Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B′ Infected Plasma Donor with Broadly Neutralizing Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of an HIV-1 Subtype B′ Chronically Infected Donor
2.2. Viral RNA Extraction, cDNA Synthesis, and Single-Genome Amplification
2.3. DNA Sequencing, Alignment, and Phylogenetic Analyses
2.4. Amino Acid Matches/Mismatches Analyses
2.5. Recombination Analyses
2.6. Variable Loop Length and PNGS Analyses and Prediction of Coreceptor Usage
2.7. Cells
2.8. Pseudovirus Preparation and Titration
2.9. Neutralization Assays
2.10. Statistical Analyses
3. Results
3.1. Phylogenetic Analyses of the Env Sequences
3.2. Determination of Recombinant Patterns and Breakpoints
3.3. Characteristics of the Variable Loops
3.4. Virus Neutralization Sensitivity to Autologous Plasma
3.5. Virus Neutralization Sensitivity to Several Well-Known bNAbs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preston, B.D.; Poiesz, B.J.; Loeb, L.A. Fidelity of HIV-1 reverse transcriptase. Science 1988, 242, 1168–1171. [Google Scholar] [CrossRef]
- Roberts, J.D.; Bebenek, K.; Kunkel, T.A. The accuracy of reverse transcriptase from HIV-1. Science 1988, 242, 1171–1173. [Google Scholar] [CrossRef]
- Simon-Loriere, E.; Galetto, R.; Hamoudi, M.; Archer, J.; Lefeuvre, P.; Martin, D.P.; Robertson, D.L.; Negroni, M. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus. PLoS Pathog. 2009, 5, e1000418. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Kang, B.H.; Ishida, E.; Zhou, T.; Griesman, T.; Sheng, Z.; Wu, F.; Doria-Rose, N.A.; Zhang, B.; McKee, K.; et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity 2016, 45, 1108–1121. [Google Scholar] [CrossRef] [Green Version]
- Wu, X. HIV Broadly Neutralizing Antibodies: VRC01 and Beyond. Adv. Exp. Med. Biol. 2018, 1075, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Binley, J.M.; Lybarger, E.A.; Crooks, E.T.; Seaman, M.S.; Gray, E.; Davis, K.L.; Decker, J.M.; Wycuff, D.; Harris, L.; Hawkins, N.; et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J. Virol. 2008, 82, 11651–11668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Svehla, K.; Louder, M.K.; Wycuff, D.; Phogat, S.; Tang, M.; Migueles, S.A.; Wu, X.; Phogat, A.; Shaw, G.M.; et al. Analysis of neutralization specificities in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J. Virol. 2009, 83, 1045–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sather, D.N.; Armann, J.; Ching, L.K.; Mavrantoni, A.; Sellhorn, G.; Caldwell, Z.; Yu, X.; Wood, B.; Self, S.; Kalams, S.; et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 2009, 83, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Nishimura, Y.; Pegu, A.; Nason, M.C.; Klein, F.; Gazumyan, A.; Golijanin, J.; Buckler-White, A.; Sadjadpour, R.; Wang, K.; et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 2016, 533, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Julg, B.; Liu, P.T.; Wagh, K.; Fischer, W.M.; Abbink, P.; Mercado, N.B.; Whitney, J.B.; Nkolola, J.P.; McMahan, K.; Tartaglia, L.J.; et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caskey, M.; Klein, F.; Lorenzi, J.C.; Seaman, M.S.; West, A.P., Jr.; Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid, J.F.; et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015, 522, 487–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caskey, M.; Klein, F.; Nussenzweig, M.C. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 2019, 25, 547–553. [Google Scholar] [CrossRef]
- Richman, D.D.; Wrin, T.; Little, S.J.; Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 2003, 100, 4144–4149. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Decker, J.M.; Wang, S.; Hui, H.; Kappes, J.C.; Wu, X.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Kilby, J.M.; Saag, M.S.; et al. Antibody neutralization and escape by HIV-1. Nature 2003, 422, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Mikell, I.; Sather, D.N.; Kalams, S.A.; Altfeld, M.; Alter, G.; Stamatatos, L. Characteristics of the earliest cross-neutralizing antibody response to HIV-1. PLoS Pathog. 2011, 7, e1001251. [Google Scholar] [CrossRef]
- Burton, D.R.; Hangartner, L. Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. Annu. Rev. Immunol. 2016, 34, 635–659. [Google Scholar] [CrossRef] [PubMed]
- Steichen, J.M.; Lin, Y.C.; Havenar-Daughton, C.; Pecetta, S.; Ozorowski, G.; Willis, J.R.; Toy, L.; Sok, D.; Liguori, A.; Kratochvil, S.; et al. A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science 2019, 366. [Google Scholar] [CrossRef]
- Stephenson, K.E.; Wagh, K.; Korber, B.; Barouch, D.H. Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention. Annu. Rev. Immunol. 2020, 38, 673–703. [Google Scholar] [CrossRef]
- Liao, H.X.; Lynch, R.; Zhou, T.; Gao, F.; Alam, S.M.; Boyd, S.D.; Fire, A.Z.; Roskin, K.M.; Schramm, C.A.; Zhang, Z.; et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013, 496, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Bonsignori, M.; Liao, H.X.; Kumar, A.; Xia, S.M.; Lu, X.; Cai, F.; Hwang, K.K.; Song, H.; Zhou, T.; et al. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 2014, 158, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Bonsignori, M.; Zhou, T.; Sheng, Z.; Chen, L.; Gao, F.; Joyce, M.G.; Ozorowski, G.; Chuang, G.Y.; Schramm, C.A.; Wiehe, K.; et al. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell 2016, 165, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, J.; Peng, H.; Ma, Y.; Han, L.; Ruan, Y.; Su, B.; Wang, N.; Shao, Y. HCV coinfection associated with slower disease progression in HIV-infected former plasma donors naive to ART. PLoS ONE 2008, 3, e3992. [Google Scholar] [CrossRef]
- Hu, X.; Hong, K.; Zhao, C.; Zheng, Y.; Ma, L.; Ruan, Y.; Gao, H.; Greene, K.; Sarzotti-Kelsoe, M.; Montefiori, D.C.; et al. Profiles of neutralizing antibody response in chronically human immunodeficiency virus type 1 clade B’-infected former plasma donors from China naive to antiretroviral therapy. J. Gen. Virol. 2012, 93, 2267–2278. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.F.; Bailes, E.; Pham, K.T.; Salazar, M.G.; Guffey, M.B.; Keele, B.F.; Derdeyn, C.A.; Farmer, P.; Hunter, E.; Allen, S.; et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 2008, 82, 3952–3970. [Google Scholar] [CrossRef] [Green Version]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lengauer, T.; Sander, O.; Sierra, S.; Thielen, A.; Kaiser, R. Bioinformatics prediction of HIV coreceptor usage. Nat. Biotechnol. 2007, 25, 1407–1410. [Google Scholar] [CrossRef]
- Platt, E.J.; Wehrly, K.; Kuhmann, S.E.; Chesebro, B.; Kabat, D. Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J. Virol. 1998, 72, 2855–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Ju, B.; Chen, Y.; He, L.; Ren, L.; Liu, J.; Hong, K.; Su, B.; Wang, Z.; Ozorowski, G.; et al. Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity 2016, 44, 939–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Gao, F.; Mascola, J.R.; Stamatatos, L.; Polonis, V.R.; Koutsoukos, M.; Voss, G.; Goepfert, P.; Gilbert, P.; Greene, K.M.; et al. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 2005, 79, 10108–10125. [Google Scholar] [CrossRef] [Green Version]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 2008, 105, 7552–7557. [Google Scholar] [CrossRef] [Green Version]
- Bunnik, E.M.; Pisas, L.; van Nuenen, A.C.; Schuitemaker, H. Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J. Virol. 2008, 82, 7932–7941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunnik, E.M.; Euler, Z.; Welkers, M.R.; Boeser-Nunnink, B.D.; Grijsen, M.L.; Prins, J.M.; Schuitemaker, H. Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level. Nat. Med. 2010, 16, 995–997. [Google Scholar] [CrossRef] [PubMed]
- Schuitemaker, H.; Koot, M.; Kootstra, N.A.; Dercksen, M.W.; de Goede, R.E.; van Steenwijk, R.P.; Lange, J.M.; Schattenkerk, J.K.; Miedema, F.; Tersmette, M. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J. Virol. 1992, 66, 1354–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheepers, C.; Chowdhury, S.; Wright, W.S.; Campbell, C.T.; Garrett, N.J.; Abdool Karim, Q.; Abdool Karim, S.S.; Moore, P.L.; Gildersleeve, J.C.; Morris, L. Serum glycan-binding IgG antibodies in HIV-1 infection and during the development of broadly neutralizing responses. AIDS 2017, 31, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.L.; Gray, E.S.; Morris, L. Specificity of the autologous neutralizing antibody response. Curr. Opin. HIV AIDS 2009, 4, 358–363. [Google Scholar] [CrossRef]
- Wu, X.; Wang, C.; O’Dell, S.; Li, Y.; Keele, B.F.; Yang, Z.; Imamichi, H.; Doria-Rose, N.; Hoxie, J.A.; Connors, M.; et al. Selection pressure on HIV-1 envelope by broadly neutralizing antibodies to the conserved CD4-binding site. J. Virol. 2012, 86, 5844–5856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhiman, J.N.; Anthony, C.; Doria-Rose, N.A.; Karimanzira, O.; Schramm, C.A.; Khoza, T.; Kitchin, D.; Botha, G.; Gorman, J.; Garrett, N.J.; et al. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nat. Med. 2015, 21, 1332–1336. [Google Scholar] [CrossRef]
- Zhang, D.; Zou, S.; Hu, Y.; Hou, J.; Hu, X.; Ren, L.; Ma, L.; He, X.; Shao, Y.; Hong, K. Characteristics of Envelope Genes in a Chinese Chronically HIV-1 Infected Patient with Broadly Neutralizing Activity. Front. Microbiol. 2019, 10, 1096. [Google Scholar] [CrossRef]
- Simon-Loriere, E.; Holmes, E.C. Why do RNA viruses recombine? Nat. Rev. Microbiol. 2011, 9, 617–626. [Google Scholar] [CrossRef]
- Mittler, J.E.; Markowitz, M.; Ho, D.D.; Perelson, A.S. Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS 1999, 13, 1415–1417. [Google Scholar] [CrossRef]
- Kumar, S.; Panda, H.; Makhdoomi, M.A.; Mishra, N.; Safdari, H.A.; Chawla, H.; Aggarwal, H.; Reddy, E.S.; Lodha, R.; Kumar Kabra, S.; et al. An HIV-1 Broadly Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes the Contemporaneous and Autologous Evolving Viruses. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, N.T.; Wang, H.; Scharf, L.; Nogueira, L.; Horwitz, J.A.; Bar-On, Y.; Golijanin, J.; Sievers, S.A.; Sok, D.; Cai, H.; et al. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sather, D.N.; Carbonetti, S.; Malherbe, D.C.; Pissani, F.; Stuart, A.B.; Hessell, A.J.; Gray, M.D.; Mikell, I.; Kalams, S.A.; Haigwood, N.L.; et al. Emergence of broadly neutralizing antibodies and viral coevolution in two subjects during the early stages of infection with human immunodeficiency virus type 1. J. Virol. 2014, 88, 12968–12981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sampling Date | Viral Load (Copies/mL) | CD4 Load (Cell/μL) | Sequences | Gene Distance | Pseudovirus |
---|---|---|---|---|---|
16 August 2005 | 19,700 | 528 | 26 | 0.030 ± 0.002 | 11 |
18 April 2006 | 15,500 | 536 | 23 | 0.012 ± 0.001 | 4 |
18 November 2008 | 125,000 | 321 | 34 | 0.028 ± 0.002 | 13 |
Clade | Tier | Pseudovirus | ID50 |
---|---|---|---|
B | 2 | QH0692 | 944 |
3 | PVO.4 | 1588 | |
2 | REJO4541 | 156 | |
2 | AC10.0 | 1867 | |
3 | TRJO4551 | 1400 | |
2 | CAAN5342 | 248 | |
2 | SC422661 | 1453 | |
2 | RHPA4259 | 358 | |
C | 2 | Du422 | 26 |
2 | ZM249M | 38 | |
1B | ZM109F | 75 | |
2 | CAP45 | 164 | |
CRF07_BC | 2 | CH117 | 41 |
2 | CH181 | 958 | |
3 | CH120 | 1106 | |
2 | CH110 | 997 | |
A | 2 | Q461 | 102 |
2 | Q769 | 32 | |
2 | Q259 | 10 | |
2 | Q842 | 1145 | |
CRF01_AE | NA | BJMSM2249 | 79 |
NA | BJMSM2316 | 2508 | |
NA | BJMSM2498 | 84 | |
GMT = 256.57 * | Breath = 95.65% |
ID | 20050816 | 20060418 | 20081118 | 10E8 | 2G12 | PGT121 | PGT135 | VRC01 | 12A21 | |
---|---|---|---|---|---|---|---|---|---|---|
I | 05-24 | 28 | 178 | 138 | 0.42 | >20 | 1.77 | >20 | 0.24 | 17.39 |
05-21 | 37 | 156 | 109 | 0.31 | >20 | 1.82 | >20 | 0.09 | 0.05 | |
05-20 | 41 | 288 | 185 | 0.33 | >20 | 1.27 | >20 | 0.11 | 0.07 | |
05-17 | 55 | 475 | 338 | 0.34 | >20 | 0.8 | >20 | 0.09 | 17.86 | |
05-18 | 34 | 185 | 172 | 0.96 | >20 | 0.73 | >20 | 0.06 | 15.21 | |
05-19 | 75 | 409 | 275 | 0.22 | >20 | 0.79 | >20 | 0.15 | 12.12 | |
05-22 | 46 | 241 | 182 | 0.22 | >20 | 1.56 | >20 | 0.06 | >20 | |
05-23 | 49 | 219 | 172 | 0.26 | >20 | 0.55 | >20 | 0.077 | >20 | |
08-28 | 89 | 276 | 390 | 0.31 | >20 | 2.1 | >20 | 0.08 | 5.29 | |
08-24 | 26 | 306 | 188 | 0.5 | 2.04 | >20 | >20 | 3.45 | 3.47 | |
II | 05-25 | 41 | 797 | 417 | 0.39 | 0.21 | 0.2 | >20 | 4.33 | 3.56 |
05-26 | 70 | 933 | 1060 | 0.35 | >20 | 0.2 | >20 | 5.45 | 4.27 | |
05-16 | 43 | 521 | 855 | 0.33 | 0.2 | 0.18 | >20 | 4.38 | 3.5 | |
06-21 | 36 | 96 | 159 | 0.68 | 0.89 | 5.79 | >20 | 2.11 | 1.91 | |
06-23 | 31 | 138 | 157 | 1.24 | 0.47 | 0.45 | >20 | 1.88 | 1.12 | |
06-22 | 24 | 156 | 116 | 2.42 | 0.67 | 0.53 | >20 | 4.93 | 3.76 | |
06-20 | <20 | 117 | 116 | 3.05 | 0.62 | 1.19 | >20 | 4.76 | 4.09 | |
08-23 | <20 | 127 | 60 | 2.17 | 0.77 | 0.8 | >20 | 4.18 | 3.11 | |
08-27 | 33 | 426 | 140 | 0.14 | 0.71 | 0.7 | >20 | 3.5 | 3.12 | |
08-26 | 33 | 426 | 140 | 0.55 | 0.34 | 0.33 | >20 | 3.24 | 2.22 | |
08-32 | 22 | 184 | 101 | 0.5 | 0.46 | 0.48 | >20 | 4.25 | 2.32 | |
08-22 | 38 | 266 | 144 | 0.86 | 0.67 | 0.2 | >20 | 3.54 | 2.63 | |
08-29 | 37 | 157 | 95 | 0.43 | 5.42 | 0.31 | >20 | 4.76 | 0.44 | |
08-30 | 39 | 276 | 167 | 0.88 | 0.58 | 0.47 | >20 | 3.09 | 1.99 | |
08-34 | 43 | 315 | 233 | 0.7 | 0.5 | 0.19 | >20 | 2.84 | 0.68 | |
08-25 | 27 | 127 | 109 | 0.92 | 3.37 | 6.67 | >20 | 6.24 | 0.36 | |
08-31 | 40 | 343 | 142 | 0.28 | 0.91 | 1.11 | >20 | 3.81 | 0.1 | |
08-33 | 24 | 162 | 133 | 0.73 | 2.37 | 2.97 | >20 | 2.31 | 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zou, S.; Wang, Z.; Liu, Y.; Ren, L.; Hao, Y.; Sun, S.; Hu, X.; Ruan, Y.; Ma, L.; et al. Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B′ Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines 2021, 9, 311. https://doi.org/10.3390/vaccines9040311
Hu Y, Zou S, Wang Z, Liu Y, Ren L, Hao Y, Sun S, Hu X, Ruan Y, Ma L, et al. Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B′ Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines. 2021; 9(4):311. https://doi.org/10.3390/vaccines9040311
Chicago/Turabian StyleHu, Yuanyuan, Sen Zou, Zheng Wang, Ying Liu, Li Ren, Yanling Hao, Shasha Sun, Xintao Hu, Yuhua Ruan, Liying Ma, and et al. 2021. "Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B′ Infected Plasma Donor with Broadly Neutralizing Activity" Vaccines 9, no. 4: 311. https://doi.org/10.3390/vaccines9040311
APA StyleHu, Y., Zou, S., Wang, Z., Liu, Y., Ren, L., Hao, Y., Sun, S., Hu, X., Ruan, Y., Ma, L., Shao, Y., & Hong, K. (2021). Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B′ Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines, 9(4), 311. https://doi.org/10.3390/vaccines9040311