# The Impact of Serotype Cross-Protection on Vaccine Trials: DENVax as a Case Study

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results

## 3. Discussion

## 4. Materials and Methods

#### 4.1. Linear Infection Model

#### 4.2. Modeling Vaccine Trials with the Linear Infection Model

## 5. Bayesian Analysis

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature
**2013**, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] - Halstead, S.B. Antibody-dependent Enhancement of Infection: A Mechanism for Indirect Virus Entry into Cells. In Cellular Receptors for Animal Viruses; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1994; Chapter 25; pp. 493–516. ISBN 0-87969-429-7. [Google Scholar]
- Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, W.; Puttikhunt, C.; Edwards, C.; Duangchinda, T.; Supasa, S.; et al. Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science
**2010**, 328, 745–748. [Google Scholar] [CrossRef] [PubMed][Green Version] - Halstead, S.B. Dengue antibody-dependent enhancement: Knowns and unknowns. Microbiol. Spectrum.
**2014**, 2, AID-0022-2014. [Google Scholar] - Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science
**2017**, 358, 929–932. [Google Scholar] [CrossRef] [PubMed][Green Version] - Capeding, M.R.; Tran, N.H.; Hadinegoro, R.S.; MuhammadIsmail, H.I.H.J.; Chotpitayasunondh, T.; Chua, M.N.; Luong, C.Q.; Rusmil, K.; Wirawan, D.N.; Nallusamy, R.; et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet
**2014**, 384, 1358–1365. [Google Scholar] [CrossRef] - Villar, L.; Dayan, G.H.; Arredondo-García, J.L.; Rivera, D.M.; Cunha, R.; Deseda, C.; Reynales, H.; Costa, M.S.; Morales-Ramírez, J.O.; Carrasquilla, G.; et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med.
**2015**, 372, 113–123. [Google Scholar] [CrossRef] - Hadinegoro, S.R.; Arredondo-García, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Ismail, H.I.H.M.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and long term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med.
**2015**, 373, 1195–1206. [Google Scholar] [CrossRef][Green Version] - Biswal, S.; Reynales, H.; Saez-Llorens, X.; Lopez, P.; Borja-Tabora, C.; Kosalaraksa, P.; Sirivichayakul, C.; Watanaveeradej, V.; Rivera, L.; Espinoza, F.; et al. Efficacy of a Tetravalent Dengue Vaccine in Healthy Children and Adolescents. N. Engl. J. Med.
**2019**, 381, 2009–2019. [Google Scholar] [CrossRef] - Biswal, S.; Borja-Tabora, C.; Martinez Vargas, L.; Velásquez, H.; Alera, M.T.; Sierr, V.; Rodriguez-Arenales, E.J.; Yu, D.; Wickramasinghe, V.P.; Moreira, E.D., Jr.; et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4–16 years: A randomised, placebo-controlled, phase 3 trial. Lancet
**2020**, 395, 1423–1433. [Google Scholar] [CrossRef] - Kallas, E.G.; Precioso, A.R.; Palacio, R.; Thomé, B.; Braga, P.E.; Vanni, T.; Campos, L.M.A.; Ferrari, L.; Mondini, G.; Salomão, M.D.; et al. Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adults in Brazil: A two-step, double-blind, randomised placebo-controlled phase 2 trial. Lancet Infect. Dis.
**2020**, 20, 839–850. [Google Scholar] [CrossRef] - Aguiar, M.; Stollenwerk, N.; Halstead, S.B. The risks behind Dengvaxia recommendation. Lancet Infect. Dis.
**2016**, 16, 882–883. [Google Scholar] [CrossRef] - Halstead, S.B.; Russell, P.K. Protective and Immunological Behavior of Yellow Fever Dengue Chimeric Vaccine. Vaccine
**2016**, 34, 1643–1647. [Google Scholar] [CrossRef] [PubMed] - Aguiar, M.; Stollenwerk, N.; Halstead, S.B. The impact of the newly licensed dengue vaccine in endemic countries. PLoS Negl. Trop. Dis.
**2016**, 10, e0005179. [Google Scholar] [CrossRef] [PubMed][Green Version] - World Health Organization Strategic Advisory Group of Experts (SAGE) on Immunization. Background Paper on Dengue Vaccines Prepared by the SAGE Working Group on Dengue Vaccines and the WHO Secretariat. 2016. Available online: http://www.who.int/immunization/sage/meetings/2016/april/1_Background_Paper_Dengue_Vaccines_2016_03_17.pdf? (accessed on 2 April 2016).
- Aguiar, M.; Stollenwerk, N. Dengvaxia efficacy dependency on serostatus: A closer look at more recent data. Clin. Infect. Dis.
**2018**, 66, 641–642. [Google Scholar] [CrossRef] [PubMed][Green Version] - Aguiar, M.; Stollenwerk, N. Dengvaxia: Age as surrogate for serostatus. Lancet Infect. Dis.
**2018**, 18, 245. [Google Scholar] [CrossRef][Green Version] - Sanofi Updates Information on Dengue Vaccine. Available online: https://www.sanofi.com/en/media-room/press-releases/2017/2017-11-29-17-36-30 (accessed on 29 November 2017).
- World Health Organization. Revised SAGE Recommendation on Use of Dengue Vaccine. 2018. Available online: https://www.who.int/immunization/diseases/dengue/revised_SAGE_recommendations_dengue_vaccines_apr2018/en/ (accessed on 19 April 2018).
- Halstead, S.B.; Katzelnick, L.C.; Russell, P.K.; Markoff, L.; Aguiar, M.; Dans, L.R.; Dans, A.L. Ethics of a partially effective dengue vaccine: Lessons from the Philippines. Vaccine
**2020**, 38, 5572–5576. [Google Scholar] [CrossRef] - Aguiar, M. Dengue vaccination: A more ethical approach is needed. Lancet
**2018**, 391, 1769–1770. [Google Scholar] [CrossRef] - Aguiar, M.; Mateus, L.; Stollenwerk, N. The currently best estimate for worldwide dengue vaccine efficacy. AIP Conf. Proc.
**2016**, 1738, 390014. [Google Scholar] - Sabin, A.B. Research on dengue during World War II. Am. J. Trop. Med. Hyg.
**1952**, 1, 30–50. [Google Scholar] [CrossRef][Green Version] - Anderson, K.B.; Gibbons, R.V.; Cummings, D.A.; Nisalak, A.; Green, S.; Libraty, D.H.; Jarman, R.G.; Srikiatkhachorn, A.; Mammen, M.P.; Darunee, B.; et al. A Shorter Time Interval Between First and Second Dengue Infections Is Associated With Protection From Clinical Illness in a School-based Cohort in Thailand. J. Infect. Dis.
**2013**, 209, 360–368. [Google Scholar] [CrossRef] - Stollenwerk, N.; Jansen, V. Population Biology and Criticality: From Critical Birth—Death Processes to Self-Organized Criticality in Mutation Pathogen Systems; Imperial College Press; World Scientific: London, UK, 2011. [Google Scholar]
- Stollenwerk, N.; Aguiar, M.; Ballesteros, S.; Boto, J.; Kooi, B.; Mateus, L. Dynamic noise, chaos and parameter estimation in population biology. R. Soc. Interface Focus
**2012**, 2, 156–169. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mateus, L.; Stollenwerk, N.; Zambrini, J.C. Stochastic Models in Population Biology: From Dynamic Noise to Bayesian Description and Model Comparison for Given Data Sets. Int. J. Comput. Math.
**2013**, 90, 2161–2173. [Google Scholar] [CrossRef] - Mateus, L.; Masoero, D.; Rocha, F.; Aguiar, M.; Skwara, U.; Ghaffari, P.; Zambrini, J.C.; Stollenwerk, N. Epidemiological models in semiclassical approximation: An analytically solvable model as test case. In Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, Cadiz, Spain, 3–7 July 2014; ISBN 978-84-616-9216-3. [Google Scholar]

**Figure 1.**Bayesian estimate of DENVax vaccine efficacies (VE) against virologically confirmed dengue for the first 12-month surveillance (part 1). In (

**a**) DEN3 serotype-specific vaccine efficacy by serostatus. Red and blue curves show our estimates for the seronegative and seropositive individuals, respectively. In (

**b**) serotype-specific VE estimations. The raw data used to estimate the distribution by dengue serotype for individuals aged 4–16 years old was obtained in [9] and are shown in Table 1. High vaccine efficacy for dengue serotype 2 and intermediate to low vaccine efficacy for the other serotypes are observed.

**Figure 2.**Bayesian estimates comparison of DENVax vaccine efficacies (VE) against virologically confirmed dengue cases. Yellow and light blue curves show the estimates for the first 12 months (part 1) and the 18 months (part 2) surveillance, respectively. In (

**a**) overall VE estimations for all serotypes, in (

**b**) VE estimation for seronegative individuals and in (

**c**) VE estimations for seropositive individuals. Data from Table 1 and Table 2, in good agreement with results reported in [9,10], are used to estimate the distribution by dengue serotype and serostatus for individuals aged 4–16 years old. Vaccine efficacy is decreasing over time.

**Figure 3.**Bayesian estimate of vaccine efficacies (VE) against virologically confirmed dengue. In (

**a**) serotype-specific VE for Dengvaxia, Sanofi Pasteur. The raw data used for VE estimation by dengue serotype for individuals aged 9 years and older was obtained in [8]. In (

**b**) serotype-specific VE for DENVax, Takeda. The raw data used to estimate the VE by dengue serotype for individuals aged 4–16 years old was obtained in [10] and are shown in Table 2.

**Table 1.**Compilation of vaccine efficacies estimation for Takeda’s DENVax vaccine phase 3 trial post-vaccination surveillance period part 1 (12 months). Section A shows the vaccine efficacies by serostatus and serotype, and Section B shows the overall vaccine efficacy by serotype. Highlighting problems observed for serotypes 3 (blue) and 4 (grey) are indicated. The raw data used for the Bayesian analysis are available in [9].

Part 1 Efficacy Data of the TAK-003 Phase 3 Trial | |||||||||
---|---|---|---|---|---|---|---|---|---|

section A | section B | ||||||||

Seropositive at baseline (82.2%) | Seronegative at baseline (74.9%) | Overall (seropositive and seronegative) | |||||||

vaccine efficacy | |||||||||

Dengue Serotype | Vaccinated | Control | Estimated vaccine | Vaccinated | Control | Estimated Vaccine | Vaccinated | Control | Estimated vaccine |

($n=9167$) | ($n=4589$) | efficacy and 95% | ($n=3531$) | ($n=1726$) | efficacy and 95% | ($n=$ 12,700) | ($n=6316$) | efficacy and 95% | |

Dengue cases | Dengue cases | Confidence Interval | Dengue cases | Dengue cases | Confidence Interval | Dengue cases | Dengue cases | Confidence Interval | |

ALL | 41 | 110 | $81.4\%$ | 20 | 39 | $74.8\%$ | 61 | 149 | $79.7\%$ |

[$73.6\%,87.1\%$] | [$57.4\%,85.4\%$] | [$72.8\%,85.1\%$] | |||||||

$DEN1$ | 7 | 17 | $78.9\%$ | 9 | 13 | $65.9\%$ | 16 | 30 | $73.2\%$ |

[$51.8\%,91.4\%$] | [$22.2\%,85.8\%$] | [$52.2\%,85.4\%$] | |||||||

$DEN2$ | 3 | 42 | $96.2\%$ | 0 | 22 | $100\%$ | 3 | 64 | $97.5\%$ |

[$89.9\%,98.8\%$] | [$93.6\%,99.3\%$] | ||||||||

$DEN3$ | 28 | 47 | $70.0\%$ | 11 | 4 | $\mathbf{-}\mathbf{31.2}\mathbf{\%}$ | 39 | 51 | $61.9\%$ |

[$52.6\%,81.4\%$] | [$\mathbf{-}\mathbf{353.2}\mathbf{\%}\mathbf{,}\mathbf{53.8}\mathbf{\%}$] | [$42.4\%,75.8\%$] | |||||||

$DEN4$ | 3 | 4 | $\mathbf{61.9}\mathbf{\%}$ | 0 | 0 | inconclusive | 3 | 4 | $\mathbf{61.9}\mathbf{\%}$ |

[$\mathbf{-}\mathbf{63.2}\mathbf{\%}\mathbf{,}\mathbf{91.9}\mathbf{\%}$] | [$\mathbf{-}\mathbf{62.4}\mathbf{\%}\mathbf{,}\mathbf{91}.\mathbf{9}\mathbf{\%}$] |

**Table 2.**Compilation of vaccine efficacies estimation for Takeda’s DENVax vaccine phase 3 trial post-vaccination surveillance period part 2 (18 months). Section A shows the vaccine efficacies by serostatus and serotype, and Section B shows the overall vaccine efficacy by serotype. Highlighting problems observed for serotypes 3 (blue) and 4 (grey) are indicated. The raw data used for the Bayesian analysis are available in [10].

Part 2 Efficacy Data of the TAK-003 Phase 3 Trial | |||||||||
---|---|---|---|---|---|---|---|---|---|

section A | section B | ||||||||

Seropositive at baseline (82.2%) | Seronegative at baseline (74.9%) | Overall (seropositive and seronegative) | |||||||

vaccine efficacy | |||||||||

Dengue Serotype | Vaccinated | Control | Estimated vaccine | Vaccinated | Control | Estimated Vaccine | Vaccinated | Control | Estimated vaccine |

($n=9167$) | ($n=4589$) | efficacy and 95% | ($n=3531$) | ($n=1726$) | efficacy and 95% | ($n=$ 12,700) | ($n=6316$) | efficacy and 95% | |

Dengue cases | Dengue cases | Confidence Interval | Dengue cases | Dengue cases | Confidence Interval | Dengue cases | Dengue cases | Confidence Interval | |

ALL | 75 | 150 | $75.8\%$ | 39 | 56 | $66.1\%$ | 114 | 206 | $72.5\%$ |

[$67.2\%,81.0\%$] | [$48.9\%,77.3\%$] | [$65.6\%,78.1\%$] | |||||||

$DEN1$ | 21 | 37 | $71.2\%$ | 17 | 25 | $66.7\%$ | 38 | 62 | $69.4\%$ |

[$51.8\%,83.3\%$] | [$39.2\%,82.1\%$] | [$54.6\%,79.7\%$] | |||||||

$DEN2$ | 7 | 54 | $93.2\%$ | 1 | 26 | $97.7\%$ | 8 | 80 | $94.6\%$ |

[$91.1\%,97.1\%$] | [$90.7\%,99.7\%$] | [$90.3\%,97.7\%$] | |||||||

$DEN3$ | 43 | 54 | $60.3\%$ | 20 | 6 | $\mathbf{-}\mathbf{59.9}\mathbf{\%}$ | 63 | 60 | $47.7\%$ |

[$40.6\%,73.2\%$] | [$\mathbf{-}\mathbf{328.5}\mathbf{\%}\mathbf{,}\mathbf{31.1}\mathbf{\%}$] | [$25.4\%,63.1\%$] | |||||||

$DEN4$ | 4 | 5 | $\mathbf{59.5}\mathbf{\%}$ | 1 | 0 | inconclusive | 5 | 5 | $\mathbf{50.1}\mathbf{\%}$ |

[$\mathbf{-}\mathbf{47.2}\mathbf{\%}\mathbf{,}\mathbf{89.4}\mathbf{\%}$] | [$\mathbf{-}\mathbf{72.5}\mathbf{\%}\mathbf{,}\mathbf{85.4}\mathbf{\%}$] |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Aguiar, M.; Stollenwerk, N. The Impact of Serotype Cross-Protection on Vaccine Trials: DENVax as a Case Study. *Vaccines* **2020**, *8*, 674.
https://doi.org/10.3390/vaccines8040674

**AMA Style**

Aguiar M, Stollenwerk N. The Impact of Serotype Cross-Protection on Vaccine Trials: DENVax as a Case Study. *Vaccines*. 2020; 8(4):674.
https://doi.org/10.3390/vaccines8040674

**Chicago/Turabian Style**

Aguiar, Maíra, and Nico Stollenwerk. 2020. "The Impact of Serotype Cross-Protection on Vaccine Trials: DENVax as a Case Study" *Vaccines* 8, no. 4: 674.
https://doi.org/10.3390/vaccines8040674