Platforms Exploited for SARS-CoV-2 Vaccine Development
Abstract
:1. Introduction
2. Multiple Vaccine Platforms and Vaccines Currently in Clinical Evaluation
2.1. Inactivated Viral Vaccine
2.2. Non-Replicating Viral Vector
2.3. RNA Vaccine
2.4. DNA-Based Vaccine
2.5. Protein Subunit
3. Previous Vaccine Development for CoV
4. Target Groups to Receive Vaccines
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Sirajuddin, A.; Zhang, X.; Liu, G.; Teng, Z.; Zhao, S.; Lu, M. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur. Radiol. 2020, 30, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Arshad Ali, S.; Baloch, M.; Ahmed, N.; Arshad Ali, A.; Iqbal, A. The outbreak of Coronavirus Disease 2019 (COVID-19)-An emerging global health threat. J. Infect. Public Health 2020, 13, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, P.; Ahluwalia, M.; Vaibhav, K.; Mondal, A.; Sahajpal, N.; Islam, S.; Fulzele, S.; Kota, V.; Dhandapani, K.; Baban, B.; et al. Infections of the lung: A predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA J. 2020, 11, 581–601. [Google Scholar] [CrossRef]
- Li, F.; Berardi, M.; Li, W.; Farzan, M.; Dormitzer, P.R.; Harrison, S.C. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 2006, 80, 6794–6800. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef]
- Duan, L.; Zheng, Q.; Zhang, H.; Niu, Y.; Lou, Y.; Wang, H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front. Immunol. 2020, 11, 576622. [Google Scholar] [CrossRef]
- Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 8 September 2020).
- Zheng, J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci. 2020, 16, 1678–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin. Microbiol. Infect. 2020, 26, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio Med. Atenei Parm. 2020, 91, 157–160. [Google Scholar]
- Menzella, F.; Biava, M.; Barbieri, C.; Livrieri, F.; Facciolongo, N. Pharmacologicaltreatment of COVID-19: Lights and shadows. Drugs Context 2020, 9, 4–6. [Google Scholar] [CrossRef]
- Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. 2020, 30, 313–324. [Google Scholar] [CrossRef]
- Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. The SARS-CoV-2 Vaccine Pipeline: An Overview. Curr. Trop. Med. Rep. 2020, 7, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Draft Landscape of COVID-19 Candidate Vaccines. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 8 September 2020).
- Accelerating a Safe and Effective COVID-19 Vaccine. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/accelerating-a-safe-and-effective-covid-19-vaccine (accessed on 8 September 2020).
- Zhu, F.C.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020, 395, 1845–1854. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897. [Google Scholar] [CrossRef]
- Zhu, F.C.; Guan, X.H.; Li, Y.H.; Huang, J.Y.; Jiang, T.; Hou, L.H.; Li, J.X.; Yang, B.F.; Wang, L.; Wang, W.J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef]
- Graham, S.P.; McLean, R.K.; Spencer, A.J.; Belij-Rammerstorfer, S.; Wright, D.; Ulaszewska, M.; Edwards, J.C.; Hayes, J.W.P.; Martini, V.; Thakur, N.; et al. Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. NPJ Vaccines 2020, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Oxford Coronavirus Vaccine Produces Strong Immune Response in Older Adults. Available online: https://www.research.ox.ac.uk/Article/2020-11-19-oxford-coronavirus-vaccine-produces-strong-immune-response-in-older-adults (accessed on 20 November 2020).
- Palacios, R.; Patiño, E.G.; de Oliveira Piorelli, R.; Conde, M.; Batista, A.P.; Zeng, G.; Xin, Q.; Kallas, E.G.; Flores, J.; Ockenhouse, C.F.; et al. Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac—PROFISCOV: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 853. [Google Scholar] [PubMed]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef]
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.R.F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X.; Yan, J.; Gary, E.N.; Walker, S.N.; Schultheis, K.; Purwar, M.; et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020, 11, 2601. [Google Scholar] [CrossRef]
- Walsh, E.E.; Frenck, R.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. medRxiv 2020. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA Vaccine against SARS-CoV-2-Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020, 383, 2320–2332. [Google Scholar] [CrossRef]
- Kuo, T.Y.; Lin, M.Y.; Coffman, R.L.; Campbell, J.D.; Traquina, P.; Lin, Y.J.; Liu, L.T.; Cheng, J.; Wu, Y.C.; Wu, C.C.; et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci. Rep. 2020, 10, 20085. [Google Scholar] [CrossRef]
- Qi, X.; Ke, B.; Feng, Q.; Yang, D.; Lian, Q.; Li, Z.; Lu, L.; Ke, C.; Liu, Z.; Liao, G. Construction and immunogenic studies of a mFc fusion receptor binding domain (RBD) of spike protein as a subunit vaccine against SARS-CoV-2 infection. Chem. Commun. 2020, 56, 8683–8686. [Google Scholar] [CrossRef] [PubMed]
- Hörner, C.; Schürmann, C.; Auste, A.; Ebenig, A.; Muraleedharan, S.; Herrmann, M.; Schnierle, B.; Mühlebach, M.D. A Highly Immunogenic Measles Virus-based Th1-biased COVID-19 Vaccine. bioRxiv 2020. [Google Scholar] [CrossRef]
- Medicago. 2020. Available online: https://www.medicircle.in/medicago-gsk-dynavax-partners-first-plant-based-covid-vaccine (accessed on 8 September 2020).
- Pandey, S.C.; Pande, V.; Sati, D.; Upreti, S.; Samant, M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci. 2020, 256, 117956. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials. Available online: clinicaltrials.gov (accessed on 8 September 2020).
- Yu, P.; Qi, F.; Xu, Y.; Li, F.; Liu, P.; Liu, J.; Bao, L.; Deng, W.; Gao, H.; Xiang, Z.; et al. Age-related rhesus macaque models of COVID-19. Anim. Model. Exp. Med. 2020, 3, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinovac COVID-19 Vaccine Gets Emergency Use Approval in China. Available online: https://www.pharmaceutical-technology.com/news/sinovac-vaccine-emergency-use/ (accessed on 15 October 2020).
- Coronavirus COVID-19 Vaccines. Available online: https://relief.unboundmedicine.com/relief/view/Coronavirus-Guidelines/2355056/all/Coronavirus_COVID_19_Vaccines (accessed on 7 December 2020).
- A Phase III Clinical Trial for Inactivated Novel Coronavirus Pneumonia (COVID-19) Vaccine (Vero Cells). Available online: http://www.chictr.org.cn/showprojen.aspx?proj=56651 (accessed on 6 December 2020).
- Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV—A target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009, 7, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.L.; Picker, L.J.; King, C.R. Development of replication-competent viral vectors for HIV vaccine delivery. Curr. Opin. HIV AIDS 2013, 8, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Adenoviral Vector-Based Vaccines and Gene Therapies:current Status and Future Prospects. Available online: https://www.intechopen.com/books/adenoviruses/adenoviral-vector-based-vaccines-and-gene-therapies-current-status-and-future-prospects (accessed on 8 September 2020).
- A Randomized, Double-Blinded, Placebo-Controlled Phase II Clinical Trial for Recombinant Novel Coronavirus (2019-nCOV) Vaccine (Adenovirus Vector). Available online: http://www.chictr.org.cn/showprojen.aspx?proj=52006 (accessed on 8 September 2020).
- Flingai, S.; Czerwonko, M.; Goodman, J.; Kudchodkar, S.; Muthumani, K.; Weiner, D. Synthetic DNA Vaccines: Improved Vaccine Potency by Electroporation and Co-Delivered Genetic Adjuvants. Front. Immunol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Mercado, N.B.; Zahn, R.; Wegmann, F.; Loos, C.; Chandrashekar, A.; Yu, J.; Liu, J.; Peter, L.; McMahan, K.; Tostanoski, L.H.; et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020, 586, 583–588. [Google Scholar] [CrossRef]
- Study of Ad26.COV2.S in Adults (COVID-19). Available online: https://clinicaltrials.gov/ct2/show/NCT04436276?term=NCT04436276&draw=2&rank=1 (accessed on 8 September 2020).
- Callaway, E. Russia’s fast-track coronavirus vaccine draws outrage over safety. Nature 2020, 584, 334. [Google Scholar] [CrossRef]
- An Open Study of the Safety, Tolerability and Immunogenicity of ‘Gam-COVID-Vac Lyo’ Vaccine against COVID-19. Available online: https://www.smartpatients.com/trials/NCT04437875 (accessed on 8 September 2020).
- Phase 1 Study of Investigational mRNA Vaccine for COVID-19 Underway. Available online: https://www.pulmonologyadvisor.com/home/topics/lung-infection/phase-1-study-of-investigational-mrna-vaccine-for-covid-19-underway/ (accessed on 8 September 2020).
- Study to Describe the Safety, Tolerability, Immunogenicity and Efficacy of RNA Vaccine Candidates against COVID-19 in Healthy Individuals. Available online: https://clinicaltrials.gov/ct2/show/NCT04368728 (accessed on 8 September 2020).
- China’s First COVID-19 mRNA Vaccine Approved for Clinical Trials. Available online: https://covid-19.chinadaily.com.cn/a/202006/30/WS5efb010da310834817256345.html (accessed on 8 September 2020).
- Chinese Clinical Trial Registry. A Phase I Clinical Trial to Evaluate the Safety, Tolerance and Preliminary Immunogenicity of Different Doses of a SARS-CoV-2 mRNA Vaccine in Population Aged 18–59 Years and 60 Years and Above. 2020. Available online: http://www.chictr.org.cn/showprojen.aspx?proj=55524 (accessed on 8 September 2020).
- MacGregor, R.R.; Boyer, J.D.; Ugen, K.E.; Lacy, K.E.; Gluckman, S.J.; Bagarazzi, M.L.; Chattergoon, M.A.; Baine, Y.; Higgins, T.J.; Ciccarelli, R.B. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: Safety and host response. J. Infect. Dis. 1998, 178, 92–100. [Google Scholar] [CrossRef] [Green Version]
- INO-4800 DNA Coronavirus Vaccine. Available online: https://www.myendnoteweb.com/EndNoteWeb.html?func=downloadInstallers&cat=download& (accessed on 9 September 2020).
- GX-19 Clinical Trials. Safety and Immunogenicity Study of GX-19, a COVID-19 Preventive DNA Vaccine in Healthy Adults. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04445389?term=vaccine&cond=covid-19&draw=3 (accessed on 10 September 2020).
- Vaccine Types. Available online: https://www.niaid.nih.gov/research/vaccine-types (accessed on 8 September 2020).
- Clinical Study of Recombinant Novel Coronavirus Vaccine. Available online: https://clinicaltrials.gov/ct2/show/NCT04466085?term=NCT04466085&draw=2&rank=1 (accessed on 10 September 2020).
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crystal, R.G. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene. Ther. 2014, 25, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, S.H.; Doudna, J.A. Expanding the Biologist’s Toolkit with CRISPR-Cas9. Mol. Cell 2015, 58, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef]
- Ng, W.H.; Liu, X.; Mahalingam, S. Development of vaccines for SARS-CoV-2. F1000Research 2020, 9, 991. [Google Scholar] [CrossRef]
- van Riel, D.; de Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 2020, 19, 810–812. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.A.; Reidy, A.; Mirandola, L.; Trotter, K.; Suvorava, N.; Figueroa, A.; Konala, V.; Aulakh, A.; Littlefield, L.; Grizzi, F.; et al. Chimeric antigen receptor engineering: A right step in the evolution of adoptive cellular immunotherapy. Int. Rev. Immunol. 2015, 34, 154–187. [Google Scholar] [CrossRef]
- Xiong, W.; Goverdhana, S.; Sciascia, S.A.; Candolfi, M.; Zirger, J.M.; Barcia, C.; Curtin, J.F.; King, G.D.; Jaita, G.; Liu, C.; et al. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J. Virol. 2006, 80, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Candolfi, M.; Kroeger, K.M.; Puntel, M.; Mondkar, S.; Larocque, D.; Liu, C.; Curtin, J.F.; Palmer, D.; Ng, P.; et al. Immunization against the transgene but not the TetON switch reduces expression from gutless adenoviral vectors in the brain. Mol. Ther. 2008, 16, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.-X.; Graham, F.L.; Hitt, M.M. A convenient plasmid system for construction of helper-dependent adenoviral vectors and its application for analysis of the breast-cancer-specific mammaglobin promoter. J. Gene Med. 2006, 8, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Condit, R.C.; Williamson, A.-L.; Sheets, R.; Seligman, S.J.; Monath, T.P.; Excler, J.-L.; Gurwith, M.; Bok, K.; Robertson, J.S.; Kim, D.; et al. Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine 2016, 34, 6610–6616. [Google Scholar] [CrossRef] [PubMed]
- Armengol, G.; Ruiz, L.M.; Orduz, S. The injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral response. Mol. Biotechnol. 2004, 27, 109–118. [Google Scholar] [CrossRef]
- Schalk, J.A.; Mooi, F.R.; Berbers, G.A.; van Aerts, L.A.; Ovelgönne, H.; Kimman, T.G. Preclinical and clinical safety studies on DNA vaccines. Hum. Vaccin. 2006, 2, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Dolzhikova, I.V.; Tokarskaya, E.A.; Dzharullaeva, A.S.; Tukhvatulin, A.I.; Shcheblyakov, D.V.; Voronina, O.L.; Syromyatnikova, S.I.; Borisevich, S.V.; Pantyukhov, V.B.; Babira, V.F.; et al. Virus-Vectored Ebola Vaccines. Acta Nat. 2017, 9, 4–11. [Google Scholar] [CrossRef]
- Experimental Ebola Vaccine Trial. Available online: https://clinicaltrials.gov/ct2/show/NCT00072605 (accessed on 15 October 2020).
- Sarwar, U.N.; Costner, P.; Enama, M.E.; Berkowitz, N.; Hu, Z.; Hendel, C.S.; Sitar, S.; Plummer, S.; Mulangu, S.; Bailer, R.T.; et al. Safety and immunogenicity of DNA vaccines encoding Ebolavirus and Marburgvirus wild-type glycoproteins in a phase I clinical trial. J. Infect. Dis. 2015, 211, 549–557. [Google Scholar] [CrossRef]
- Sullivan, N.J.; Geisbert, T.W.; Geisbert, J.B.; Shedlock, D.J.; Xu, L.; Lamoreaux, L.; Custers, J.H.H.V.; Popernack, P.M.; Yang, Z.-Y.; Pau, M.G.; et al. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs. PLoS Med. 2006, 3, e177. [Google Scholar] [CrossRef]
- Kibuuka, H.; Berkowitz, N.M.; Millard, M.; Enama, M.E.; Tindikahwa, A.; Sekiziyivu, A.B.; Costner, P.; Sitar, S.; Glover, D.; Hu, Z.; et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet 2015, 385, 1545–1554. [Google Scholar] [CrossRef]
- Open-Label Study of INO-4212 with or without INO-9012. Administered IM or ID Followed by Electroporation in Healthy Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT02464670 (accessed on 9 September 2020).
- Lalor, P.A.; Webby, R.J.; Morrow, J.; Rusalov, D.; Kaslow, D.C.; Rolland, A.; Smith, L.R. Plasmid DNA-Based Vaccines Protect Mice and Ferrets against Lethal Challenge with A/Vietnam/1203/04 (H5N1) Influenza Virus. J. Infect. Dis. 2008, 197, 1643–1652. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.Y.Y.; Izzard, L.; Hurt, A.C. A Review of DNA Vaccines against Influenza. Front. Immunol. 2018, 9, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthumani, K.; Griffin, B.D.; Agarwal, S.; Kudchodkar, S.B.; Reuschel, E.L.; Choi, H.; Kraynyak, K.A.; Duperret, E.K.; Keaton, A.A.; Chung, C.; et al. In Vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. Npj Vaccines 2016, 1, 16021. [Google Scholar] [CrossRef] [PubMed]
- Brazzoli, M.; Magini, D.; Bonci, A.; Buccato, S.; Giovani, C.; Kratzer, R.; Zurli, V.; Mangiavacchi, S.; Casini, D.; Brito, L.M.; et al. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin. J. Virol. 2016, 90, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hekele, A.; Bertholet, S.; Archer, J.; Gibson, D.; Palladino, G.; Brito, L.; Otten, G.; Brazzoli, M.; Buccato, S.; Bonci, A.; et al. Rapidly produced SAM (R) vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chahal, J.S.; Fang, T.; Woodham, A.W.; Khan, O.F.; Ling, J.; Anderson, D.G.; Ploegh, H.L. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 2017, 7, 252. [Google Scholar] [CrossRef]
- Chahal, J.S.; Khan, O.F.; Cooper, C.L.; McPartlan, J.S.; Tsosie, J.K.; Tilley, L.D.; Sidik, S.M.; Lourido, S.; Langer, R.; Bavari, S.; et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA 2016, 113, 4133–4142. [Google Scholar] [CrossRef] [Green Version]
- Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017, 543, 248–251. [Google Scholar] [CrossRef]
- Pardi, N.; Secreto, A.J.; Shan, X.; Debonera, F.; Glover, J.; Yi, Y.; Muramatsu, H.; Ni, H.; Mui, B.L.; Tam, Y.K.; et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 2017, 8, 14630. [Google Scholar] [CrossRef]
- Richner, J.M.; Jagger, B.W.; Shan, C.; Fontes, C.R.; Dowd, K.A.; Cao, B.; Himansu, S.; Caine, E.A.; Nunes, B.T.D.; Medeiros, D.B.A.; et al. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell 2017, 170, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 168, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Huang, E.; Yuzhakov, O.; Ramanathan, P.; Ciaramella, G.; Bukreyev, A. Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease. J. Infect. Dis. 2018, 217, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Petsch, B.; Schnee, M.; Vogel, A.B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K.J.; Stitz, L.; et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 2012, 30, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.A.; Fuhr, R.; Smolenov, I.; Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ö.; Pujar, H.S.; et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019, 37, 3326–3334. [Google Scholar] [CrossRef]
- Regules, J.A.; Beigel, J.H.; Paolino, K.M.; Voell, J.; Castellano, A.R.; Hu, Z.; Muñoz, P.; Moon, J.E.; Ruck, R.C.; Bennett, J.W.; et al. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine. N. Engl. J. Med. 2017, 376, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, J.E.; Bellamy, A.R.; Belshe, R.; Bernstein, D.I.; Edupuganti, S.; Patel, S.M.; Renehan, P.; Zajdowicz, T.; Schwartz, R.; Koup, R.; et al. DNA priming for seasonal influenza vaccine: A phase 1b double-blind randomized clinical trial. PLoS ONE 2015, 10, e0125914. [Google Scholar] [CrossRef] [PubMed]
- Crank, M.C.; Gordon, I.J.; Yamshchikov, G.V.; Sitar, S.; Hu, Z.; Enama, M.E.; Holman, L.A.; Bailer, R.T.; Pearce, M.B.; Koup, R.A.; et al. Phase 1 study of pandemic H1 DNA vaccine in healthy adults. PLoS ONE 2015, 10, e0123969. [Google Scholar] [CrossRef]
- Kirtikumar, C.B.; Dipak, V.P.; Dipak, V.D.; Vikrant, P.P.; Ashish, B.B. COVID-19: A Review on Epidemiology, Clinical Features and Possible Potential Drugs Based on Available Case Studies. Coronaviruses 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Bukreyev, A.; Lamirande, E.W.; Buchholz, U.J.; Vogel, L.N.; Elkins, W.R.; St Claire, M.; Murphy, B.R.; Subbarao, K.; Collins, P.L. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 2004, 363, 2122–2127. [Google Scholar] [CrossRef] [Green Version]
- Kapadia, S.U.; Rose, J.K.; Lamirande, E.; Vogel, L.; Subbarao, K.; Roberts, A. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 2005, 340, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Netland, J.; DeDiego, M.L.; Zhao, J.; Fett, C.; Álvarez, E.; Nieto-Torres, J.L.; Enjuanes, L.; Perlman, S. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology 2010, 399, 120–128. [Google Scholar] [CrossRef]
- Graham, R.L.; Becker, M.M.; Eckerle, L.D.; Bolles, M.; Denison, M.R.; Baric, R.S. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat. Med. 2012, 18, 1820–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escriou, N.; Callendret, B.; Lorin, V.; Combredet, C.; Marianneau, P.; Février, M.; Tangy, F. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology 2014, 452–453, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menachery, V.D.; Gralinski, L.E.; Mitchell, H.D.; Dinnon, K.H., 3rd; Leist, S.R.; Yount, B.L., Jr.; McAnarney, E.T.; Graham, R.L.; Waters, K.M.; Baric, R.S. Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines. J. Virol. 2018, 92, e007010–e007018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, G.S.; Planchon, R.; Wei, Q.; Rusalov, D.; Geall, A.; Enas, J.; Lalor, P.; Leamy, V.; Vahle, R.; Luke, C.J.; et al. Vaxfectin™-Formulated Influenza DNA Vaccines Encoding NP and M2 Viral Proteins Protect Mice against Lethal Viral Challenge. Hum. Vaccines 2007, 3, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Regla-Nava, J.A.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Fernandez-Delgado, R.; Fett, C.; Castaño-Rodríguez, C.; Perlman, S.; Enjuanes, L.; DeDiego, M.L. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol. 2015, 89, 3870–3887. [Google Scholar] [CrossRef] [Green Version]
- DeDiego, M.L.; Álvarez, E.; Almazán, F.; Rejas, M.T.; Lamirande, E.; Roberts, A.; Shieh, W.-J.; Zaki, S.R.; Subbarao, K.; Enjuanes, L. A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo. J. Virol. 2007, 81, 1701–1713. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, F.; El-Bacha, T.; Da Poian, A.T. Advances in the development of inactivated virus vaccines. Pat. Anti Infect. Drug Discov. 2006, 1, 291–296. [Google Scholar] [CrossRef]
- Zhang, C.H.; Lu, J.H.; Wang, Y.F.; Zheng, H.Y.; Xiong, S.; Zhang, M.Y.; Liu, X.J.; Li, J.X.; Wan, Z.Y.; Yan, X.G.; et al. Immune responses in Balb/c mice induced by a candidate SARS-CoV inactivated vaccine prepared from F69 strain. Vaccine 2005, 23, 3196–3201. [Google Scholar] [CrossRef]
- Agrawal, A.S.; Tao, X.; Algaissi, A.; Garron, T.; Narayanan, K.; Peng, B.H.; Couch, R.B.; Tseng, C.T. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum. Vaccines Immunother. 2016, 12, 2351–2356. [Google Scholar] [CrossRef]
- Vartak, A.; Sucheck, S. Recent Advances in Subunit Vaccine Carriers. Vaccines 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Sun, S.; Wang, K.; Zhang, S.; Zhu, W.; Chen, Z. Elicitation of immunity in mice after immunization with the S2 subunit of the severe acute respiratory syndrome coronavirus. DNA Cell Biol. 2005, 24, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wan, M.; Wang, X.; Zhang, P.-Y.; Yong, Y.; Wang, L.-Y. Expression of predicted B cell epitope peptide in S2 subunit of SARS coronavirus spike protein in E.coli and identification of its mimic antigenicity. Xi bao Yu Fen Zi Mian Yi Xue Za Zhi Chin. J. Cell. Mol. Immunol. 2007, 23, 113–116. [Google Scholar]
- Zakhartchouk, A.N.; Sharon, C.; Satkunarajah, M.; Auperin, T.; Viswanathan, S.; Mutwiri, G.; Petric, M.; See, R.H.; Brunham, R.C.; Finlay, B.B.; et al. Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: Implications for a subunit vaccine. Vaccine 2007, 25, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Kalita, P.; Padhi, A.K.; Zhang, K.Y.J.; Tripathi, T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb. Pathog. 2020, 145, 104236. [Google Scholar] [CrossRef]
- Kim, E.; Erdos, G.; Huang, S.; Kenniston, T.W.; Balmert, S.C.; Carey, C.D.; Raj, V.S.; Epperly, M.W.; Klimstra, W.B.; Haagmans, B.L.; et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020, 55, 102743. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Y.; Liu, S.; Kou, Z.; Li, W.; Farzan, M.; Jiang, S. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine. Biochem. Biophys Res. Commun. 2004, 324, 773–781. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, N.; Tao, X.; Zhao, G.; Guo, Y.; Tseng, C.T.; Jiang, S.; Du, L.; Zhou, Y. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum. Vaccines Immunother. 2015, 11, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.A. DNA vaccines: An historical perspective and view to the future. Immunol. Rev. 2011, 239, 62–84. [Google Scholar] [CrossRef]
- Dutta, N.K.; Mazumdar, K.; Lee, B.-H.; Baek, M.-W.; Kim, D.-J.; Na, Y.-R.; Park, S.-H.; Lee, H.-K.; Kariwa, H.; Mai, L.Q.; et al. Search for potential target site of nucleocapsid gene for the design of an epitope-based SARS DNA vaccine. Immunol. Lett. 2008, 118, 65–71. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, J.; Zhao, L.J.; Qin, Z.L.; Ke, J.S.; Pan, W.; Ren, H.; Yu, J.G.; Qi, Z.T. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology 2005, 331, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Qin, H.D.; Liu, P.; Zhang, J.W.; Feng, B.-J.; Feng, Q.S.; Chen, L.Z.; Pan, Z.G.; Huang, L.X.; Zhang, R.H.; et al. Immunogenicity of DNA vaccine that express spike gene fragment of SARS coronavirus. Chin. J. Microbiol. Immunol. 2005, 25, 297–301. [Google Scholar]
- Zakhartchouk, A.N.; Liu, Q.; Petric, M.; Babiuk, L.A. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 2005, 23, 4385–4391. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.L.; Jin, N.Y.; Jin, H.T. Immune response induced by DNA vaccine encoding SARS-CoV S1 and S2 proteins in mice. Chin. J. Biol. 2007, 20, 426–428. [Google Scholar]
- He, H.; Tang, Y.; Qin, X.; Xu, W.; Wang, Y.; Liu, X.; Xiong, S.; Li, J.; Zhang, M.; Duan, M. Construction of a eukaryotic expression plasmid encoding partial S gene fragments of the SARS-CoV and its potential utility as a DNA vaccine. DNA Cell Biol. 2005, 24, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. The line starts to form for a coronavirus vaccine. Science 2020, 369, 15–16. [Google Scholar] [CrossRef]
- Ellington, S.; Strid, P.; Tong, V.T.; Woodworth, K.; Galang, R.R.; Zambrano, L.D.; Nahabedian, J.; Anderson, K.; Gilboa, S.M. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status—United States, January 22–June 7, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 769–775. [Google Scholar] [CrossRef]
Vaccine Platform | COVID-19 Vaccine Developer/Manufacturer | Type of Candidate Vaccine | Dosage | Number of Shots (with Time Interval) | Primary Study Adverse Side Effects | Number of Subjects | References |
---|---|---|---|---|---|---|---|
Non-replicating viral vector | University of Oxford/AstraZeneca (August 2020–October 2022) | ChAdOx1-S NCT04516746, NCT04540393 | 5 × 1010 vp (nominal ± 1.5 × 1010 vp) | 2 (0, 28 days); IM | Phase 3
| Humans (40,000 participants) | [19,21,22,23,24,25] |
CanSino Biological Inc./Beijing Institute of Biotechnology (September 2020–July 2021/ September 2020–January 2022) | Adenovirus type 5 vector NCT04540419/ NCT04526990 | 5 × 1010 vp/0.5 mL | 1; IM | Phase 3
| Humans (40,000/500 participants) | ||
Gamaleya Research Institute (September 2020–May 2021) | Adeno-based (rAd26-S + rAd5-S) NCT04530396 | Gam-COVID-Vac 0.5 mL | 2 (0, 21 days); IM | Phase 3
| Humans (40,000 participants) | ||
Janssen Pharmaceutical companies (September 2020–March 2023) | Ad26COVS1 NCT04505722 | 5 × 1010 vp | 1; IM | Phase 3
| Humans (60,000 participants) | ||
ReiThera/LEUKOCARE/Univercells (August 2020–July 2021) | Replication defective Simian Adenovirus (GRAd) encoding S NCT04528641 | 5 × 1010 vp, 1 × 1011 vp or 2 × 1011 vp | 1; IM | Phase 1 NA | Humans (90 participants) | ||
Inactivated | Sinovac (July 2020–October 2021) | Inactivated NCT04456595 | 3 µg/0.5 mL | 2 (0, 14 days); IM | Phase 3 NA | Humans (13,060 participants) | [19,26,27,28] |
Wuhan Institute of Biological Products/Sinopharm (April 2020–November 2021) | Inactivated ChiCTR2000031809 | 2.5 µg, 5 µg and 10 µg/dose | 2 (0, 14 or 0,21 days); IM | Phase1/2
| Humans (340 participants) | ||
Beijing Institute of Biological Products/Sinopharm (July 2020–July 2021) | Inactivated ChiCTR2000032459 | 2 µg, 4 µg or 8 µg | 2 (0,14 or 0,21 days); IM | Phase1/2
| Humans (1192 participants) | ||
Institute of Medical Biology, Chinese Academy of Medical Sciences (November 2020–November 2021) | Inactivated NCT04412538, NCT04470609 | 50 U/0.5 mL, 100 U/0.5 mL and 150 U/0.5 mL | 2 (0,28 days); IM | Phase 1b/2b
| Humans (471 participants) | ||
Research Institute for Biological safety problems, Rep of Kazakhstan (September 2020–December 2020) | Inactivated NCT04530357 | 0.5 mL of QazCovid-in® | 2 (0,21 days); IM | Phase 1/2
| Humans (244 participants) | ||
Bharat Biotech (November 2020–February 2022) | Whole-Virion inactivated NCT04473690 | KBP-COVID-19, | 2 (0,14 days); IM | Phase 1/2
| Humans (180 participants) | ||
RNA | Moderna/NIAID (July 2020–October 2022) | LNP-encapsulated mRNA NCT04470427 | 100 µg/dose | 2 (0, 28 days); IM; | Phase 3
| Humans (30,000 participants) | [19,29,30,31,32] |
BioNTech/Fosum Pharma/Pfizer (April 2020–December 2022) | LNP-mRNAs NCT04368728 | 10 µg/dose, | 2 (0, 28 days); IM | Phase 2/3
| Humans (43,998 participants) | ||
Curevac (September 2020–November 2021) | mRNA NCT04515147 | 4 µg/dose, | 2 (0, 28 days); IM | Phase 2 NA | Humans (691 participants) | ||
Arcturus/Duke-NUS | mRNA NCT04480957 | 0.5 mL | 4; IM | Phase 1/2
| Humans (92 participants) | ||
Imperial College London (April 2020–June 2021) | LNP-nCoVsaRNA ISRCTN17072692 | 0.1 µg/dose, | 2; IM | Phase 1 NA | Humans | ||
People’s Liberation Army (PLA) Academy of Military Sciences/Walvax Biotech. (June 2020–December 2021) | mRNA ChiCTR2000034112 | 5 × 1010, 1 × 1011 and 1.5 × 1011 vp | 2 (0, 14 or 0, 28 days); IM | Phase 1 NA | Humans (168 participants) | ||
DNA | Inovio Pharmaceuticals/International Vaccine Institute (July 2020–February 2022) | DNA plasmid vaccine with electroporation NCT04447781 | INO-4800 1 mg or 2 mg/dose using CELECTRA®2000, | 2 (0, 28 days); ID | Phase 1/2 NA | Humans (160 participants) | [19,29] |
Osaka University/AnGes/Takara Bio (June 2020–July 2021) | DNA plasmid vaccine + Adjuvant NCT04463472 | 1 mg or 2 mg/dose | 2 (0, 14 days); IM | Phase 1/2
| Humans (30 participants) | ||
Cadila Healthcare Limited (July 2020–July 2021) | DNA plasmid vaccine CTRI/2020/07/02635 | 1 mg/dose | 3 (0, 28, 56 days); ID | Phase 1/2 NA | Humans (1048 participants) | ||
Genexine Consortium (June 2020–June 2022) | DNA vaccine (GX-19) NCT0445389 | GX-19, | 2 (0,28 days); IM | Phase 1/2
| Humans (210 participants) | ||
Protein subunit | Novavax (August 2020–November 2021) | Full-length recombinant SARS CoV-2 glycoprotein nanoparticle vaccine adjuvanted with Matrix M NCT04533399 | SARS-CoV-2rS-5 µg + 50 µg Matrix-M1 adjuvant (co-formulated) | 2 (0, 21 days); IM; | Phase 2b NA | Humans (4400 participants) | [19,33,34,35] |
Anhui Zhifei Longcom Biopharmaceutical/Institute of Microbiology, Chinese Academy of Sciences (July-2020–December-2020) | Adjuvanted recombinant protein (RBD-Dimer) NCT04466085 | 25 µg/0.5 mL (per dose) | 2 or 3 doses (0, 28 or 0, 28, 56 days); IM | Phase 2 NA | Humans (900 participant) | ||
Kentucky Bioprocessing, Inc (November 2020–February 2022) | RBD-based NCT04473690 | Low and high doses of KBP-201 COVID-19 | 2 (0, 21 days); IM | Phase 1/2
| Humans (180 participants) | ||
Sanofi Pasteur/GSK (September 2020–October 2021) | S protein (baculovirus production) NCT04537208 | Formulation not defined | 2 (0, 21 days); IM | Phase 1/2 NA | Humans (440 participants) | ||
Clover Biopharmaceuticals Inc./GSk/Dynavax June 2020–March 2021) | Native like Trimeric subunit Spike Protein vaccine NCT044405908 | 3 µg/dose | 2 (0, 21 days); IM | Phase 1
| Humans (150 participants) | ||
Vaxine Pty Ltd./Medytox (June 2020–July 2020) | Recombinant spike protein with AdvaxTM adjuvant NCT04453852 | S antigen 25 µg + 15 mg Advax-2 adjuvant/dose | 1; IM | Phase 1
| Humans (40 participants) | ||
University of Queensland/CSL/Seqirus (July 2020–July 2021) | Molecular clamp stabilized Spike protein with MF59 adjuvant ACTRN1262000067493 | 5 mcg, 15 mcg, and 45 mcg/0.5 mL | 2 (0, 28 days); IM | Phase 1 NA | Humans (120 participants) | ||
Medigen Vaccine Biologics Corporation/NIAID (October 2020–June 2021) | S-2P protein + CpG 1018 NCT04487210 | MVC-COV1901 | 2 (0, 28 days); IM | Phase 1 NA | Humans (45 participants) | ||
Instituto Finlay de Vancunas, Cuba (August 2020–January 2021) | RBD + Adjuvant IFV/CR/06 | Not specified | 2 (0, 28 days); IM | Phase 1
| Humans | ||
FBRI SRC VECTOR, Rospotrebnadzor July 2020–October 2020 | RBD + Adjuvant NCT04527575 | EpiVacCorona 0.5 mL/dose | 2 (0, 28 days); IM | Phase 1 NA | Humans (100 participants-Active, not recruiting) | ||
West China Hospital, Sichuan University (October 2020–October2021) | Peptide ChiCTR2000037518 | 20 µg and 40 µg/0.5 mL | 2 (0, 21 days); IM | Phase 1 NA | Humans (120 participants-Active, not recruiting)) | ||
Others (replicating viral vector) | Institute Pasteur/Themis/Univ. of Pittsburg CVR/Merck Sharp & Dohme (August 2020–October2021) | Measles-vector based NCT04497298 | TMV-083 | 1 or 2 doses (0, 28 days); IM | Phase 1 NA | Humans (90 participants) | [19,36] |
Others (VLP) | Medicago Inc. (July 2020–December 2021) | Plant-derived VLP adjuvanted with GSK or Dynavax adjs. NCT04450004 | 3.75 µg, 7.5 µg and 15 µg/dose | 2 (0, 21 days); IM | Phase 1 NA | Humans (180 participants, Active-not recruiting)) | [19,37] |
Vaccine Platform | Advantages | Disadvantages | Examples of Licensed Viral Vaccines Targeted for Humans | References |
---|---|---|---|---|
Viral vector-based |
|
|
| [16,66,67,68] |
Live attenuated |
|
|
| [16,66,67,68] |
Inactivated |
|
|
| [16,66,67,68] |
RNA |
|
| None | [16,66,67,68] |
DNA |
|
| None | [16,66,67,68] |
Protein subunit |
|
|
| [16,66,67,68] |
Study Start | Vaccine and Delivery | Study Outcomes | Reference |
---|---|---|---|
NCT00072605 October 2003 | Ebola-DNA trivalent; NF inj.dev.IM 2–8 mg in week 0, 4, and 8 Antigens:
| Phase I
| [62,79,97] |
NCT00605514 January 2008 | Ebola-DNA Mono or bivalent; NF inj.dev. IM 4 mg in week 0, 4, 8 Antigen:
| Phase I
| |
NCT02464670 May 2015 | Ebola-DNA mono-, bi-, or trivalent; IM or ID + EP in 2 or 3 doses 0.8–4 mg GP; 0.2–1 mg IL 12 Antigen:
| Phase I
| |
NCT00709800 and NCT00694213 August 2007 | Influenza H5N1-DNA mono- or trivalent; needle or NF inj.dev. IM 0.1–1 mg in week 0,3 Antigen:
| Phase I
| [62,98] |
NCT00973895 August 2009 | Influenza H1N1-DNA Monovalent; NF inj.dev. IM 4 mg in week 0,4,8 Antigen:
| Phase I
| [62,99] |
NCT02809443 July 2016 | Zika–DNAmonovalent; ID + EP 1 or 2 mg in week 0,4,12 Antigen: Consensus prM-E; IgE SP; removed glycosylation site | Phase I
| [62,87,88,90] |
NCT02840487 August 2016 | Zika–DNA monovalent; needle of NF inj.dev. IM 4 mg in 2 or 3 doses Antigen:
| Phase I/Ib
| |
NCT03014089 December 2016 | Zika–RNA mRNA 1325, modified nucleotides; LNP formulated, Antigen: prM-E polyprotein | Phase I/II | |
NCT03076385 December 2016 | Influenza H10N8–RNA mRNA 1851, modified nucleotides; LNP formulated, Antigen: HA of H10N8 A/Jiangxi-Donghu/346/2013 | Phase I
| [62,96] |
NCT03345043 May 2016 | Influenza H7N9–RNA mRNA 1440, modified nucleotides; LNP formulated, Antigen: HA of H7N9 A/Anhui/1/2013 | Phase I
| [62,96] |
NCT02344407 October 2014-November 2015 | Ebola-viral vector (non-replicating) Single dose IM 2.5 × 1010, 5 × 1010, 1 × 1011 VP Antigen: GP EBOV (1976) | Phase I/II
| [62,77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathew, S.; Faheem, M.; Hassain, N.A.; Benslimane, F.M.; Al Thani, A.A.; Zaraket, H.; Yassine, H.M. Platforms Exploited for SARS-CoV-2 Vaccine Development. Vaccines 2021, 9, 11. https://doi.org/10.3390/vaccines9010011
Mathew S, Faheem M, Hassain NA, Benslimane FM, Al Thani AA, Zaraket H, Yassine HM. Platforms Exploited for SARS-CoV-2 Vaccine Development. Vaccines. 2021; 9(1):11. https://doi.org/10.3390/vaccines9010011
Chicago/Turabian StyleMathew, Shilu, Muhammed Faheem, Neeraja A. Hassain, Fatiha M. Benslimane, Asmaa A. Al Thani, Hassan Zaraket, and Hadi M. Yassine. 2021. "Platforms Exploited for SARS-CoV-2 Vaccine Development" Vaccines 9, no. 1: 11. https://doi.org/10.3390/vaccines9010011