Cost-Effectiveness of Pertussis Vaccination Schedule in Israel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transmission Model
2.1.1. Calibration of Unknown Parameters
2.1.2. Model Projections
2.2. Clinical Outcomes
2.3. Quality of Life and Costs
2.4. Policy Optimization and Cost-Effectiveness Analysis
2.5. Sensitivity Analysis
3. Results
3.1. Model of Pertussis Transmission
3.2. Optimal Vaccination Schedule
3.3. Cost-Effectiveness Analysis
3.3.1. Existing Booster Doses
3.3.2. Adding a Booster Dose
3.3.3. Maternal Vaccination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohn, A.C.; Cohn, A.C.; Clark, T.A.; Messonnier, N.E.; Martin, S.W. Early Impact of the US Tdap Vaccination Program on Pertussis Trends. Arch. Pediatr. Adolesc. Med. 2012, 166, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohani, P.; Drake, J.M. The decline and resurgence of pertussis in the US. Epidemics 2011, 3, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Campbell, H.; Amirthalingam, G.; van Hoek, A.J.; Miller, E. Investigating the pertussis resurgence in England and Wales, and options for future control. BMC Med. 2016, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhu, T.; Gao, C.; Gao, Z.; Liu, Y.; Ding, Y.; Sun, J.; Guo, L.; Liu, P.; Chen, D.; et al. Epidemiological features of pertussis resurgence based on community populations with high vaccination coverage in China. Epidemiol. Infect. 2015, 143, 1950–1956. [Google Scholar] [CrossRef] [Green Version]
- GORDON, J.E.; HOOD, R.I. Whooping cough and its epidemiological anomalies. Am. J. Med. Sci. 1951, 222, 333-61. [Google Scholar] [CrossRef]
- Yeung, K.H.T.; Duclos, P.; Nelson, E.A.S.; Hutubessy, R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017, 17, 974–980. [Google Scholar] [CrossRef]
- Skoff, T.H.; Hadler, S.; Hariri, S. The Epidemiology of Nationally Reported Pertussis in the United States, 2000–2016. Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.A. Changing Pertussis Epidemiology: Everything Old is New Again. J. Infect. Dis. 2014, 209, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E.; Blatter, M.M.; Kennedy, W.A.; Hedrick, J.; Descamps, D.; Friedland, L.R. Acellular pertussis vaccine booster combined with diphtheria and tetanus toxoids for adolescents. Pediatrics 2006, 117, 1084–1093. [Google Scholar] [CrossRef]
- Pichichero, M.E.; Rennels, M.B.; Edwards, K.M.; Blatter, M.M.; Marshall, G.S.; Bologa, M.; Wang, E.; Mills, E. Combined tetanus, diphtheria, and 5-component pertussis vaccine for use in adolescents and adults. J. Am. Med. Assoc. 2005, 293, 3003–3011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrikx, L.H.; Öztürk, K.; de Rond, L.G.H.; Veenhoven, R.H.; Sanders, E.A.M.; Berbers, G.A.M.; Buisman, A.M. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins. Vaccine 2011, 29, 1431–1437. [Google Scholar] [CrossRef]
- Palazzo, R.; Carollo, M.; Bianco, M.; Fedele, G.; Schiavoni, I.; Pandolfi, E.; Villani, A.; Tozzi, A.E.; Mascart, F.; Ausiello, C.M. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination. New Microbiol. 2016, 39, 45–57. [Google Scholar]
- MOOI, F.R.; VAN DER MAAS, N.A.T.; De MELKER, H.E. Pertussis resurgence: Waning immunity and pathogen adaptation – two sides of the same coin. Epidemiol. Infect. 2014, 142, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Koepke, R.; Eickhoff, J.C.; Ayele, R.A.; Petit, A.B.; Schauer, S.L.; Hopfensperger, D.J.; Conway, J.H.; Davis, J.P. Estimating the Effectiveness of Tetanus-Diphtheria-Acellular Pertussis Vaccine (Tdap) for Preventing Pertussis: Evidence of Rapidly Waning Immunity and Difference in Effectiveness by Tdap Brand. J. Infect. Dis. 2014, 210, 942–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misegades, L.K.; Winter, K.; Harriman, K.; Talarico, J.; Messonnier, N.E.; Clark, T.A.; Martin, S.W. Association of Childhood Pertussis With Receipt of 5 Doses of Pertussis Vaccine by Time Since Last Vaccine Dose, California, 2010. JAMA 2012, 308, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendelboe, A.M.; Van Rie, A.; Salmaso, S.; Englund, J.A. Duration of immunity against pertussis after natural infection or vaccination. Pediatr. Infect. Dis. J. 2005, 24, S58–S61. [Google Scholar] [CrossRef]
- Edwards, K.M. Unraveling the challenges of pertussis. Proc. Natl. Acad. Sci. USA 2014, 111, 575-6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2014, 111, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Althouse, B.M.; Scarpino, S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015, 13, 146. [Google Scholar] [CrossRef] [Green Version]
- Amirthalingam, G.; Andrews, N.; Campbell, H.; Ribeiro, S.; Kara, E.; Donegan, K.; Fry, N.K.; Miller, E.; Ramsay, M. Effectiveness of maternal pertussis vaccination in England: An observational study. Lancet 2014, 384, 1521–1528. [Google Scholar] [CrossRef]
- Vaccination guidance in Israel; Ministry of Health Israel: Jerusalem, Israel, 2014.
- Centers for Disease Control and Prevention (CDC), M.; Liang, J.L.; Messonnier, N.; Clark, T.A. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine (Tdap) in pregnant women--Advisory Committee on Immunization Practices (ACIP), 2012. MMWR. Morb. Mortal. Wkly. Rep. 2013, 62, 131-5. [Google Scholar]
- Putri, W.C.W.S.; Muscatello, D.J.; Stockwell, M.S.; Newall, A.T. Economic burden of seasonal influenza in the United States. Vaccine 2018, 36, 3960–3966. [Google Scholar] [CrossRef] [PubMed]
- Langsam, D.; Anis, E.; Haas, E.J.; Gosinov, R.; Yechezkel, M.; Grotto, I.; Shmueli, E.; Yamin, D. Tdap vaccination during pregnancy interrupts a twenty-year increase in the incidence of pertussis. Vaccine 2020, 38, 2700–2706. [Google Scholar] [CrossRef] [PubMed]
- Broutin, H.; Viboud, C.; Grenfell, B.T.; Miller, M.A.; Rohani, P. Impact of vaccination and birth rate on the epidemiology of pertussis: A comparative study in 64 countries. Proc. R. Soc. B Biol. Sci. 2010, 277, 3239–3245. [Google Scholar] [CrossRef]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2011; ISBN 9781400841035. [Google Scholar]
- Yechezkel, M.; Ndeffo Mbah, M.L.; Yamin, D. Optimizing antiviral treatment for seasonal influenza in the USA: a mathematical modeling analysis. BMC Med. 2021, 19, 1–16. [Google Scholar] [CrossRef]
- DeAngelis, H.; Scarpino, S.V.; Fitzpatrick, M.C.; Galvani, A.P.; Althouse, B.M. Epidemiological and Economic Effects of Priming With the Whole-Cell Bordetella pertussis Vaccine. JAMA Pediatr. 2016, 142, 672–684. [Google Scholar] [CrossRef] [Green Version]
- Atkins, K.E.; Fitzpatrick, M.C.; Galvani, A.P.; Townsend, J.P. Cost-Effectiveness of Pertussis Vaccination During Pregnancy in the United States. Am. J. Epidemiol. 2016, 183, 1159–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magpantay, F.M.G.; Rohani, P. Dynamics of Pertussis Transmission in the United States. Am. J. Epidemiol. 2015, 181, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Vynnycky, E.; White, R. Introduction. The basics: Infections, transmission and models. In An Introduction to Infectious Disease Modelling; Oxford University Press: New York, NY, USA, 2010; ISBN 978-0-19-856576-5. [Google Scholar]
- Fitzpatrick, M.C.; Wenzel, N.S.; Scarpino, S.V.; Althouse, B.M.; Atkins, K.E.; Galvani, A.P.; Townsend, J.P. Cost-effectiveness of next-generation vaccines: The case of pertussis. Vaccine 2016, 34, 3405–3411. [Google Scholar] [CrossRef] [Green Version]
- Rendi-Wagner, P.; Tobias, J.; Moerman, L.; Goren, S.; Bassal, R.; Green, M.; Cohen, D. The seroepidemiology of Bordetella pertussis in Israel--Estimate of incidence of infection. Vaccine 2010, 28, 3285-90. [Google Scholar] [CrossRef]
- Central Bureau of Statistics. Available online: https://cbs.aw/wp/(accessed on 2 June 2021).
- Yamin, D.; Balicer, R.D.; Galvani, A.P. Cost-effectiveness of influenza vaccination in prior pneumonia patients in Israel. Vaccine 2014, 32, 4198–4205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsberg, G.M.; Chemtob, D. Cost utility analysis of HIV pre exposure prophylaxis among men who have sex with men in Israel. BMC Public Health 2020, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moshel, S.; Vexberg, M.H.; Shavit, O.; Toledano, Y. Economic Evaluation of Dapagliflozin as Add-On to Metformin in T2DM in the Israeli Health Care Setting. Diabetes 2018, 67, 1297. [Google Scholar] [CrossRef]
- GitHub - DeanLa/israel_pertussis. Available online: https://github.com/DeanLa/israel_pertussis (accessed on 31 May 2021).
- Vaccines for Children Program (VFC) CDC Vaccine Price List Pediatric / VFC Vaccine Price List. Available online: https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/archive.html (accessed on 2 June 2021).
- Price list, Ministry of Health Israel. Available online: https://www.health.gov.il/Subjects/Finance/Taarifon/Pages/PriceList.aspx (accessed on 31 May 2021).
- Bellido-Blasco, J.; Guiral-Rodrigo, S.; Míguez-Santiyán, A.; Salazar-Cifre, A.; González-Morán, F. A case–control study to assess the effectiveness of pertussis vaccination during pregnancy on newborns, Valencian community, Spain, 1 March 2015 to 29 February 2016. Eurosurveillance 2017, 22, 30545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Description | Value | Justification |
---|---|---|---|
Birth rate | Time dependent, about 2% yearly | [34] | |
Death rate | Time dependent | [34] | |
Probability an infection is symptomatic given ACV | 1/e | ||
Probability an infection is symptomatic given WCV | 1 | ||
Waning from natural immunity | 30 years | [16] | |
Loss of immunity ACV | 18 years | [16] | |
Loss of immunity WCV | 30 years | [16] | |
Population coverage | 95% | [21] | |
Case report rate | 1.5% | [29,33] | |
ACV efficacy | [29] | ||
WCV efficacy | 99% | [29] | |
Symptomatic infection healing rate | 25 days | [29] | |
Asymptomatic infection healing rate | 8 days | [29] |
Parameter | Prior Distribution | Posterior (Median Value, 95% HDI] |
---|---|---|
) | ||
U(0,0.5) | ||
U(0,0.5) | ||
U(0,0.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langsam, D.; Kahana, D.; Shmueli, E.; Yamin, D. Cost-Effectiveness of Pertussis Vaccination Schedule in Israel. Vaccines 2021, 9, 590. https://doi.org/10.3390/vaccines9060590
Langsam D, Kahana D, Shmueli E, Yamin D. Cost-Effectiveness of Pertussis Vaccination Schedule in Israel. Vaccines. 2021; 9(6):590. https://doi.org/10.3390/vaccines9060590
Chicago/Turabian StyleLangsam, Dean, Dor Kahana, Erez Shmueli, and Dan Yamin. 2021. "Cost-Effectiveness of Pertussis Vaccination Schedule in Israel" Vaccines 9, no. 6: 590. https://doi.org/10.3390/vaccines9060590
APA StyleLangsam, D., Kahana, D., Shmueli, E., & Yamin, D. (2021). Cost-Effectiveness of Pertussis Vaccination Schedule in Israel. Vaccines, 9(6), 590. https://doi.org/10.3390/vaccines9060590