A Novel E2 Glycoprotein Subunit Marker Vaccine Produced in Plant Is Able to Prevent Classical Swine Fever Virus Vertical Transmission after Double Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine
2.2. Cells and Viruses
2.3. Experimental Design
2.4. Detection of CSFV E2-Specific and Neutralizing Antibodies
2.5. CSFV RNA Detection
3. Results
3.1. E2-Antibody Response and Clinical Signs Generated in Sows after Vaccination and Challenge
3.2. Protection Levels against CSFV Replication in Vaccinated Sows after Challenge
3.3. Neutralizing Antibody Response Detected after Vaccination and Challenge
3.4. Protection Levels of Fetuses from Either Vaccinated or Non-Vaccinated Sows after CSFV Challenge
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Muerhoff, A.S.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Lindenbach, B.; Rice, C. Flaviviridae: The Viruses and Their Replication; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; Volume 1. [Google Scholar]
- Beltran-Alcrudo, D.; Falco, J.R.; Raizman, E.; Dietze, K. Transboundary spread of pig diseases: The role of international trade and travel. BMC Veter Res. 2019, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, M.P.; Horst, S.H.; Huirne, R.B.; Dijkhuizen, A.A. A model to estimate the financial consequences of classical swine fever outbreaks: Principles and outcomes. Prev. Veter Med. 1999, 42, 249–270. [Google Scholar] [CrossRef]
- Ganges, L.; Núñez, J.I.; Sobrino, F.; Borrego, B.; Fernández-Borges, N.; Frías-Lepoureau, M.T.; Rodríguez, F. Recent advances in the development of recombinant vaccines against classical swine fever virus: Cellular responses also play a role in protection. Veter J. 2008, 177, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Coronado, L.; Perera, C.; Rios, L.; Frías, M.; Pérez, L. A critical review about different vaccines against classical swine fever virus and their repercussions in endemic regions. Vaccines 2021, 9, 154. [Google Scholar] [CrossRef]
- Abid, M.; Teklue, T.; Li, Y.; Wu, H.; Wang, T.; Qiu, H.-J.; Sun, Y. Generation and immunogenicity of a recombinant pseudorabies virus co-expressing classical swine fever virus E2 protein and porcine circovirus type 2 capsid protein based on Fosmid library platform. Pathogens 2019, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Van Rijn, P.A. A common neutralizing epitope on envelope glycoprotein E2 of different pestiviruses: Implications for improvement of vaccines and diagnostics for classical swine fever (CSF)? Veter Microbiol. 2007, 125, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Ma, Z.; Chen, L.; Fan, H. Recombinant swinepox virus expressing glycoprotein E2 of classical swine fever virus confers complete protection in pigs upon viral challenge. Front. Veter Sci. 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, U. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis® Pesti in pregnant sows. Veter Microbiol. 2000, 77, 83–97. [Google Scholar] [CrossRef]
- Bouma, A.; De Smit, A.; De Kluijver, E.; Terpstra, C.; Moormann, R. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Veter Microbiol. 1999, 66, 101–114. [Google Scholar] [CrossRef]
- Bouma, A.; De Smit, A.; De Jong, M.; De Kluijver, E.; Moormann, R. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine 2000, 18, 1374–1381. [Google Scholar] [CrossRef]
- Depner, K.R.; Bouma, A.; Koenen, F.; Klinkenberg, D.; Lange, E.; De Smit, H.; Vanderhallen, H. Classical swine fever (CSF) marker vaccine. Veter Microbiol. 2001, 83, 107–120. [Google Scholar] [CrossRef]
- van Oirschot, J. Vaccinology of classical swine fever: From lab to field. Veter Microbiol. 2003, 96, 367–384. [Google Scholar] [CrossRef]
- Sordo-Puga, Y.; Suárez-Pedroso, M.; Naranjo-Valdéz, P.; Pérez-Pérez, D.; Santana-Rodríguez, E.; Sardinas-Gonzalez, T.; Mendez-Orta, M.; Duarte-Cano, C.; Estrada-Garcia, M.; Rodríguez-Moltó, M. Porvac® subunit vaccine E2-CD154 induces remarkable rapid protection against classical swine fever virus. Vaccines 2021, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, S.; Kang, H.; Park, M.; Min, K.; Kim, N.H.; Gu, S.; Kim, J.K.; An, D.-J.; Choe, S.; et al. A classical swine fever virus E2 fusion protein produced in plants elicits a neutralizing humoral immune response in mice and pigs. Biotechnol. Lett. 2020, 42, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Giangaspero, M.; Zhang, S.-Q. Genomic characteristics of classical swine fever virus strains of bovine origin according to primary and secondary sequence-structure analysis. Open Veter J. 2020, 10, 94–115. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Schmeiser, S.; Perera, C.L.; Rodríguez, L.J.P.; Frias-Lepoureau, M.T.; Becher, P. Classical swine fever virus isolates from Cuba form a new subgenotype 1.4. Veter Microbiol. 2013, 161, 334–338. [Google Scholar] [CrossRef]
- Reed, L.; Muench, H. A simple method of estimating fifty per cent endpoints12. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Schmeiser, S.; Meyer, D.; Meindl-Böhmer, A.; Koenen, F.; Beer, M. Efficacy of marker vaccine candidate CP7_E2alf against challenge with classical swine fever virus isolates of different genotypes. Veter Microbiol. 2014, 169, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Laevens, H.; Koenen, F.; Mintiens, K.; De Kruif, A. An experimental infection to investigate the indirect transmission of classical swine fever virus by excretions of infected pigs. J. Veter Med. Ser. B 2002, 49, 452–456. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, C.; Blome, S.; Urniza, A.; Juanola, S.; Koenen, F.; Beer, M. Towards licensing of CP7_E2alf as marker vaccine against classical swine fever—Duration of immunity. Vaccine 2012, 30, 2928–2936. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, C.; Bloemraad, M.; Gielkens, A. The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Veter Microbiol. 1984, 9, 113–120. [Google Scholar] [CrossRef]
- Hoffmann, B.; Beer, M.; Schelp, C.; Schirrmeier, H.; Depner, K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J. Virol. Methods 2005, 130, 36–44. [Google Scholar] [CrossRef]
- Wang, M.; Liniger, M.; Muñoz-González, S.; Bohórquez, J.A.; Hinojosa, Y.; Gerber, M.; López-Soria, S.; Rosell, R.; Ruggli, N.; Ganges, L. A polyuridine insertion in the 3’ untranslated region of classical swine fever virus activates immunity and reduces viral virulence in piglets. J. Virol. 2019, 94. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.-L.; Xia, S.-L.; Wang, Y.; Du, M.; Xiang, G.-T.; Cong, X.; Luo, Y.; Li, L.-F.; Zhang, L.; Yu, J.; et al. Safety and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the E2 protein of classical swine fever virus in pigs. Immunol. Lett. 2016, 174, 63–71. [Google Scholar] [CrossRef]
- Yoo, S.J.; Kwon, T.; Kang, K.; Kim, H.; Kang, S.C.; Richt, J.A.; Lyoo, Y.S. Genetic evolution of classical swine fever virus under immune environments conditioned by genotype 1-based modified live virus vaccine. Transbound. Emerg. Dis. 2018, 65, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Coronado, L.; Liniger, M.; Muñoz-González, S.; Postel, A.; Pérez, L.J.; Pérez-Simó, M.; Perera, C.L.; Lepoureau, M.T.F.-; Rosell, R.; Grundhoff, A.; et al. Novel poly-uridine insertion in the 3’UTR and E2 amino acid substitutions in a low virulent classical swine fever virus. Veter Microbiol. 2017, 201, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Van Oirschot, J. Experimental production of congenital persistent swine fever infections: I. Clinical, pathological and virological observations. Vet. Microbiol. 1979, 4, 117–132. [Google Scholar] [CrossRef]
- Van Oirschot, J. Experimental production of congenital persistent swine fever infections: II. Effect on functions of the immune system. Vet. Microbiol. 1979, 4, 133–147. [Google Scholar] [CrossRef]
- Muñoz-González, S.; Ruggli, N.; Rosell, R.; Pérez, L.J.; Frías-Leuporeau, M.T.; Fraile, L.; Montoya, M.; Cordoba, L.; Domingo, M.; Ehrensperger, F.; et al. Postnatal persistent infection with classical swine fever virus and its immunological implications. PLoS ONE 2015, 10, e0125692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpstra, C.; Wensvoort, G. The protective value of vaccine-induced neutralising antibody titres in swine fever. Veter Microbiol. 1988, 16, 123–128. [Google Scholar] [CrossRef]
- Gavier-Widén, D.; Meredith, A.; Duff, J.P. Infectious Diseases of Wild Mammals and Birds in Europe; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Liess, B. Persistent infections of hog cholera: A review. Prev. Veter Med. 1984, 2, 109–113. [Google Scholar] [CrossRef]
- Van Oirschot, J.; Terpstra, C. A congenital persistent swine fever infection. I. Clinical and virological observations. Vet. Microbiol. 1977, 2, 121–132. [Google Scholar] [CrossRef]
- Trautwein, G. Pathology and Pathogenesis of the Disease. In Classical Swine Fever and Related Viral Infections; Liess, B., Ed.; Springer: Boston, MA, USA, 1988; pp. 27–54. [Google Scholar]
- Risatti, G.R.; Holinka, L.G.; Sainz, I.F.; Carrillo, C.; Lu, Z.; Borca, M.V. N-linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J. Virol. 2006, 81, 924–933. [Google Scholar] [CrossRef] [Green Version]
(a) | |||||||||
NPLA to Margarita Strain (Challenge Virus) | |||||||||
Sow ID | Days Post Vaccination (dpv) | Days Post Challenge (dpc) | |||||||
0 dpv | 7 dpv | 17 dpv | 21 dpv | 28 dpv/0 dpc | 4 dpc | 8 dpc | 14 dpc * | 18 dpc | |
Group 1: Sows inoculated with 100 µg of protein | |||||||||
Sow 1 | Neg ** | Neg | Neg | 1/10 | |||||
Sow 2 | Neg | Neg | Neg | 1/20 | |||||
Sow 3 | Neg | Neg | Neg | Neg | |||||
Sow 4 | Neg | Neg | Neg | Neg | |||||
Group 2: Sows inoculated with 300 µg of protein | |||||||||
Sow 5 | Neg | Neg | Neg | 1/10 | 1/40 | 1/80 | 1/1280 | 1/2560 | 1/1280 |
Sow 6 | Neg | Neg | Neg | Neg | 1/40 | 1/20 | 1/320 | 1/2560 | 1/1280 |
Sow 7 | Neg | Neg | 1/10 | 1/40 | 1/160 | 1/320 | 1/320 | 1/2560 | 1/2560 |
Sow 8 | Neg | Neg | Neg | Neg | 1/40 | 1/20 | 1/160 | 1/2560 | 1/640 |
Group 3: Non vaccinated control animals | |||||||||
Sow 9 | Neg | Neg | Neg | Neg | Neg | Neg | Neg | 1/10 | |
Sow 10 | Neg | Neg | Neg | Neg | Neg | Neg | Neg | Neg | |
(b) | |||||||||
NPLA to Alfort 187 CSFV Strain | |||||||||
Sow ID | Days Post Vaccination (dpv) | Days Post Challenge (dpc) | |||||||
0 dpv | 7 dpv | 17 dpv | 21 dpv | 28 dpv/0 dpc | 4 dpc | 8 dpc | 14 dpc * | 18 dpc | |
Group 1: Sows inoculated with 100 µg of protein | |||||||||
Sow 1 | Neg ** | Neg | 1/10 | 1/40 | |||||
Sow 2 | Neg | Neg | 1/10 | 1/320 | |||||
Sow 3 | Neg | Neg | 1/10 | 1/20 | |||||
Sow 4 | Neg | Neg | 1/20 | 1/20 | |||||
Group 2: Sows inoculated with 300 µg of protein | |||||||||
Sow 5 | Neg | Neg | Neg | 1/10 | 1/1280 | 1/320 | 1/5120 | 1/10240 | 1/10240 |
Sow 6 | Neg | Neg | Neg | 1/10 | 1/160 | 1/160 | 1/5120 | 1/5120 | 1/5120 |
Sow 7 | Neg | Neg | 1/20 | 1/160 | 1/2560 | 1/2560 | 1/5120 | 1/10240 | 1/10240 |
Sow 8 | Neg | Neg | 1/10 | 1/20 | 1/640 | 1/160 | 1/640 | 1/5120 | 1/2560 |
Group 3: Non vaccinated control animals | |||||||||
Sow 9 | Neg | Neg | Neg | Neg | Neg | Neg | 1/10 | 1/10 | |
Sow 10 | Neg | Neg | Neg | Neg | Neg | Neg | Neg | Neg |
(a) | |||||||||
Fetus ID | CSFV RT-qPCR (Ct Value) | Fetus ID | CSFV RT-qPCR (Ct Value) | ||||||
Serum | Tonsil | Spleen | Thymus | Serum | Tonsil | Spleen | Thymus | ||
Fetuses from sow 5 | Fetuses from sow 7 | ||||||||
1 | Neg * | Neg | Neg | Neg | 1 | Neg | Neg | Neg | Neg |
2 | Neg | Neg | Neg | Neg | 2 | Neg | Neg | Neg | Neg |
3 | Neg | Neg | Neg | Neg | 3 | Neg | Neg | Neg | Neg |
4 | Neg | Neg | Neg | Neg | 4 | Neg | Neg | Neg | Neg |
5 | Neg | Neg | Neg | Neg | 5 | Neg | Neg | Neg | Neg |
6 | Neg | Neg | Neg | Neg | 6 | Neg | Neg | Neg | Neg |
7 | Neg | Neg | Neg | Neg | 7 | Neg | Neg | Neg | Neg |
8 | Neg | Neg | Neg | Neg | 8 | Neg | Neg | Neg | Neg |
9 | Neg | Neg | Neg | Neg | 9 | Neg | Neg | Neg | Neg |
10 | Neg | Neg | Neg | Neg | 10 | Neg | Neg | Neg | Neg |
11 | Neg | Neg | Neg | Neg | 11 | Neg | Neg | Neg | Neg |
12 | Neg | Neg | Neg | Neg | 12 | Neg | Neg | Neg | Neg |
13 | Neg | Neg | Neg | Neg | 13 | Neg | Neg | Neg | Neg |
Fetuses from sow 6 | Fetuses from sow 8 | ||||||||
1 | Neg | Neg | Neg | Neg | 1 | Neg | Neg | Neg | Neg |
2 | Neg | Neg | Neg | Neg | 2 | Neg | Neg | Neg | Neg |
3 | Neg | Neg | Neg | Neg | 3 | Neg | Neg | Neg | Neg |
4 | Neg | Neg | Neg | Neg | 4 | Neg | Neg | Neg | Neg |
5 | Neg | Neg | Neg | Neg | 5 | Neg | Neg | Neg | Neg |
6 | Neg | Neg | Neg | Neg | 6 | Neg | Neg | Neg | Neg |
7 | Neg | Neg | Neg | Neg | 7 | Neg | Neg | Neg | Neg |
- | - | - | - | - | 8 | Neg | Neg | Neg | Neg |
- | - | - | - | - | 9 | Neg | Neg | Neg | Neg |
- | - | - | - | - | 10 | Neg | Neg | Neg | Neg |
- | - | - | - | - | 11 | Neg | Neg | Neg | Neg |
- | - | - | - | - | 12 | Neg | Neg | Neg | Neg |
- | - | - | - | - | 13 | Neg | Neg | Neg | Neg |
(b) | |||||||||
Fetus ID | CSFV RT-qPCR (Ct Value) | Fetus ID | CSFV RT-qPCR (Ct Value) | ||||||
Serum | Tonsil | Spleen | Thymus | Serum | Tonsil | Spleen | Thymus | ||
Fetuses from sow 9 | Fetuses from sow 10 | ||||||||
1 | Neg * | Neg | 36.50 | Neg | 1 | Neg | 35.58 | Neg | 36.56 |
2 | Neg | Neg | 36.60 | Neg | 2 | Neg | 31.22 | 26.63 | 23.78 |
3 | 33.39 | 30.78 | 24.44 | 23.52 | 3 | Neg | Neg | 30.48 | Neg |
4 | Neg | Neg | Neg | 34.51 | 4 | Neg | 33.90 | 30.36 | 27.99 |
5 | Neg | 39.83 | Neg | 29.71 | 5 | Neg | 37.23 | 31.91 | 32.03 |
6 | Neg | 31.89 | 35.00 | Neg | 6 | Neg | 32.46 | Neg | Neg |
7 | Neg | Neg | 35.15 | Neg | 7 | Neg | 34.40 | Neg | 36.50 |
8 | Neg | 36.00 | Neg | Neg | 8 | Neg | 34.20 | Neg | 35.65 |
9 | Neg | Neg | Neg | Neg | 9 | Neg | Neg | Neg | 30.28 |
10 | Neg | 37.85 | Neg | 35.80 | 10 | Neg | 33.85 | 27.17 | 29.16 |
11 | Neg | 34.46 | 30.96 | 26.82 | 11 | Neg | Neg | Neg | 30.43 |
12 | Neg | Neg | Neg | Neg | 12 | Neg | 29.85 | 36.44 | 33.47 |
13 | Neg | 30.64 | 28.92 | 29.56 | 13 | Neg | 32.99 | 27.05 | 26.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Oh, Y.; Wang, M.; Ganges, L.; Bohórquez, J.A.; Park, S.; Gu, S.; Park, J.; Lee, S.; Kim, J.; et al. A Novel E2 Glycoprotein Subunit Marker Vaccine Produced in Plant Is Able to Prevent Classical Swine Fever Virus Vertical Transmission after Double Vaccination. Vaccines 2021, 9, 418. https://doi.org/10.3390/vaccines9050418
Park Y, Oh Y, Wang M, Ganges L, Bohórquez JA, Park S, Gu S, Park J, Lee S, Kim J, et al. A Novel E2 Glycoprotein Subunit Marker Vaccine Produced in Plant Is Able to Prevent Classical Swine Fever Virus Vertical Transmission after Double Vaccination. Vaccines. 2021; 9(5):418. https://doi.org/10.3390/vaccines9050418
Chicago/Turabian StylePark, Youngmin, Yeonsu Oh, Miaomiao Wang, Llilianne Ganges, José Alejandro Bohórquez, Soohong Park, Sungmin Gu, Jungae Park, Sangmin Lee, Jongkook Kim, and et al. 2021. "A Novel E2 Glycoprotein Subunit Marker Vaccine Produced in Plant Is Able to Prevent Classical Swine Fever Virus Vertical Transmission after Double Vaccination" Vaccines 9, no. 5: 418. https://doi.org/10.3390/vaccines9050418