Enhancement of Immune Response and Anti-Infection of Mice by Porcine Antimicrobial Peptides and Interleukin-4/6 Fusion Gene Encapsulated in Chitosan Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the Recombinant Eukaryotic Expression Plasmid
2.2. Large-Scale Preparation of VAP, VAP4/6, and pVAX1
2.3. Preparation and Detection of Recombinant Plasmids Encapsulated in Chitosan Nanoparticles
2.4. Biological Activity Assay of CS-VAP, CS-VAP4/6, and CS-pVAX1 in Pig Lymphocytes
2.5. Animal Vaccination
2.6. Immunological Assays In Vivo
2.6.1. Assay of CD4 and CD8 Positive T Cells by Flow Cytometry
2.6.2. Assays of IgG, IgG1, IgG2 by Sandwich ELISA
2.6.3. Analysis of Immune Gene Expression by Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR)
2.7. Statistical Analysis
3. Results
3.1. Preparation of Recombinant Plasmids
3.2. Preparation of Chitosan Nanoparticles
3.3. Bioactivity Assay of VAP and VAP4/6 Proteins In Vitro
3.4. Changes of Th and Tc Cells
3.5. Changes of the Level of IgG, IgG1, and IgG2a
3.6. Changes of Immune Gene Expression
3.6.1. Changes of Expression Levels of TLR Genes
3.6.2. Changes of Expression Levels of Antimicrobial Peptide Gene
3.6.3. Changes of Expression Levels of Immune Memory Relative Genes
3.6.4. Change of Expression Levels of Cytokine Genes
3.7. Responses to Challenge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef]
- Aguilar, J.C.; Rodriguez, E.G. Vaccine adjuvants revisited. Vaccine 2007, 25, 3752–3762. [Google Scholar] [CrossRef]
- Hiroyuki, K.; Yasuo, Y.; Yasuhiro, A.; Shuhei, A.; Kazufumi, K.; Tetsuya, N.; Tomoaki, Y.; Ritsuko, K.K.; Kazuyoshi, I.; Shigefumi, O. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J. Virol. 2010, 84, 12703–12712. [Google Scholar] [CrossRef] [Green Version]
- Hilton, L.S.; Bean, A.G.D.; Lowenthal, J.W. The emerging role of avian cytokines as immunotherapeutics and vaccine adjuvants. Vet. Immunol. Immunopathol. 2002, 85, 119–128. [Google Scholar] [CrossRef]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boman, H.G.; Agerberth, B.; Boman, A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 1993, 61, 2978–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldhuizen, E.J.; Schneider, V.A.; Agustiandari, H.; van Dijk, A.; van Bokhoven, J.L.T.; Bikker, F.J.; Haagsman, H.P. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS ONE 2014, 9, e95939. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Song, Y.S.; Kim, Y.C.; Kim, Y.; Hahm, K.S.; Kim, J.I. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun. 2002, 296, 1044–1050. [Google Scholar] [CrossRef]
- Park, K.; Oh, D.; Song, Y.S.; Hahm, K.S.; Kim, Y. Structural Studies of Porcine Myeloid Antibacterial Peptide PMAP-23 and Its Analogues in DPC Micelles by NMR Spectroscopy. Biochem. Biophys. Res. Commun. 2002, 290, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.A.; Hurst, M.A.; Fujii, C.A.; Kung, A.H.; Ho, J.F.; Cheng, F.C.; Loury, D.J.; Fiddes, J.C. Protegrin-1: A broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 1997, 41, 1738–1742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, C.; Zheng, M.; Chen, J.L.; Meng, M.J.; Zhao, Z.Z.; Chen, Q.; Xie, Z.; Li, J.L.; Yang, Y.; et al. Enhancement of immunity to an Escherichia coli vaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6. Vaccine 2007, 25, 7094–7101. [Google Scholar] [CrossRef] [PubMed]
- Bozkir, A.; Saka, O.M. Chitosan nanoparticles for plasmid DNA delivery: Effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 2004, 11, 107–112. [Google Scholar] [CrossRef]
- Bordi, F.; Chronopoulou, L.; Palocci, C.; Bomboi, F.; Martino, A.D.; Cifani, N.; Pompili, B.; Ascenzioni, F.; Sennato, S.J.C.; Physicochemical, S.A.; et al. Chitosan–DNA complexes: Effect of molecular parameters on the efficiency of delivery. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 184–190. [Google Scholar] [CrossRef]
- Murphy, J.C.; Wibbenmeyer, J.A.; Fox, G.E.; Willson, R.C. Purification of plasmid DNA using selective precipitation by compaction agents. Nat. Biotechnol. 1999, 17, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Ogikubo, Y.; Norimatsu, M.; Noda, K.; Takahashi, J.; Inotsume, M.; Tsuchiya, M.; Tamura, Y. Evaluation of the bacterial endotoxin test for quantification of endotoxin contamination of porcine vaccines. Biologicals 2004, 32, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Bodmeier, R.; Chen, H.G.; Paeratakul, O. A Novel Approach to the Oral Delivery of Micro- or Nanoparticles. Pharm. Res. 1989, 6, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368. [Google Scholar] [CrossRef]
- Gerdts, V. Adjuvants for veterinary vaccines—Types and modes of action. Berl. Munch. Tierarztl. Wochenschr. 2015, 128, 456–463. [Google Scholar]
- Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000, 85, 9–18. [Google Scholar] [CrossRef]
- Lee, E.Y.; Lee, M.W.; Wong, G.C.L. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin. Cell Dev. Biol. 2019, 88, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Ohto, U.; Shibata, T.; Tanji, H.; Ishida, H.; Krayukhina, E.; Uchiyama, S.; Miyake, K.; Shimizu, T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015, 520, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Gilliet, M.; Lande, R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr. Opin. Immunol. 2008, 20, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Lande, R.; Gregorio, J.; Facchinetti, V.; Chatterjee, B.; Wang, Y.H.; Homey, B.; Cao, W.; Wang, Y.H.; Su, B.; Nestle, F.O.; et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007, 449, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Redpath, S.A.; Heieis, G.; Perona-Wright, G. Spatial regulation of IL-4 signalling in vivo. Cytokine 2015, 75, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Rincon, M. Interleukin-6: From an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012, 33, 571–577. [Google Scholar] [CrossRef]
- Arca, H.C.; Gunbeyaz, M.; Senel, S. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev. Vaccines 2009, 8, 937–953. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers. Mar. Drugs 2010, 8, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Andrea, M.; Federico, B.; Giancarlo, O.; Federica, M.; Cleofe, P. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties. Nanotechnology 2008, 19, 055302. [Google Scholar] [CrossRef]
Name | Kinds | Spectrum | Mature Sequences |
---|---|---|---|
PR-39 | Cathelicidin | G− | RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFPGKR |
Tritrpticin | Cathelicidin | G+, G− | VRRFPWWWPFLRR |
PAMP-23 | Cathelicidin | G+, G− | RIIDLLWRVRRPQKPKFVTVWVR |
PG-1 | Cathelicidin | G+, G−, F, V | RGGRLCYCRRRFCVCVGRG |
Gene | Oligonucleotide Sequence (5′-3′) |
---|---|
β-actin-F | TACGCCAACACGGTGCTGTC |
β-actin-R | GTACTCCTGCTTGCTGATCCACAT |
TLR-1-F | GGACCTACCCTTGCAAACAA |
TLR-1-R | GGTGGCACAAGATCACCTTT |
TLR-4-F | ACCTGGCTGGTTTACACGTC |
TLR-4-R | CTGCCAGAGACATTGCAGAA |
TLR-6-F | CCAAGAACAAAAGCCCTGAG |
TLR-6-R | TGTTTTGCAACCGATTGTGT |
TLR-9-F | ACTGAGCACCCCTGCTTCTA |
TLR-9-R | AGATTAGTCAGCGGCAGGAA |
IL-1-F | TGCTGTCGGACCCAT |
IL-1-R | TGTGCCGTCTTTCATTAC |
IL-2-F | AAGCACAGCAGCAGCAGCAG |
IL-2-R | GCCGCAGAGGTCCAAGTTCATC |
IL-4-F | GCCATATCCACGGATGCGACAA |
IL-4-R | GGTGTTCTTCGTTGCTGTGAGGA |
IL-6-F | TCTTGGGACTGATGCTGGTGACA |
IL-6-R | AGCCTCCGACTTGTGAAGTGGTAT |
IL-7-F | TTCCTCCACTGATCCTTGTTCT |
IL-7-R | AGCAGCTTCCTTTGTATCATCAC |
IL-12-F | CAATCACGCTACCTCCTCTTTT |
IL-12-R | CAGCAGTGCAGGAATAATGTTTC |
IL-15-F | CATCCATCTCGTGCTACTTGTG |
IL-15-R | GCCTCTGTTTTAGGGAGACCT |
IL-23-F | TGCTGGATTGCAGAGCAGTAA |
IL-23-R | GCATGCAGAGATTCCGAGAGA |
IFN-γ-F | AGGCCATCAGCAACAACATA |
IFN-γ-R | TGAGCTCATTGAATGCTTGG |
TNF-α-F | CCTGTAGCCCACGTCGTAG |
TNF-α-R | GGGAGTAGACAAGGTACAACCC |
CAMP-F | CAGCAGTCCCTAGACACCAAT |
CAMP-R | CACAGACTTGGGAGTATCTGGA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Xiao, Y.; Wan, X.; Chen, Q.; Wang, H.; Li, J.; Chen, J.; Gao, R. Enhancement of Immune Response and Anti-Infection of Mice by Porcine Antimicrobial Peptides and Interleukin-4/6 Fusion Gene Encapsulated in Chitosan Nanoparticles. Vaccines 2020, 8, 552. https://doi.org/10.3390/vaccines8030552
Peng J, Xiao Y, Wan X, Chen Q, Wang H, Li J, Chen J, Gao R. Enhancement of Immune Response and Anti-Infection of Mice by Porcine Antimicrobial Peptides and Interleukin-4/6 Fusion Gene Encapsulated in Chitosan Nanoparticles. Vaccines. 2020; 8(3):552. https://doi.org/10.3390/vaccines8030552
Chicago/Turabian StylePeng, Junjie, Yongle Xiao, Xiaoping Wan, Qian Chen, Huan Wang, Jiangling Li, Jianlin Chen, and Rong Gao. 2020. "Enhancement of Immune Response and Anti-Infection of Mice by Porcine Antimicrobial Peptides and Interleukin-4/6 Fusion Gene Encapsulated in Chitosan Nanoparticles" Vaccines 8, no. 3: 552. https://doi.org/10.3390/vaccines8030552
APA StylePeng, J., Xiao, Y., Wan, X., Chen, Q., Wang, H., Li, J., Chen, J., & Gao, R. (2020). Enhancement of Immune Response and Anti-Infection of Mice by Porcine Antimicrobial Peptides and Interleukin-4/6 Fusion Gene Encapsulated in Chitosan Nanoparticles. Vaccines, 8(3), 552. https://doi.org/10.3390/vaccines8030552