Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Gonzalo Pérez, M.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Garcia-Montero, C.; Fraile-Martinez, O.; Bravo, C.; Torres-Garranza, D.; Sanchez-Trujillo, L.; Gomez-Lahoz, A.M.; Guijarro, L.G.; Garcia-Honduvilla, N.; Asunsolo, A.; Bujan, J.; et al. An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic times. Vaccines 2021, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Geneva: World Health Organization. 5 April 2021. Available online: https://covid19.who.int/ (accessed on 29 May 2021).
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. 2021, 21, 83–100. [Google Scholar]
- Wise, J. Covid-19: Pfizer BioNTech vaccine reduced cases by 94% in Israel, shows peer reviewed study. BMJ 2021, 372, n567. [Google Scholar] [CrossRef] [PubMed]
- Loughlin, A.M.; Marchant, C.D.; Adams, W.; Barnett, E.; Baxter, R.; Black, S.; Casey, C.; Dekker, C.; Edwards, K.M.; Klein, J.; et al. Causality assessment of adverse events reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine 2012, 30, 7253–7259. [Google Scholar] [CrossRef] [PubMed]
- Psichogiou, M.; Karabinis, A.; Pavlopoulou, I.D.; Basoulis, D.; Petsios, K.; Roussos, S.; Pratikaki, M.; Jahaj, E.; Protopapas, K.; Leontis, K.; et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. PLoS ONE 2020, 15, e0243025. [Google Scholar] [CrossRef] [PubMed]
- Schmader, K. Herpes zoster in older adults. Clin. Infect. Dis. 2001, 32, 1481. [Google Scholar] [PubMed]
- Tseng, H.F.; Bruxvoort, K.; Ackerson, B.; Luo, Y.; Tanenbaum, H.; Tian, Y.; Zheng, C.; Cheung, B.; Patterson, B.J.; Van Oorschot, D.; et al. The Epidemiology of Herpes Zoster in Immunocompetent, Unvaccinated Adults ≥50 Years Old: Incidence, Complications, Hospitalization, Mortality, and Recurrence. J. Infect. Dis. 2020, 222, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Yawn, B.P.; Wollan, P.; Harpaz, R. Increasing incidence of Herpes Zoster over a 60-year period from a population-based study. Clin. Infect. Dis. 2016, 63, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Harpaz, R.; Leung, J.W. The epidemiology of Herpes Zoster in the United States during the era of Varicella and Herpes Zoster Vaccines: Changing patterns among older Adults. Clin. Infect. Dis. 2019, 69, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Saati, A.; Al-Husayni, F.; Malibari, A.A.; Bogari, A.A.; Alharbi, M. Herpes Zoster Co-Infection in an Immunocompetent Patient With COVID-19. Cureus 2020, 12, e8998. [Google Scholar] [CrossRef]
- Ferreira, A.C.A.F.; Romão, T.T.; Macedo, Y.S.; Pupe, C.; Nascimento, O.J.M. COVID-19 and herpes zoster co-infection presenting with trigeminal neuropathy. Eur. J. Neurol 2020, 27, 1748–1750. [Google Scholar] [CrossRef] [PubMed]
- Tartari, F.; Spadotto, A.; Zengarini, C.; Zanoni, R.; Guglielmo, A.; Adorno, A.; Valzania, C.; Pileri, A. Herpes zoster in COVID-19-positive patients. Int. J. Dermatol. 2020, 59, 1028–1029. [Google Scholar] [CrossRef]
- Elsaie, M.L.; Youssef, E.A.; Nada, H.A. Herpes zoster may be a marker for COVID-19 infection during pregnancy. Cutis 2020, 106, 318–320. [Google Scholar] [PubMed]
- Georgoudis, G.; Watson, P.J.; Oldham, J.A. The development and validation of a Greek version of the short-form McGill Pain Questionnaire. Eur. J. Pain. 2000, 4, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Gnann, J.W., Jr.; Whitley, R.J. Clinical Practice. Herpes Zoster. N. Engl. J. Med. 2002, 347, 340. [Google Scholar] [CrossRef] [PubMed]
- Yawn, B.P.; Wollan, P.C.; Kurland, M.J.; St Sauver, J.L.; Saddier, P. Herpes Zoster recurrences more frequent than previously reported. Mayo Clin. Proc. 2011, 86, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veenstra, J.; Krol, A.; van Praag, R.M.; Frissen, P.H.; Schellekens, P.T.; Lange, J.M.; Coutimo, R.A.; von der Meer, J.T. Herpes Zoster, immunological deterioration and disease progression in HIV-1 infection. AIDS 1995, 9, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and Efficacy of the ChAdOx1 nCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomized controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273, SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Peitersen, E. Bell’s palsy: The spontaneous course of 2,500 peripheral facial nerve palsies of different etiologies. Acta Otolaryngol. Suppl. 2002, 549, 4–30. [Google Scholar] [CrossRef]
- Sweeney, C.J.; Gilden, D.H. Ramsay Hunt Syndrome. J. Neurol. Neurosurg. Psychiatry 2001, 71, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.; Gatell, J.; Morán, Y.; Aznar, E.; Buira, E.; Guelar, A.; Mallolas, J.; Soriano, E. High incidence of herpes zoster in patients with AIDS soon after therapy with protease inhibitors. Clin. Infect. Dis. 1998, 27, 1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, R.; Hartmann, K.; Fleisch, F.; Reinhart, W.H.; Kuhn, M. Reactivation of herpesvirus infections after vaccinations? Lancet 1999, 353, 810. [Google Scholar] [CrossRef]
- Bayas, J.M.; Gonzalez-Alvarez, R.; Guinovart, C. Herpes Zoster after Yellow Fever Vaccination. J. Travel. Med. 2007, 14, 65–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothova, A.; de Groot, J.D.F.; Mudrikova, T. Reactivation of acute retinal necrosis after flu H1N1 vaccination. Br. J. Ophtalmol. 2011, 95, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Bostan, E.; Yalici-Armagan, B.J. Herpes zoster following inactivated COVID-19 vaccine: A coexistence or coincidence? Cosmet. Dermatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Zisman, D.; Kibari, A.; Rimar, D.; Paran, Y.; Elkayam, O. Herpes zoster following BNT162b2 mRNA Covid-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A case series. Rheumatology 2021. [Google Scholar] [CrossRef] [PubMed]
- VAERS Searches: United States Department of Health and Human Services (DHHS), Public Health Service (PHS), Centers for Disease Control (CDC)/Food and Drug Administration (FDA), Vaccine Adverse Event Reporting System (VAERS) 1990—3/26/2021, CDC WONDER On-line Database. Available online: http://wonder.cdc.gov/vaers.html (accessed on 4 April 2021).
- Coronavirus Vaccine—Weekly Summary of Yellow Card Reporting. Updated 25 March 2021. Available online: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting (accessed on 4 April 2021).
- COVID-19 Vaccine AstraZeneca Analysis Print. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/975786/COVID-19_AstraZeneca_Vaccine_Analysis_Print.pdf (accessed on 4 April 2021).
- COVID-19 mRNA Pfizer- BioNTech Vaccine Analysis Print. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/975808/COVID-19_mRNA_Pfizer-BioNTech_Vaccine_Analysis_Print.pdf (accessed on 4 April 2021).
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, U.; Muik, A.; Vogler, I.; Derhovanessian, E.; Kranz, L.M.; Vormehr, M.; Quandt, J.; Bidmon, N.; Ulges, A.; Baum, A.; et al. BNT162b2 induces SARS-CoV-2 neutralizing antibodies and T cells in humans. medRxiv 2020. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273, Vaccine in older individuals. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Halsey, N.A.; Edwards, K.M.; Dekker, C.L.; Klein, N.P.; Baxter, R.; LaRussa, P.; Marchant, C.; Slade, B.; Vellozzi, C.; the Causality Group of the Clinical Immunization Safety Assessment network. Algorithm to assess causality after individual adverse events following immunizations. Vaccine 2012, 30, 5791–5798. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, A.E.; Asturias, E.J.; Balakrishnan, M.R.; Halsey, N.A.; Law, B.; Zuber, P.L.F. Assessment of causality of individual adverse events following immunization (AEFI): A WHO tool for global use. Vaccine 2013, 31, 5041–5046. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, T. COVID-19 Vaccine Safety Update. In Proceedings of the Advisory Committee on Immunization Practices (ACIP) Meeting, Atlanta, GA, USA, 27 January 2021. [Google Scholar]
- Dooling, K.L.; Guo, A.; Patel, M.; Lee, G.M.; Moore, K.; Belongia, E.A.; Harpaz, R. Recommendations of the Advisory Committee on Immunization Practices for Use of Herpes Zoster Vaccines. MMWR Morb. Mortal Wkly. Rep. 2018, 67, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castells, M.C.; Phillips, E.J. Maintaining safety with SARS-CoV-2 Vaccines. N. Engl. J. Med. 2021, 384, 643–649. [Google Scholar] [CrossRef]
Variable | Patient 1—HCW | Patient 2—HCW | Patient 3—HCW | Patient 4 | Patient 5 | Patient 6 | Patient 7 |
---|---|---|---|---|---|---|---|
Age (yrs.) | 51 | 56 | 69 | 86 | 90 | 91 | 94 |
Sex (F/M) | F | F | F | M | M | M | M |
Adverse events (AE) from vaccine (pain, oedema, fever, fatigue, other) | -1st dose [9 February 2021], no AE -2nd dose [2 March 2021] mild pain oedema for 2 days | -1st dose [1 February 2021] Mild pain, mild fatigue for 1 day | -1st dose [29 Jnauary 2021] mild pain for 1 day -2nd dose [8 March 2021], no AE | -1st dose [23 January 2021], no AE -2nd dose [13 February 2021], no AE | -1st dose [22 January 2021], no AE -2nd dose [12 February 2021], no AE | -1st dose [16 January 2021], no AE -2nd dose [26 February 2021], no AE | -1st dose [15 February 2021], mild pain, mild oedema for 2 days |
Comorbidities/Drugs | No/No | Osteoporosis, Dyslipidemia/No | Mitral valve surgery/antiarrhythmic drug, acetylsalicylic acid | Prostate cancer, Hypertension/long-acting GnRH agonist, antihypertensive drugs | Hypertension, COPD, hyperuricemia/antihypertensive drugs, inhalers, hypozuric drugs | Dyslipidemia, hypertension/antihypertensive, antilipemic drugs | HF NYHA 3 *, pacemaker, CKD/drugs for HF |
Varicella Zoster | |||||||
Days of VZ onset after vaccination | 9 days after 1st dose | 14 days after 1st dose | 8 days after 1st dose | 7 days after 2nd dose | 9 days after 2nd dose | 7 days after 1st dose | 20 days after 1st dose |
Prodromal pain days prior to exanthema (Yes/No) | Yes, 2 days | Yes, 5 days | Yes, 7 days | No | No | Yes, 7 days | Yes, 1 day |
Dermatome | Lumbar | Thoracic | Fifth cranial nerve | Thoracic | Thoracic | Fifth cranial nerve, Herpes zoster opthalmicus | Thoracic |
Other symptoms (headache, fever, malaise, fatigue) | Malaise, ischial pain | Malaise | Malaise, headache | No | No | Fatigue | Fatigue |
Symptom’s severity | Moderate | Mild | Severe | Mild | Mild | Severe | Severe |
Treatment for HZ, [Yes/No (days)] | Yes, valacyclovir, 2 days after symptom onset | Yes, valacyclovir, 5 days after symptom onset | Yes, valacyclovir, 7 days after symptom onset | Yes, valacyclovir same day | Yes, valacyclovir, same day | Yes, acyclovir IV and then valacyclovir, same day | Yes, valacyclovir, same day |
Hospitalization, [Yes/No (days)] | No | No | No | No | No | Yes, 14 days | No |
Postherpetic neuralgia (Yes/No) | No | No | Yes, neuropathic drugs | No | No | Yes, neuropathic drugs | Yes, neuropathic drugs |
Pain scale (1–10) | 6 | 3 | 4 | 4 | 3 | 4 | 5 |
Previous vaccination for VZV (Yes/No) | No | No | No | No | No | No | No |
History of previous HZ (Yes/No) | No | No | No | No | No | No | No |
Antibodies IgG to SARS-CoV-2 (Yes/Not Done)) | Yes | Yes | Yes | Yes | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psichogiou, M.; Samarkos, M.; Mikos, N.; Hatzakis, A. Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2. Vaccines 2021, 9, 572. https://doi.org/10.3390/vaccines9060572
Psichogiou M, Samarkos M, Mikos N, Hatzakis A. Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2. Vaccines. 2021; 9(6):572. https://doi.org/10.3390/vaccines9060572
Chicago/Turabian StylePsichogiou, Mina, Michael Samarkos, Nikolaos Mikos, and Angelos Hatzakis. 2021. "Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2" Vaccines 9, no. 6: 572. https://doi.org/10.3390/vaccines9060572