The Gender Impact Assessment among Healthcare Workers in the SARS-CoV-2 Vaccination—An Analysis of Serological Response and Side Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Gender Impact Assessment (GIA)
2.3. Population
2.4. Data Sources
2.5. Statistical Analysis
3. Results
3.1. Assessment of the Sex and Gender Impact
3.2. Assessment of the Immune Response against SARS-CoV-2
3.2.1. Serological Evaluation at T0
3.2.2. Serological Evaluation at T1
3.2.3. Serological Evaluation at T2
3.3. Assessment of the Side Effects Due to the COVID-19 Vaccine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Napolitano, F.; Bianco, A.; D’Alessandro, A.; Papadopoli, R.; Angelillo, I.F. Healthcare workers’ knowledge, beliefs, and coverage regarding vaccinations in critical care units in Italy. Vaccine 2019, 37, 6900–6906. [Google Scholar] [CrossRef]
- WHO Health Workers at Risk, Older Adults and Residents of Long-Term Care Facilities to be Prioritized for COVID-19 Vaccination. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/11/health-workers-at-risk,-older-adults-and-residents-of-long-term-care-facilities-to-be-prioritized-for-covid-19-vaccination (accessed on 11 April 2021).
- Chia, W.N.; Zhu, F.; Ong, S.W.X.; Young, B.E.; Fong, S.-W.; Le Bert, N.; Tan, C.W.; Tiu, C.; Zhang, J.; Tan, S.Y.; et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: A longitudinal study. Lancet Microbe 2021, 2, e179. [Google Scholar] [CrossRef]
- Globalhealth5050 The Covid-19 Sex-Disaggregated Data Tracker. Available online: https://globalhealth5050.org/wp-content/uploads/December-2020-The-COVID-19-Sex-Disaggregated-Data-Tracker-Update.pdf (accessed on 11 April 2021).
- Zeng, F.; Dai, C.; Cai, P.; Wang, J.; Xu, L.; Li, J.; Hu, G.; Wang, Z.; Zheng, F.; Wang, L. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. J. Med. Virol. 2020, 92, 2050–2054. [Google Scholar] [CrossRef] [PubMed]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commu. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Ghosh, S.; Klein, R.S. Sex Drives Dimorphic Immune Responses to Viral Infections. J. Immunol. 2017, 198, 1782–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giefing-Kröll, C.; Berger, P.; Lepperdinger, G.; Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 2015, 14, 309–321. [Google Scholar] [CrossRef]
- Ruggierii, A.; Anticoli, S.; D’ambrosio, A.; Giordani, L.; Mora, M. The influence of sex and gender on immunity, infection and vaccination. Ann. Dell Ist. Super. Sanita 2016, 52, 198–204. [Google Scholar] [CrossRef]
- Patin, E.; Hasan, M.; Bergstedt, J.; Rouilly, V.; Libri, V.; Urrutia, A.; Alanio, C.; Scepanovic, P.; Hammer, C.; Jönsson, F.; et al. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors resource. Nat. Immunol. 2018, 19, 302–314. [Google Scholar] [CrossRef]
- Aguirre-Gamboa, R.; Joosten, I.; Urbano, P.C.M.; van der Molen, R.G.; van Rijssen, E.; van Cranenbroek, B.; Oosting, M.; Smeekens, S.; Jaeger, M.; Zorro, M.; et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016, 17, 2474–2487. [Google Scholar] [CrossRef] [Green Version]
- Hewagama, A.; Patel, D.; Yarlagadda, S.; Strickland, F.M.; Richardson, B.C. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun. 2009, 10, 509–516. [Google Scholar] [CrossRef]
- Kovats, S.; Carreras, E.; Agrawal, H. Sex steroid receptors in immune cells. In Sex Hormones and Immunity to Infection; Springer: Berlin/Heidelberg, Germany, 2010; pp. 53–91. ISBN 9783642021558. [Google Scholar]
- Trigunaite, A.; Dimo, J.; Jørgensen, T.N. Suppressive effects of androgens on the immune system. Cell. Immunol. 2015, 294, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kissick, H.T.; Sanda, M.G.; Dunn, L.K.; Pellegrini, K.L.; On, S.T.; Noel, J.K.; Arredouani, M.S. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl. Acad. Sci. USA. 2014, 111, 9887–9892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, D.; Ansar Ahmed, S. The immune system is a natural target for estrogen action: Opposing effects of estrogen in two prototypical autoimmune diseases. Front. Immunol. 2016, 6, 635. [Google Scholar] [CrossRef] [Green Version]
- Seillet, C.; Laffont, S.; Trémollières, F.; Rouquié, N.; Ribot, C.; Arnal, J.F.; Douin-Echinard, V.; Gourdy, P.; Guéry, J.C. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood 2012, 119, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Falsey, A.R.; Treanor, J.J.; Tornieporth, N.; Capellan, J.; Gorse, G.J. Randomized, double-blind controlled phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. J. Infect. Dis. 2009, 200, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiebaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Hodgson, A.; Robinson, D.P. Mechanisms of sex disparities in influenza pathogenesis. J. Leukoc. Biol. 2012, 92, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenham, C.; Smith, J.; Morgan, R. COVID-19: The gendered impacts of the outbreak. Lancet 2020, 395, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Davies, S.E.; Bennett, B. A gendered human rights analysis of Ebola and Zika: Locating gender in global health emergencies. Int. Aff. 2016, 92, 1041–1060. [Google Scholar] [CrossRef] [Green Version]
- Horizon 2020 Gender Equality in Horizon 2020. Available online: https://ec.europa.eu/programmes/horizon2020/en/file/1407 (accessed on 11 April 2021).
- NIH Consideration of Sex as a Biological Variable in NIH-funded Research. Available online: https://grants.nih.gov/grants/guide/notice-files/not-od-15-102.html (accessed on 11 April 2021).
- Nielsen, M.W.; Stefanick, M.L.; Peragine, D.; Neilands, T.B.; Ioannidis, J.P.A.; Pilote, L.; Prochaska, J.J.; Cullen, M.R.; Einstein, G.; Klinge, I.; et al. Gender-related variables for health research. Biol. Sex Differ. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Ovseiko, P.V.; Greenhalgh, T.; Adam, P.; Grant, J.; Hinrichs-Krapels, S.; Graham, K.E.; Valentine, P.A.; Sued, O.; Boukhris, O.F.; Al Olaqi, N.M.; et al. A global call for action to include gender in research impact assessment. Health Res. Policy Syst. 2016, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- op.europa.eu Toolkit Gender in EU-funded Research. Available online: https://op.europa.eu/en/publication-detail/-/publication/c17a4eba-49ab-40f1-bb7b-bb6faaf8dec8 (accessed on 11 April 2021).
- Gracia, C.R.; Freeman, E.W. Onset of the Menopause Transition: The Earliest Signs and Symptoms. Obstet. Gynecol. Clin. 2018, 45, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Ahn, S.T.; Moon, D.G. Evolution of Guidelines for Testosterone Replacement Therapy. J. Clin. Med. 2019, 8, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkmann, T.; Perkmann-Nagele, N.; Breyer, M.K.; Breyer-Kohansal, R.; Burghuber, O.C.; Hartl, S.; Aletaha, D.; Sieghart, D.; Quehenberger, P.; Marculescu, R.; et al. Side-by-Side Comparison of Three Fully Automated SARS-CoV-2 Antibody Assays with a Focus on Specificity. Clin. Chem. 2020, 66, 1405–1413. [Google Scholar] [CrossRef]
- FDA EUA Authorized Serology Test Performance. Available online: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance (accessed on 11 April 2021).
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Harman, S.; Herten-Crabb, A.; Morgan, R.; Smith, J.; Wenham, C. COVID-19 vaccines and women’s security. Lancet 2021, 397, 357–358. [Google Scholar] [CrossRef]
- WHO Gender Equity in the Health Workforce: Analysis of 104 Countries: Working Paper 1. Available online: https://apps.who.int/iris/bitstream/handle/10665/311314/WHO-HIS-HWF-Gender-WP1-2019.1-eng.pdf (accessed on 11 April 2021).
- Bali, S.; Dhatt, R.; Lal, A.; Jama, A.; Van Daalen, K.; Sridhar, D. Off the back burner: Diverse and gender-inclusive decision-making for COVID-19 response and recovery. BMJ Glob. Health 2020, 5, e002595. [Google Scholar] [CrossRef]
- World Health Organization. WHO Position Papers–Immunization of Healthcare Workers; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Day, S.; Mason, R.; Lagosky, S.; Rochon, P.A. Integrating and evaluating sex and gender in health research. Health Res. Policy Syst. 2016, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mazure, C.M.; Jones, D.P. Twenty years and still counting: Including women as participants and studying sex and gender in biomedical research. BMC Women’s Health 2015, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Simon, V. Wanted: Women in clinical trials. Science 2005, 308, 1517–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geller, S.E.; Koch, A.; Pellettieri, B.; Carnes, M. Inclusion, analysis, and reporting of sex and race/ethnicity in clinical trials: Have we made progress? J. Women’s Health 2011, 20, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Baggio, G.; Corsini, A.; Floreani, A.; Giannini, S.; Zagonel, V. Gender medicine: A task for the third millennium. Clin. Chem. Lab. Med. 2013, 51, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Buitrago-Garcia, D.; Egli-Gany, D.; Counotte, M.J.; Hossmann, S.; Imeri, H.; Ipekci, A.M.; Salanti, G.; Low, N. Occurrence and transmission potential of asymptomatic and presymptomatic SARSCoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020, 17, e1003346. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Krause, K.H. Ageing and infection. Lancet Infect. Dis. 2002, 2, 659–666. [Google Scholar] [CrossRef]
- Grubeck-Loebenstein, B.; Berger, P.; Saurwein-Teissl, M.; Zisterer, K.; Wick, G. No immunity for the elderly. Nat. Med. 1998, 4, 870. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.R.; Wolf, J.; Brunner, S.; Herndler-Brandstetter, D.; Grubeck-Loebenstein, B. Gain and loss of T cell subsets in old age -Age-related reshaping of the T cell repertoire. J. Clin. Immunol. 2011, 31, 137–146. [Google Scholar] [CrossRef]
- Mahbub, S.; Brubaker, A.L.; J. Kovacs, E. Aging of the Innate Immune System: An Update. Curr. Immunol. Rev. 2011, 7, 104–115. [Google Scholar] [CrossRef]
- Weinberger, B.; Grubeck-Loebenstein, B. Vaccines for the elderly. Clin. Microbiol. Infect. 2012, 18, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, J.L.; Diaz, A.; Riley, R.L.; Cancro, M.P.; Frasca, D. A comparative review of aging and B cell function in mice and humans. Curr. Opin. Immunol. 2013, 25, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Foo, Y.Z.; Nakagawa, S.; Rhodes, G.; Simmons, L.W. The effects of sex hormones on immune function: A meta-analysis. Biol. Rev. 2017, 92, 551–571. [Google Scholar] [CrossRef] [Green Version]
- Giglio, T.; Imro, M.A.; Filaci, G.; Scudeletti, M.; Puppo, F.; De Cecco, L.; Indiveri, F.; Costantini, S. Immune cell circulating subsets are affected by gonadal function. Life Sci. 1994, 54, 1305–1312. [Google Scholar] [CrossRef]
- Hirokawa, K.; Utsuyama, M.; Hayashi, Y.; Kitagawa, M.; Makinodan, T.; Fulop, T. Slower immune system aging in women versus men in the Japanese population. Immun. Ageing 2013, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Mathioudakis, A.G.; Ghrew, M.; Ustianowski, A.; Ahmad, S.; Borrow, R.; Papavasileiou, L.P.; Petrakis, D.; Bakerly, N.D. Self-Reported Real-World Safety and Reactogenicity of COVID-19 Vaccines: A Vaccine Recipient Survey. Life 2021, 11, 249. [Google Scholar] [CrossRef]
- Sadaf, A.; Richards, J.L.; Glanz, J.; Salmon, D.A.; Omer, S.B. A systematic review of interventions for reducing parental vaccine refusal and vaccine hesitancy. Vaccine 2013, 31, 4293–4304. [Google Scholar] [CrossRef]
- Restivo, V.; Costantino, C.; Mammina, C.; Vitale, F. Influenza like illness among medical residents anticipates influenza diffusion in general population: Data from a national survey among Italian medical residents. PLoS ONE 2016, 11, e0168546. [Google Scholar] [CrossRef] [Green Version]
Step 1 | To define context, objectives and indicators | Context: vaccination campaign against SARS-CoV-2 Objectives: provide gender-based recommendations for vaccination campaign against SARS-CoV-2 Indicators: antibody titer against Sars-Cov-2 before and after the vaccine; side effects due to the vaccine |
Step 2 | To explicate the relevance for GIA | Gender dynamics: exposure to SARS-CoV-2 and the vaccine access Direct impacts of gender dynamics: access to vaccine Indirect impacts of gender dynamics: intermediate access to vaccine |
Step 3 | To identify gender impacts | Gender stereotypes: women are considered more suitable for care and assistance jobs Hierarchical positioning: hospital-based healthcare workers vs informal caregivers and healthcare workers outside hospitals Unequal condition: access to vaccine for informal caregivers and healthcare workers outside hospitals vs hospital-based healthcare workers |
Step 4 | To evaluate gender impacts | Harmful impacts of gender bias: females working in healthcare are most at-risk for being exposed to SARS-CoV-2 infection Aspects that reduce inequalities: to provide vaccine to all individuals at comparable risk in healthcare |
Step 5 | To provide recommendations for adjustments | Suggestions for reducing inequalities: to include sex-disaggregated reporting of immuno-response and side effects Development of strategies to transform negative impacts of gender-gap into positive ones: healthcare workers could be included in decision-making regarding the campaign against SARS-CoV-2, taking into account knowledge and experience gained by women in the management of COVID-19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Resta, C.; Ferrari, D.; Viganò, M.; Moro, M.; Sabetta, E.; Minerva, M.; Ambrosio, A.; Locatelli, M.; Tomaiuolo, R. The Gender Impact Assessment among Healthcare Workers in the SARS-CoV-2 Vaccination—An Analysis of Serological Response and Side Effects. Vaccines 2021, 9, 522. https://doi.org/10.3390/vaccines9050522
Di Resta C, Ferrari D, Viganò M, Moro M, Sabetta E, Minerva M, Ambrosio A, Locatelli M, Tomaiuolo R. The Gender Impact Assessment among Healthcare Workers in the SARS-CoV-2 Vaccination—An Analysis of Serological Response and Side Effects. Vaccines. 2021; 9(5):522. https://doi.org/10.3390/vaccines9050522
Chicago/Turabian StyleDi Resta, Chiara, Davide Ferrari, Marco Viganò, Matteo Moro, Eleonora Sabetta, Massimo Minerva, Alberto Ambrosio, Massimo Locatelli, and Rossella Tomaiuolo. 2021. "The Gender Impact Assessment among Healthcare Workers in the SARS-CoV-2 Vaccination—An Analysis of Serological Response and Side Effects" Vaccines 9, no. 5: 522. https://doi.org/10.3390/vaccines9050522