SARS-CoV-2 Neutralizing Antibody Levels Post COVID-19 Vaccination Based on ELISA Method—A Small Real-World Sample Exploration
Abstract
:1. Introduction
2. Objects and Methods
2.1. Research Participants
2.2. Research Methods
2.3. Instruments
2.4. Reagents and Methods
2.5. Assay Principle
2.6. Reagent Preparation
2.7. Capture Plate Preparation
2.8. Test Procedure
2.9. Interpretation of Results
2.10. Statistical Methods
3. Results
3.1. Basic Information
3.2. Single Factor Analysis of Demographic Characteristics
3.3. Single Factor Analysis of Vaccination Status
3.4. Logistic Regression Multivariate Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, F.-Y.; Chen, H.-C.; Chen, P.-J.; Ho, M.-S.; Hsieh, S.-L.; Lin, J.-C.; Liu, F.-T.; Sytwu, H.-K. Immunologic aspects of characteristics, diagnosis, and treatment of coronavirusdisease 2019 (COVID-19). J. BiomedSci. 2020, 27, 72. [Google Scholar]
- Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zivanov, J.; Neufeldt, C.J.; Cerikan, B.; et al. Structures and distributions of SARS-CoV-2spike proteins on intact virions. Nature 2020, 588, 498–502. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-convertingenzyme2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Walls, A.C.; Park, Y.J.; Tortoricima, A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Kai-Wang To, K.; Wong, Y.; Liu, L.; Zhou, B.; Li, X.; Huang, H.; Mo, Y.; Luk, T.-Y.; Lau, T.T.-K.; et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity 2020, 53, 864–877. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Reimerink, J.; Torriani, G.; Brouwer, F.; Godeke, G.-J.; Yerly, S.; Hoogerwerf, M.; Vuilleumier, N.; Kaiser, L.; Eckerle, I.; et al. Validation and clinical evaluation of a SARS-CoV-2 surrogate virus neutralisation test (sVNT). Emerg. Microbes Infect. 2020, 9, 2394–2403. [Google Scholar] [CrossRef]
- Taylor, S.C.; Hurst, B.; Charlton, C.L.; Bailey, A.; Kanji, J.N.; McCarthy, M.K.; Morrison, T.E.; Huey, L.; Annen, K.; DomBourian, M.G.; et al. A New SARS CoV-2 Dual Purpose Serology Test: Highly Accurate Infection Tracing and Neutralizing Antibody Response Detection. J. Clin. Microbiol. 2021, 59, e02438-20. [Google Scholar] [CrossRef]
- Assadiasl, S.; Fatahi, Y.; Zavvar, M.; Nicknam, M.H. COVID-19: Significance of Antibodies. Hum. Antibodies 2020, 28, 287–297. [Google Scholar] [CrossRef]
- Meyer, B.; Torriani, G.; Yerly, S.; Mazza, L.; Calame, A.; Arm-Vernez, I.; Zimmer, G.; Agoritsas, T.; Stirnemann, J.; Spechbach, H.; et al. Validation of a commercially available SARS-CoV-2 serological immunoassay. Clin. Microbiol. Infect. 2020, 26, 1386–1394. [Google Scholar] [CrossRef]
- Lassaunière, R.; Frische, A.; Harboe, Z.B.; Nielsen, A.C.Y.; Fomsgaard, A.; Krogfelt, K.A.; Jørgensen, C.S. Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- GeurtsvanKessel, C.H.; Okba, N.M.A.; Igloi, Z.; Bogers, S.; Embregts, C.W.E.; Laksono, B.M.; Leijten, L.; Rokx, C.; Rijnders, B.; Rahamat-Langendoen, J.; et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nat. Commun. 2020, 11, 3436. [Google Scholar] [CrossRef]
- Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Spijker, R.; Taylor-Phillips, S.; Adriano, A.; Beese, S.; Dretzke, J.; di Ruffano, L.F.; et al. Antibody tests for identification ofcurrent and pastinfection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020, 6, CD013652. [Google Scholar] [PubMed]
- Rashid, Z.Z.; Othman, S.N.; Samat, M.N.A.; Ali, U.K.; Wong, K.K. Diagnostic performance of COVID-19 serology assays. Malays. J. Pathol. 2020, 42, 13–21. [Google Scholar]
- Barnes, C.O.; West, A.P.; Huey-Tubman, K.E.; Hoffmann, M.A.G.; Sharaf, N.G.; Hoffman, P.R.; Koranda, N.; Gristick, H.B.; Gaebler, C.; Muecksch, F.; et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell 2020, 182, 828–842. [Google Scholar] [CrossRef]
- Caini, S.; Bellerba, F.; Corso, F.; Díaz-Basabe, A.; Natoli, G.; Paget, J.; Facciotti, F.; de Angelis, S.P.; Raimondi, S.; Palli, D.; et al. Meta-analysis of diagnostic performance of serological tests for SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. EuroSurveill 2020, 25, 200980. [Google Scholar] [CrossRef]
- Sil, B.K.; Jahan, N.; Haq, M.A.; Oishee, M.J.; Ali, T.; Khandker, S.S.; Kobatake, E.; Mie, M.; Khondoker, M.U.; Jamiruddin, M.R.; et al. Development and performance evaluation of a rapid in-house ELISA for retrospective serosurveillance of SARS-CoV-2. PLoS ONE 2021, 16, e0246346. [Google Scholar] [CrossRef] [PubMed]
- Normark, J.; Vikström, L.; Gwon, Y.-D.; Persson, I.-L.; Edin, A.; Björsell, T.; Dernstedt, A.; Christ, W.; Tevell, S.; Evander, M.; et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. N. Engl. J. Med. 2021, 385, 1049–1051. [Google Scholar] [CrossRef]
- Rogliani, P.; Chetta, A.; Cazzola, M.; Calzetta, L. SARS-CoV-2 neutralizing antibodies: A network meta-analysis across vaccines. Vaccines 2021, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [Google Scholar] [CrossRef]
- Perera, R.A.; Mok, C.K.; Tsang, O.T.; Lv, H.; Ko, R.L.; Wu, N.C.; Yuan, M.; Leung, W.S.; Mc Chan, J.; Chik, T.S.; et al. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Eurosurveillance 2020, 25, 2000421. [Google Scholar] [CrossRef][Green Version]
- Voysey, M.; Clemens, S.A.S.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomized trials. Lancet 2021, 397, 881–891. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Azman, A.S.; Sun, R.; Lu, W.; Zheng, N.; Zhou, J.; Wu, Q.; Deng, X.; Zhao, Z.; et al. Neutralizing Antibodies Against SARS-CoV-2 Variants Induced by Natural Infection or Vaccination: A Systematic Review and Individual Data Meta-Analysis. Clin. Infect. Dis. 2021, ciab646, Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-L.; Wang, Z.-Y.; Duan, L.-J.; Meng, Q.-C.; Jiang, M.-D.; Yao, L.; Zhu, K.-L.; Cao, W.-C.; Ma, M.-J. Susceptibility of circulating SARS-CoV-2 variants to neutralization. N. Engl. J. Med. 2021, 384, 2354–2356. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Dai, L.; Wang, H.; Hu, Z.; Yang, X.; Tan, W.; Gao, G.F. Neutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines. bioRxiv 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xia, H.; Zhang, X.; Fontes-Garfias, C.R.; Swanson, K.A.; Cai, H.; Sarkar, R.; Chen, W.; Cutler, M.; et al. Neutralizing activity of BNT162b2-elicited serum—Preliminary report. N. Engl. J. Med. 2021, 384, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S.; Ling, Y.; Zhang, Y.; Xun, J.; Lu, L.; et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Lam, E.C.; Astudillo, M.G.; Yang, D.; Miller, T.E.; Feldman, J.; Hauser, B.M.; Caradonna, T.M.; Clayton, K.L.; Nitido, A.D.; et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 2021, 184, 476–488. [Google Scholar] [CrossRef]
- Ho, M.-S.; Chen, W.-J.; Chen, H.-Y.; Lin, S.-F.; Wang, M.-C.; Di, J.; Lu, Y.-T.; Liu, C.-L.; Chang, S.-C.; Chao, C.-L.; et al. Neutralizing antibody response and SARS severity. Emerg. Infect. Dis. 2005, 11, 1730–1737. [Google Scholar] [CrossRef]
Item | Total N | Mean ± SD/% | |
---|---|---|---|
Sex | Male | 36 | 28.35% |
Female | 91 | 71.65% | |
Age (years) | 36.50 ± 10.61 | ||
20–29 | 40 | 31.5% | |
30–39 | 42 | 33.1 | |
40–49 | 31 | 24.4 | |
≥50 | 14 | 11.0% | |
Height (cm) | 165.59 ± 7.20 | ||
Weight (kg) | 62.88 ± 11.00 | ||
BMI (kg/m2) | 22.85 ± 3.15 | ||
≥24 | 44 | 34.65% | |
18.5 < BMI < 24 | 76 | 59.84% | |
≤18.5 | 7 | 5.51% |
Item | Positive Group | Negative Group | t/x2 | p Value |
---|---|---|---|---|
N = 127 | 66 | 61 | ||
Sex Male | 17 (47.22%) | 19 (52.78%) | 0.453 | 0.501 |
Female | 49 (53.85%) | 42 (46.15%) | ||
Age (years) | 35.06 ± 10.28 | 38.05 ± 10.83 | −1.595 | 0.113 |
20–29 | 24 (60.00%) | 16 (40.00%) | 1.724 | 0.632 |
30–39 | 21 (50.00%) | 21 (50.00%) | ||
40–49 | 15 (48.39%) | 16 (51.61%) | ||
≥50 | 6 (42.86%) | 8 (57.14%) | ||
Height (cm) | 166.05 ± 7.43 | 165.11 ± 6.98 | 0.732 | 0.465 |
Weight (kg) | 63.26 ± 11.78 | 62.48 ± 10.16 | 0.393 | 0.695 |
BMI (kg/m2) | 22.83 ± 3.09 | 22.88 ± 3.25 | −0.090 | 0.929 |
≥24 | 24 (54.55%) | 20 (45.45%) | 0.179 | 0.672 |
<24 | 42 (50.60%) | 41 (49.40%) |
Item | N | Positive Group | Negative Group | t/x2 | p Value |
---|---|---|---|---|---|
127 | 66 | 61 | |||
Time of vaccination completed (weeks) | 11.57 ± 6.48 | 17.87 ± 9.17 | −4.501 | <0.001 | |
2–4 | 12 | 12 (100.00%) | 0 (0.00%) | 18.030 | 0.006 |
5–8 | 30 | 18 (60.00%) | 12 (40.00%) | ||
9–12 | 12 | 7 (58.33%) | 5 (41.67%) | ||
13–16 | 9 | 5 (55.56%) | 4 (44.44%) | ||
17–20 | 51 | 22 (43.14%) | 29 (56.86%) | ||
21–24 | 7 | 2 (28.57%) | 5 (71.43%) | ||
>24 | 6 | 0 (0.00%) | 6 (100.00%) | ||
Vaccine manufacturers * | |||||
CoronaVac | 61 | 39 (63.93%) | 22 (36.07%) | 5.927 | 0.015 |
inactivated SARS-CoV-2 vaccine | 64 | 27 (42.19%) | 37 (57.81%) |
Item | Regression Coefficient | Standard Error | Wald x2 | p Value | OR | 95% CI |
---|---|---|---|---|---|---|
Sex | −0.764 | 0.621 | 1.513 | 0.219 | 0.466 | (0.138, 1.573) |
Age | −0.029 | 0.021 | 1.946 | 0.163 | 0.972 | (0.933, 1.012) |
Height | 0.045 | 0.046 | 0.966 | 0.326 | 1.046 | (0.956, 1.144) |
Weight | 0.005 | 0.025 | 0.040 | 0.842 | 1.005 | (0.957, 1.055) |
Vaccine manufacturers | 0.463 | 0.435 | 1.136 | 0.287 | 1.589 | (0.678, 3.727) |
Time of vaccination completed (weeks) | −0.109 | 0.032 | 11.569 | 0.001 | 0.897 | (0.842, 0.955) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liang, C.; Xiao, X. SARS-CoV-2 Neutralizing Antibody Levels Post COVID-19 Vaccination Based on ELISA Method—A Small Real-World Sample Exploration. Vaccines 2021, 9, 1139. https://doi.org/10.3390/vaccines9101139
Li X, Liang C, Xiao X. SARS-CoV-2 Neutralizing Antibody Levels Post COVID-19 Vaccination Based on ELISA Method—A Small Real-World Sample Exploration. Vaccines. 2021; 9(10):1139. https://doi.org/10.3390/vaccines9101139
Chicago/Turabian StyleLi, Xiaoguang, Chao Liang, and Xiumei Xiao. 2021. "SARS-CoV-2 Neutralizing Antibody Levels Post COVID-19 Vaccination Based on ELISA Method—A Small Real-World Sample Exploration" Vaccines 9, no. 10: 1139. https://doi.org/10.3390/vaccines9101139