 53 (13) | 124 (30) | ||
No | 985 | 769 (78) | 491 (64) | 63 (8.2) | 215 (28) | ||
COVID-19 diagnoses and exposures | |||||||
Episode of COVID-19 symptoms | 0.14 | 0.57 | |||||
Yes | 985 | 110 (11) | 73 (66) | 4 (3.6) | 33 (30) | ||
No | 985 | 875 (89) | 577 (66) | 74 (8.5) | 224 (26) | ||
Clinical suspicion of COVID-19 | >0.99 | 0.55 | |||||
Yes | 982 | 31 (3.2) | 22 (71) | 3 (9.7) | 6 (19) | ||
No | 982 | 951 (97) | 627 (66) | 75 (7.9) | 249 (26) | ||
Tested for COVID-19 | 0.046 | 0.068 | |||||
Yes | 985 | 149 (15) | 112 (75) | 6 (4.0) | 31 (21) | ||
No | 985 | 836 (85) | 538 (64) | 72 (8.6) | 226 (27) | ||
Household member with suspected COVID-19 | 0.19 | >0.99 | |||||
Yes | 619 | 76 (12) | 53 (70) | 3 (3.9) | 20 (26) | ||
No | 619 | 543 (88) | 358 (66) | 50 (9.2) | 135 (25) | ||
Household member with confirmed COVID-19 | >0.99 | 0.65 | |||||
Yes | 615 | 18 (2.9) | 11 (61) | 1 (5.6) | 6 (33) | ||
No | 615 | 597 (97) | 396 (66) | 52 (8.7) | 149 (25) | ||
Received molecular testing | 0.19 | 0.008 | |||||
Yes | 983 | 70 (7.1) | 58 (83) | 3 (4.3) | 9 (13) | ||
No | 983 | 913 (93) | 591 (65) | 75 (8.2) | 247 (27) | ||
Positive molecular test result among tested | >0.99 | 0.92 | |||||
Yes | 70 | 13 (19) | 11 (85) | 1 (7.7) | 1 (7.7) | ||
No | 70 | 57 (81) | 47 (82) | 2 (3.5) | 8 (14) | ||
Received serological testing | 0.12 | 0.92 | |||||
Yes | 980 | 91 (9.3) | 64 (70) | 3 (3.3) | 24 (26) | ||
No | 980 | 889 (91) | 583 (66) | 75 (8.4) | 231 (26) | ||
Positive serologic test result among tested | 0.11 | >0.99 | |||||
Yes | 91 | 14 (15) | 9 (64) | 2 (14) | 3 (21) | ||
No | 91 | 77 (85) | 55 (71) | 1 (1.3) | 21 (27) |
Characteristic | No. of Responses | Survey Sample 1 (N = 985) | Willingness to Receive a COVID-19 Vaccine 2 | p-Value 3 Yes vs. Not Sure | p-Value 3 Yes vs. No | ||
---|---|---|---|---|---|---|---|
Yes (n = 650) | Not Sure (n = 78) | No (n = 257) | |||||
Mean (SD) or n (%) | |||||||
How likely are you to get COVID-19? | 0.42 | 0.021 | |||||
Very likely | 985 | 240 (24) | 169 (70) | 16 (6.7) | 55 (23) | ||
Moderately likely | 985 | 225 (23) | 154 (68) | 18 (8.0) | 53 (24) | ||
Slightly likely | 985 | 222 (23) | 141 (64) | 23 (10) | 58 (26) | ||
Not likely | 985 | 164 (17) | 92 (56) | 13 (7.9) | 59 (36) | ||
Do not know | 985 | 134 (14) | 94 (70) | 8 (6.0) | 32 (24) | ||
How severe would your condition be if you contracted COVID-19? | 0.041 | 0.011 | |||||
Very severe | 985 | 242 (25) | 169 (70) | 9 (3.7) | 64 (26) | ||
Moderately severe | 985 | 155 (16) | 102 (66) | 18 (12) | 35 (23) | ||
Slightly severe | 985 | 216 (22) | 142 (66) | 22 (10) | 52 (24) | ||
Not severe | 985 | 152 (15) | 83 (55) | 12 (7.9) | 57 (38) | ||
Do not know | 985 | 220 (22) | 154 (70) | 17 (7.7) | 49 (22) | ||
How important is vaccination to protect family/friends? | <0.001 | <0.001 | |||||
Extremely important | 821 | 311 (38) | 256 (82) | 24 (7.7) | 31 (10.0) | ||
Very important | 821 | 374 (46) | 253 (68) | 22 (5.9) | 99 (26) | ||
Moderately important | 821 | 41 (5.0) | 12 (29) | 9 (22) | 20 (49) | ||
Slightly important | 821 | 33 (4.0) | 6 (18) | 11 (33) | 16 (48) | ||
Not important | 821 | 62 (7.6) | 4 (6.5) | 12 (19) | 46 (74) | ||
How important is vaccination to protect the health of your community? | <0.001 | <0.001 | |||||
Extremely important | 821 | 295 (36) | 244 (83) | 22 (7.5) | 29 (9.8) | ||
Very important | 821 | 364 (44) | 252 (69) | 21 (5.8) | 91 (25) | ||
Moderately important | 821 | 46 (5.6) | 15 (33) | 9 (20) | 22 (48) | ||
Slightly important | 821 | 48 (5.8) | 10 (21) | 15 (31) | 23 (48) | ||
Not important | 821 | 68 (8.3) | 10 (15) | 11 (16) | 47 (69) | ||
Would you vaccinate your children if safe and effective? 4 | 402 | <0.001 | <0.001 | ||||
Yes | 402 | 270 (67) | 224 (83) | 20 (7.4) | 26 (9.6) | ||
No | 402 | 73 (18) | 12 (16) | 4 (5.5) | 57 (78) | ||
Do not know | 402 | 59 (15) | 17 (29) | 22 (37) | 20 (34) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar Ticona, J.P.; Nery, N., Jr.; Victoriano, R.; Fofana, M.O.; Ribeiro, G.S.; Giorgi, E.; Reis, M.G.; Ko, A.I.; Costa, F. Willingness to Get the COVID-19 Vaccine among Residents of Slum Settlements. Vaccines 2021, 9, 951. https://doi.org/10.3390/vaccines9090951
Aguilar Ticona JP, Nery N Jr., Victoriano R, Fofana MO, Ribeiro GS, Giorgi E, Reis MG, Ko AI, Costa F. Willingness to Get the COVID-19 Vaccine among Residents of Slum Settlements. Vaccines. 2021; 9(9):951. https://doi.org/10.3390/vaccines9090951
Chicago/Turabian StyleAguilar Ticona, Juan P., Nivison Nery, Jr., Renato Victoriano, Mariam O. Fofana, Guilherme S. Ribeiro, Emanuele Giorgi, Mitermayer G. Reis, Albert I. Ko, and Federico Costa. 2021. "Willingness to Get the COVID-19 Vaccine among Residents of Slum Settlements" Vaccines 9, no. 9: 951. https://doi.org/10.3390/vaccines9090951