# On a Discrete SEIR Epidemic Model with Two-Doses Delayed Feedback Vaccination Control on the Susceptible

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Discrete SEIR Epidemic Model Subject to Two Vaccination Doses

- –
- ${a}_{k}$ is the average recruitment rate proportional to the susceptible at the $kth$ sampling instant related; for instance, to the rates of births and a is a constant reference value for the above sequence; for instance, its average over the whole time period under study and typically it might be unity.
- –
- ${\beta}_{k}$ and ${\beta}_{k}^{e}$ are, respectively, the average transmission rates of the infectious and exposed subpopulations at the $k-th$ sampling instant.
- –
- $\gamma $ is the average recovery rate.
- –
- $\mu $ is the average incubation rate.
- –
- ${K}_{k}$ is the vaccination rate (a feedback control gain) which can be eventually depending on the sampling instants. It is assumed in the sequel that ${\left\{{K}_{k}\right\}}_{0}^{\infty}\subset \left[0,1\right]$.
- –
- ${\rho}_{1}$, ${\rho}_{1}+{\rho}_{2}$ are parameters in $\left(0,1\right]$ which quantify the average effectiveness (or efficiency) of the respective doses. In particular, ${\rho}_{2}$ gives the extra effectiveness obtained from the injection of the second dose. In this context, ${\rho}_{1}+{\rho}_{2}\in \left[0,1\right]$ and ${\rho}_{1}+{\rho}_{2}=1$ refer to the ideal situation, unattainable in practice, of 100 percent effectiveness of the combined injection of the two doses. Note that ${\rho}_{1}={\rho}_{2}={\rho}_{1}+{\rho}_{2}=0$ refers to the worst case where the vaccination is fully superfluous.

## 3. Non-Negativity, Stability and Disease-Free Equilibrium Point

**Theorem**

**1**.

- (i)
- Assume that${N}_{0}={S}_{0}+{E}_{0}+{I}_{0}+{R}_{0}=1$. Then, the total population${N}_{k}={S}_{k}+{E}_{k}+{I}_{k}+{R}_{k}=1$; $\forall k\in {\mathit{Z}}_{0+}$if${a}_{k}\equiv 1$.$$(\mathrm{ii}){N}_{k}=1+{{\displaystyle \sum}}_{j=0}^{k-1}\left({a}_{j}-1\right){S}_{j};\forall k\in {\mathit{Z}}_{0+}$$
- (iii)
- ${\left\{{S}_{k}\right\}}_{k=0}^{\infty}$is non-increasing, and then bounded and convergent, if$${V}_{2,k-{d}_{2}}+{V}_{1,k-{d}_{1}-{d}_{2}}={K}_{k-{d}_{2}}{\rho}_{2}{S}_{k-{d}_{2}}+{K}_{k-{d}_{1}-{d}_{2}}{\rho}_{1}{S}_{k-{d}_{1}-{d}_{2}}\ge \left({a}_{k}-{\beta}_{k}\left({I}_{k}+{\lambda}_{k}^{e}{E}_{k}\right)-1\right){S}_{k};\forall k\in {\mathit{Z}}_{0+}$$$$1+{S}_{k-1}{{\displaystyle \sum}}_{j=0}^{k-1}\left({a}_{j}-1\right)\le {N}_{k}\le 1+{S}_{0}{{\displaystyle \sum}}_{j=0}^{k-1}\left({a}_{j}-1\right);\forall k\in {\mathit{Z}}_{0+}$$
- (iv)
- ${\left\{{S}_{k}\right\}}_{k=0}^{\infty}$is non-negative if and only if$${V}_{2,k-{d}_{2}}+{V}_{1,k-{d}_{1}-{d}_{2}}={K}_{k-{d}_{2}}{\rho}_{2}{S}_{k-{d}_{2}}+{K}_{k-{d}_{1}-{d}_{2}}{\rho}_{1}{S}_{k-{d}_{1}-{d}_{2}}\le \left({a}_{k}-{\beta}_{k}\left({I}_{k}+{\lambda}_{k}^{e}{E}_{k}\right)\right){S}_{k};\forall k\in {\mathit{Z}}_{0+}$$
- (v)
- Assume that$\mu \in \left[0,1\right)$, $\gamma \in \left[0,1\right)$and that (15) holds. Then, any sequence trajectory solution of (1)–(4) subject to (5)–(6) is non-negative.

**Proof.**

**Remark**

**1.**

**Remark**

**2.**

**Theorem 2**.

**Proof.**

**Theorem**

**3.**

- (1)
- $\mu \in \left[0,1\right)$,$\gamma \in \left[0,1\right)$,${\rho}_{1}+{\rho}_{2}\le 1$,${K}_{k}\le \frac{{a}_{k}}{{I}_{k}+{\lambda}_{k}^{e}{E}_{k}}$(guaranteed if${\beta}_{k}\le \frac{{a}_{k}}{{\left(1+{\lambda}_{k}^{e}\right)}^{}{N}_{k}}$);$\forall k\in {\mathit{Z}}_{0+}$,${\left\{{a}_{k}\right\}}_{k=0}^{\infty}\to a\left(\le 1\right)$,${\left\{{\beta}_{k}\right\}}_{k=0}^{\infty}\to \beta $,${\left\{{\lambda}_{k}^{e}\right\}}_{k=0}^{\infty}\to {\lambda}^{e}$,${\left\{{K}_{k}\right\}}_{k=0}^{\infty}\to K$.
- (2)
- Either the constraint (13) holds with strict inequality for all$k\in {\mathit{Z}}_{0+}$and$K\ne \frac{a}{{\rho}_{1}+{\rho}_{2}}$.
- (3)
- $K\in (0,\mathit{min}(\stackrel{\u2014}{K},1))$, where:

**Proof.**

**Theorem**

**4.**

**Proof.**

## 4. Nonexistence of Endemic Equilibrium Point

**Case**

**1**$({S}_{end}>0)$. Combining (2) and (3) for stationary limiting model parameters for an assumed to exist endemic equilibrium point leads to provided that ${E}_{end}\ne 0$ and ${S}_{end}\ne 0$:

**Case**

**2**$\left({S}_{end}\ge 0\right)$. Note that (40) holds with, which includes also ${S}_{end}>0$ of Case 1 if

**Remark**

**3**

**.**In biological terms, it is possible to re-interpret the condition of asymptotic stability around the disease-free equilibrium point in terms of the basic reproduction number, which indicates the number of secondary infectious individuals generated from one primary infectious one, defined by

## 5. Simulation Results

^{−1}. The initial conditions are ${\mathrm{S}}_{0}=0.9999,{\mathrm{E}}_{0}=0.0001,{\mathrm{I}}_{0}=0,{\mathrm{R}}_{0}=0$ implying that the total population is normalized to unity, without loss of generality. Notice that almost all the population is susceptible and a small fraction of the population is exposed at the beginning. The parameters of the vaccination are ${\mathrm{d}}_{1}+{\mathrm{d}}_{2}=21$ days and ${\mathrm{d}}_{2}=7$ days; therefore, separation between the two doses is of two weeks. The values of the doses effectiveness are given by ${\mathsf{\rho}}_{1}=0.66$ and ${\rho}_{2}=0.3$ in such a way that the total effectiveness of the two doses $\rho ={\rho}_{1}+{\rho}_{2}$ is 96%, in accordance with the average effectiveness of available vaccines. The natural recruitment rate is a = 1, since the natural growth of the population may be rejected when it comes to the epidemic spreading description due to the small number of children affected. The Figure 1 displays the dynamics of the model without vaccination.

_{2}= 7 days and d

_{1}+ d

_{2}range from 10 to 21 days. It is observed in Figure 7 that if the second dose maintains effectivity regardless the dose sparing, it is better to administer it as soon as possible. However, in the real world, the effectivity of the second dose may depend on when this is applied. There are no data on how the effectivity depends on the dose sparing or these are scarce, [46]. Therefore a more accurate simulation on the effect of dose sparing is not carried out in this work.

## 6. Concluding Remarks

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

#### Appendix A1. Some Auxiliary Technical Results

**Theorem**

**A1.**

- (i)
- The unforced difference Equation (A1), i.e., if${\left\{{u}_{k}\right\}}_{k=0}^{\infty}\equiv 0$, is globally asymptotically stable, so that${\left\{{x}_{k}\right\}}_{k=0}^{\infty}$is bounded and${\left\{{x}_{k}\right\}}_{k=0}^{\infty}\to 0$for any given finite${x}_{0}\in \mathit{R}$, if$K\in {\left(\mathit{max}\left(\frac{a-1}{{\rho}_{1}+{\rho}_{2}},-\stackrel{\u2014}{K}\right),\mathit{min}\left(\frac{1+a}{{\rho}_{1}+{\rho}_{2}},\stackrel{\u2014}{K}\right)\right)}^{}$and, in particular,$K\in \left[0,\stackrel{\u2014}{K}\right)$under the restriction$K\in {\mathit{R}}_{0+}={\mathit{R}}_{+}\cup \left\{0\right\}$, where:$$\stackrel{\u2014}{K}=\mathit{sup}\left\{y\in \left(\frac{a-1}{{\rho}_{1}+{\rho}_{2}},\frac{1+a}{{\rho}_{1}+{\rho}_{2}}\right):y1/f\left(y\right)\right\}withf:{\mathit{R}}_{0+}\to {\mathit{R}}_{0+}definedby:$$$$f\left(y\right)=\underset{\theta \in \left(0,2\pi \right)}{sup}\sqrt{\frac{{\left({\rho}_{2}\left(\mathit{cos}\left(\theta {d}_{2}\right)-1\right)+{\rho}_{1}\left(\mathit{cos}\left(\theta \left({d}_{1}+{d}_{2}\right)\right)-1\right)\right)}^{2}+{\left({\rho}_{2}\mathit{sin}\left(\theta {d}_{2}\right)+{\rho}_{1}\mathit{sin}\left(\theta \left({d}_{1}+{d}_{2}\right)\right)\right)}^{2}}{1+{\left(a-\left({\rho}_{1}+{\rho}_{2}\right)y\right)}^{2}-2\left(a-\left({\rho}_{1}+{\rho}_{2}\right)y\right)\mathit{cos}\theta}}$$
- (ii)
- The unforced difference Equation (A1) is globally asymptotically stable for any given finite${x}_{0}\in \mathit{R}$, so that${\left\{{x}_{k}\right\}}_{k=0}^{\infty}$is bounded and${\left\{{x}_{k}\right\}}_{k=0}^{\infty}\to 0$for any finite${x}_{0}\in \mathit{R}$, if$\left|a\right|<1$and$K\in \left(-\stackrel{\u2014}{K},\stackrel{\u2014}{K}\right)$, were$\stackrel{\u2014}{K}=1/\underset{\theta \in \left[0,2\pi \right)}{sup}\left|\frac{{\rho}_{2}{e}^{-i\theta {d}_{2}}+{\rho}_{1}{e}^{-i\theta \left({d}_{1}+{d}_{2}\right)}}{{e}^{i\theta}-a}\right|$.
- (iii)
- Assume that either the conditions of Property (i) or those of Property (ii) hold and that${\left\{{u}_{k}\right\}}_{k=0}^{\infty}\to 0$. Then,${\left\{{x}_{k}\right\}}_{k=0}^{\infty}$is bounded and${\left\{{x}_{k}\right\}}_{k=0}^{\infty}\to 0$for any given finite initial condition${x}_{0}$.
- (iv)
- Assume that either the conditions of Property (i) or those of Property (ii) hold and that${\left\{{u}_{k}\right\}}_{k=0}^{\infty}$is bounded. Then,${\left\{{x}_{k}\right\}}_{k=0}^{\infty}$is bounded for any given finite initial conditions.

**Proof.**

**Corollary**

**A1.**

**Proof.**

**Corollary**

**A2.**

**Proof.**

**Theorem**

**A2.**

- (i)
- If${x}_{0}\ne 0$then${\left\{{x}_{k}\right\}}_{k=0}^{\infty}$is unbounded. If$b=0$and the remaining above conditions hold, then${\left\{{x}_{k}\right\}}_{k=0}^{\infty}$ is bounded.
- (ii)
- If${x}_{0}\ne 0$,${\left\{{\tilde{a}}_{j}\right\}}_{j=0}^{\infty}\subset \left[-1,0\right]$,$\left|{\tilde{a}}_{k+1}\right|>\frac{\left|{\tilde{a}}_{k}\right|}{{a}_{k}+{b}_{k}/{x}_{k}}$,$b>0$,${\left\{{\tilde{b}}_{j}\right\}}_{j=0}^{\infty}\subset \left[0,+\infty \right)$and$\sum}_{k=0}^{\infty}{\tilde{b}}_{k}<+\infty $then a necessary condition for${\left\{{x}_{k}\right\}}_{k=0}^{\infty}\to 0$is$\sum}_{j=0}^{k}{\tilde{a}}_{j}=-\infty $. The result still holds if${\left\{{x}_{k}\right\}}_{k=0}^{\infty}\to x\left(>0\right)$.

**Proof.**

#### Appendix A2. A More Detailed Expansion of the Squared Numerator of (A9)

- (a)
- If ${d}_{1}={d}_{2}$ then, one gets by using $1-\mathit{cos}\left(2\theta {d}_{2}\right)=2{\mathit{sin}}^{2}\theta {d}_{2}$ that:$$n\left(\theta ,{d}_{1},{d}_{1},{\rho}_{1},{\rho}_{2}\right)=2\left({\rho}_{2}^{2}\left(1-\mathit{cos}\left(\theta {d}_{2}\right)\right)+2{\rho}_{1}\left({\rho}_{1}+{\rho}_{2}\right){\mathit{sin}}^{2}\left(\theta {d}_{1}\right)\right)$$
- (b)
- If ${d}_{1}={d}_{2}$ and ${\rho}_{1}={\rho}_{2}$ then$$n\left(\theta ,{d}_{1},{d}_{1},{\rho}_{1},{\rho}_{1}\right)=2\left({\rho}_{1}^{2}\left(1-\mathit{cos}\left(\theta {d}_{2}\right)\right)+4{\rho}_{1}^{2}{\mathit{sin}}^{2}\left(\theta {d}_{2}\right)\right)$$
- (c)
- If ${d}_{1}={d}_{2}=0$ or ${\rho}_{1}={\rho}_{2}=0$ then$$n\left(\theta ,0,0,{\rho}_{1},{\rho}_{1}\right)=n\left(\theta ,{d}_{1},{d}_{1},0,0\right)=0$$
- (d)
- If $\theta =0$ then $n\left(0,{d}_{1},{d}_{1},{\rho}_{1},{\rho}_{1}\right)=0$ which is not evaluated in the supremum over $\left(0,2\pi \right)$ in (A.33). Note that the constraint $y<1/f\left(y\right)$ to calculate $\stackrel{\u2014}{K}$ in Theorem A1 always holds since $1/f\left(y\right)=+\infty $ for $\theta =0,2\pi $ since $n\left(0,{d}_{1},{d}_{1},{\rho}_{1},{\rho}_{1}\right)=0$ so that it has not to be accounted for in the supremum evaluation as Theorem A1 formally establishes.

#### Appendix A3. A Fast and Simple Delay-Dependent Stability Test Based on Rouché′s Theorem of Zeros Within Open Circles Contained in the Unit Circle

**Theorem**

**A3.**

- (i)
- Let$a\in \left(0,1\right)$and consider a circle$\left|z\right|\le \sigma $of center z = 0 and of radius$\sigma \in \left(a,a+\epsilon \right]$for some real$\epsilon >0$. Assume that$0<K<\frac{\left(\sigma -a\right){\sigma}^{{d}_{1}+{d}_{2}}}{{\rho}_{1}+{\rho}_{2}{\sigma}^{{d}_{1}}}$. Then, the unforced difference Equation (A1) has all its zeros in$a\left|z\right|\sigma $. As a result, if$a<1$and$0<\epsilon \le 1-a$then the unforced difference Equation (A1) has all its zeros in$a<\left|z\right|<1$so that it is stable.
- (ii)
- Let${c}_{i}={c}_{i}\left({d}_{1},{d}_{2}\right)\in {\mathit{R}}_{+}$for$i=1,2$, be chosen such that${a}^{{d}_{1}}<{c}_{1}\le \le {\sigma}^{{d}_{1}}\le {c}_{2}$(implying that$\frac{\mathit{ln}{c}_{1}}{\mathit{ln}\sigma}-{d}_{2}<{d}_{1}\le \frac{\mathit{ln}{c}_{2}}{\mathit{ln}\sigma}$. Then, the unforced difference Equation (A1) has its zeros in$\left|z\right|<\sigma $if$$0\le K<\frac{\left({c}_{1}^{-{d}_{1}}-a\right){c}_{1}}{{\rho}_{1}+{\rho}_{2}{c}_{2}}.$$

**Proof.**

- Case a)
- If ${d}_{1}$ is even then for $\theta \in \left[0,2\pi \right)$:$$\begin{array}{ll}{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\left({\sigma}^{2}+{a}^{2}\right)& >{K}^{2}\underset{\theta \in \left[0,2\pi \right)}{max}\left({\rho}_{1}^{2}+{\rho}_{2}^{2}{\sigma}^{2{d}_{1}}+2\left({\rho}_{1}{\rho}_{2}{\sigma}^{{d}_{1}}+a{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\right)\mathit{cos}\left(\theta \right)\right)\\ & ={K}^{2}\left({\rho}_{1}^{2}+{\rho}_{2}^{2}{\sigma}^{2{d}_{1}}+2\left({\rho}_{1}{\rho}_{2}{\sigma}^{{d}_{1}}+a{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\right)\right)\\ & ={K}^{2}{\left({\rho}_{1}+{\rho}_{2}{\sigma}^{{d}_{1}}\right)}^{2}+2a{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\end{array}$$$$K\left({\rho}_{1}+{\rho}_{2}{\sigma}^{{d}_{1}}\right)<{\sigma}^{{d}_{1}+{d}_{2}}\left(\sigma -a\right)$$
- Case b)
- If ${d}_{1}$ is odd then for $\theta \in \left[0,2\pi \right)$:$$\begin{array}{ll}{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\left({\sigma}^{2}+{a}^{2}\right)& >{K}^{2}\underset{\theta \in \left[0,2\pi \right)}{max}\left({\rho}_{1}^{2}+{\rho}_{2}^{2}{\sigma}^{2{d}_{1}}+2\left({\rho}_{1}{\rho}_{2}{\sigma}^{{d}_{1}}-a{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\right)\mathit{cos}\left({d}_{1}\theta \right)\right)\\ & ={K}^{2}\left({\rho}_{1}^{2}+{\rho}_{2}^{2}{\sigma}^{2{d}_{1}}+2\left|{\rho}_{1}{\rho}_{2}{\sigma}^{{d}_{1}}-a{\sigma}^{2\left({d}_{1}+{d}_{2}\right)}\right|\right)\end{array}$$

## References

- Hethcote, H.W. The Mathematics of Infectious Diseases. SIAM Rev.
**2000**, 42, 599–653. [Google Scholar] [CrossRef] [Green Version] - Jiao, H.; Shen, Q. Dynamics Analysis and Vaccination-Based Sliding Mode Control of a More Generalized SEIR Epidemic Model. IEEE Access
**2020**, 8, 174507–174515. [Google Scholar] [CrossRef] - De la Sen, M.; Ibeas, A.; Alonso-Quesada, S. On vaccination controls for the SEIR epidemic model. Commun. Nonlinear Sci. Numer. Simul.
**2012**, 17, 2637–2658. [Google Scholar] [CrossRef] - De La Sen, M.; Nistal, R.; Ibeas, A.; Garrido, A.J. On the Use of Entropy Issues to Evaluate and Control the Transients in Some Epidemic Models. Entropy
**2020**, 22, 534. [Google Scholar] [CrossRef] [PubMed] - Liu, F.; Huang, S.; Zheng, S.; Wang, O.H. Stability Analysis and Bifurcation Control for a Fractional Order SIR Epidemic Model with Delay. In Proceedings of the 39th Chinese Control Conference (CCC), Shenyang, China, 27–30 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 724–729. [Google Scholar]
- Nistal, R.; De La Sen, M.; Alonso-Quesada, S.; Ibeas, A. On a New Discrete SEIADR Model with Mixed Controls: Study of Its Properties. Mathematics
**2018**, 7, 18. [Google Scholar] [CrossRef] [Green Version] - Ibeas, A.; De La Sen, M.; Alonso-Quesada, S.; Nistal, R. Parameter Estimation of Multi-Staged SI(n)RS Epidemic Models. In Proceedings of the UKACC 12th International Conference on Control (CONTROL), Sheffield, UK, 5–7 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 456–461. [Google Scholar]
- Wang, X.; Lu, J.; Wang, Z.; Li, Y. Dynamics of discrete epidemic models on heterogeneous networks. Phys. A Stat. Mech. Appl.
**2020**, 539, 122991. [Google Scholar] [CrossRef] - Parsamanesh, M.; Mehrshad, S. Stability of the equilibria in a discrete-time sivs epidemic model with standard incidence. Filomat
**2019**, 33, 2393–2408. [Google Scholar] [CrossRef] - Darti, I.; Suryanto, A.; Hartono, M. Global stability of a discrete SIR epidemic model with saturated incidence rate and death induced by the disease. Commun. Math. Biol. Neurosci.
**2020**, 2020, 33. [Google Scholar] [CrossRef] - Suryanto, A.; Darti, I. On the nonstandard numerical discretization of SIR epidemic model with a saturated incidence rate and vaccination. AIMS Math.
**2021**, 6, 141–155. [Google Scholar] [CrossRef] - Shalan, R.N.; Shireen, R.; Lafta, A.H. Discrete an SIS model with immigrants and treatment. J. Interdiscip. Math.
**2020**, 1–6. [Google Scholar] [CrossRef] - Córdova-Lepe, F.; Gutiérrez, R.; Vilches-Ponce, K. Analysis of two discrete forms of the classic continuous SIR epidemiological model. J. Differ. Equ. Appl.
**2019**, 26, 1–24. [Google Scholar] [CrossRef] - Radha, S.; Mahalakshmi, K.; Kumar, S.; Saravanakumar, A.R. E-learning during lockdown of COVID-19 pandemic: A global perspective. Int. J. Control Autom.
**2020**, 13, 1088–1089. [Google Scholar] - Cao, H.; Wu, H.; Wang, X. Bifurcation analysis of a discrete SIR epidemic model with constant recovery. Adv. Differ. Equ.
**2020**, 2020, 1–20. [Google Scholar] [CrossRef] - Youssef, H.M.; Alghamdi, N.A.; Ezzat, M.A.; El-Bary, A.A.; Shawky, A.M. A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Math. Biosci. Eng.
**2020**, 17, 7018. [Google Scholar] [CrossRef] [PubMed] - Alrashed, S.; Min-Allah, N.; Saxena, A.; Ali, I.; Mehmood, R. Impact of lockdowns on the spread of COVID-19 in Saudi Arabia. Inform. Med. Unlocked
**2020**, 20, 100420. [Google Scholar] [CrossRef] - De La Sen, M.; Ibeas, A.; Agarwal, R.P. On Confinement and Quarantine Concerns on an SEIAR Epidemic Model with Simulated Parameterizations for the COVID-19 Pandemic. Symmetry
**2020**, 12, 1646. [Google Scholar] [CrossRef] - De la Sen, M.; Ibeas, A. On a controlled SE (Is)(Ih)(Iicu) AR epidemic model with output controllability issues to satisfy hospital constraints on hospitalized patients. Algorithms
**2020**, 13, 322. [Google Scholar] [CrossRef] - Zhai, S.; Gao, H.; Luo, G.; Tao, J. Control of a multigroup COVID-19 model with immunity: Treatment and test elimination. Nonlinear Dyn.
**2020**, 1–15. [Google Scholar] [CrossRef] - Abbasi, Z.; Zamani, I.; Mehra, A.H.A.; Shafieirad, M.; Ibeas, A. Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19. Chaos Solitons Fractals
**2020**, 139, 110054. [Google Scholar] [CrossRef] [PubMed] - Etxeberria-Etxaniz, M.; Alonso-Quesada, S.; De La Sen, M. On an SEIR Epidemic Model with Vaccination of Newborns and Periodic Impulsive Vaccination with Eventual On-Line Adapted Vaccination Strategies to the Varying Levels of the Susceptible Subpopulation. Appl. Sci.
**2020**, 10, 8296. [Google Scholar] [CrossRef] - Rohith, G.; Devika, K.B. Dynamics and control of COVID-19 pandemic with nonlinear incidence rates. Nonlinear Dyn.
**2020**, 101, 2013–2026. [Google Scholar] [CrossRef] [PubMed] - Singh, R.K.; Drews, M.; De La Sen, M.; Kumar, M.; Singh, S.S.; Pandey, A.K.; Srivastava, P.K.; Dobriyal, M.; Rani, M.; Kumari, P.; et al. Short-Term Statistical Forecasts of COVID-19 Infections in India. IEEE Access
**2020**, 8, 186932–186938. [Google Scholar] [CrossRef] - Tuite, A.R.; Ng, V.; Rees, E.; Fisman, D. Estimation of COVID-19 outbreak size in Italy. Lancet Infect. Dis.
**2020**, 20, 537. [Google Scholar] [CrossRef] [Green Version] - Dutta, A. Stabilizing COVID-19 Infections in US by Feedback Control based Test and Quarantine. In Proceedings of the 2020 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 29 October–1 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Casella, F. Can the COVID-19 pandemic be controlled on the basis of daily test reports? IEEE Control Syst. Lett.
**2021**, 5, 1079–1084. [Google Scholar] [CrossRef] - Paul, S.; Lorin, E. Lockdown: A non-pharmaceutical policy to prevent the spread of COVID-19. Math. Modeling Comput.
**2020**. [Google Scholar] [CrossRef] - Balabdaoui, F.; Dirk, M. Age-stratified discrete compartment model of the COVId-19 epidemic with application to Switzerland. Sci. Rep.
**2020**, 10, 2306. [Google Scholar] [CrossRef] - Costa, J.A., Jr.; Martinez, A.C.; Geromel, J.C. On an alternative susceptible-infected removed epidemic model in discrete-time. Soc.Bras. Autom.
**2020**, 2, 2020. [Google Scholar] - Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals
**2020**, 139, 110057. [Google Scholar] [CrossRef] [PubMed] - De la Sen, M.; Ibeas, A. On a Sir epidemic model for the COVID-19 pandemic and the logistic equation. Discret. Dyn. Nat. Soc.
**2020**, 2020, 1382870. [Google Scholar] - Ng, K.Y.; Gui, M.M. COVID-19: Development of a robust mathematical model package with consideration for ageing populationand time delay for control action and resusceptibility. Phys. D Nonlinear Phenom.
**2010**, 411, 132599. [Google Scholar] [CrossRef] - Ng, M.K.Y. SEIRS-Based COVID-19 Simulation Packa ge. Available online: https://www.markusng.com/COVIDSiM/ (accessed on 2 January 2021).
- Anderez, D.O.; Kanjo, E.; Pogrebna, G.; Kaiwartya, O.; Johnson, S.D.; Hunt, J.A. A COVID-19-Based Modified EpidemiologicalModel and Technological Approaches to Help Vulnerable Individuals Emerge from the Lockdown in the UK. Sensors
**2020**, 20, 4967. [Google Scholar] [CrossRef] [PubMed] - Dobbs, P.S.; Watts, D.J. A generalized model of social and biological contagion. J. Theor. Biol.
**2005**, 232, 587–604. [Google Scholar] - Wang, Y.; Wei, Z.; Cao, J. Epidemic dynamics of influenza-like diseases spreading in complex networks. Nonlinear Dyn.
**2020**, 101, 1–20. [Google Scholar] [CrossRef] - Wang, Y.; Cao, J. Final size of network epidemic models: Properties and connections. Sci. China Inf. Sci.
**2020**, 64, 1–3. [Google Scholar] - Chinwenyi, H.C.; Ibrahim, H.D.; Adekunle, J.O. A study of two disease models: With and without incubation period. Int. J. Math.Comput. Sci.
**2019**, 13, 74–79. [Google Scholar] - Conway, A. Functions of One Complex Variable I; Springer: Berlin/Heidelberg, Germany, 1978; ISBN 0-471-99672-6. [Google Scholar]
- Beardon, A. Complex Analysis: The Argument Principle in Analysis and Topology; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- De la Sen, M.; Barcena, R. Stability results for point time-delay systems obtained via Rouche’s theorem. Appl. Anal.
**2004**, 83, 157–183. [Google Scholar] [CrossRef] - Khanh Tu, N.; Erickson, K.T. Stability of discrete-time matrix polynomials. IEEE T. Automat. Contr.
**1997**, 42, 538–542. [Google Scholar] - Mendel, J.M. Discrete Techniques of Parameter Estimation: The Equation Error Formulation; Marcel Dekker Inc.: New York, NY, USA, 1973. [Google Scholar]
- De la Sen, M.S.; Alonso-Quesada, A.I. On a Discrete SEIR Epidemic Model with Exposed Infectivity, feedback vaccination and partial delayed re-Susceptibility. Mathematics
**2021**, 9, 520. [Google Scholar] [CrossRef] - Niamsup, P.; Ratchagit, K.; Phat, V.N. Novel criteria for finite-time stbilization ans guaranteed cost control of delay systems delayed neural networks. Neurocomputing
**2015**, 160, 281–286. [Google Scholar] [CrossRef] - Phat, V.N.; Khongtham, Y.; Ratchagit, K. LMI approach to exponential stability of linear systems with interval time-varying delays. Linear Algebra Appl.
**2012**, 436, 243–251. [Google Scholar] [CrossRef] [Green Version] - Delasen, M. On some structures of stabilizing control laws for linear and time-invariant systems with bounded point delays and unmeasurable states. Int. J. Control.
**1994**, 59, 529–541. [Google Scholar] - Iacobucci, G.; Mahase, E. Covid-19 vaccination: “What’s the evidence for extending the dosing interval”? BMJ
**2021**, 372. [Google Scholar] [CrossRef]

**Figure 8.**Comparison in the evolution of the number of infectious between the administration of a double dose (K = 0.01) or a single dose to a broader population (K = 0.02).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De la Sen, M.; Alonso-Quesada, S.; Ibeas, A.; Nistal, R.
On a Discrete SEIR Epidemic Model with Two-Doses Delayed Feedback Vaccination Control on the Susceptible. *Vaccines* **2021**, *9*, 398.
https://doi.org/10.3390/vaccines9040398

**AMA Style**

De la Sen M, Alonso-Quesada S, Ibeas A, Nistal R.
On a Discrete SEIR Epidemic Model with Two-Doses Delayed Feedback Vaccination Control on the Susceptible. *Vaccines*. 2021; 9(4):398.
https://doi.org/10.3390/vaccines9040398

**Chicago/Turabian Style**

De la Sen, Manuel, Santiago Alonso-Quesada, Asier Ibeas, and Raul Nistal.
2021. "On a Discrete SEIR Epidemic Model with Two-Doses Delayed Feedback Vaccination Control on the Susceptible" *Vaccines* 9, no. 4: 398.
https://doi.org/10.3390/vaccines9040398