Antibody Response to the Furin Cleavable Twenty-Seven Amino Acid Peptide (p27) of the Fusion Protein in Respiratory Syncytial Virus (RSV) Infected Adult Hematopoietic Cell Transplant (HCT) Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Biotinylated RSV p27 Peptide
2.3. Biotinylated RSV p27 Monoclonal Antibody
2.4. Real-Time, Reverse-Transcription Polymerase Chain Reaction (rtRT-PCR)
2.5. Enzyme-Linked Immunosorbent Assays (ELISA)
2.6. P27 Competitive Antibody (P27CA) Assay
2.7. Statistical Analysis
3. Results
3.1. Demographic and Clinical Variables of HCT Recipients
3.2. Sensitivity and Specificity of P27 ELISA and P27 Competitive Antibody Assay
3.3. P27 Antibodies in Sera and Nasal Washes of RSV Infected HCT Recipients
3.4. P27 Antibodies in Sera and Nasal Washes of RSV Infected HCT Recipients Who Shed RSV <14 Days and ≥14 Days
3.5. P27 Antibodies in Sera and Nasal Washes of HCT Recipients Infected with RSV/A Versus RSV/B
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Meeting Participation
References
- Stockman, L.J.; Curns, A.T.; Anderson, L.J.; Fischer-Langley, G. Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997–2006. Pediatr. Infect. Dis. J. 2012, 31, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Widmer, K.; Zhu, Y.; Williams, J.V.; Griffin, M.R.; Edwards, K.M.; Talbot, H.K. Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults. J. Infect. Dis. 2012, 206, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.B.; Weinberg, G.A.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Schultz, A.F.; Poehling, K.A.; Szilagyi, P.G.; Griffin, M.R.; Williams, J.V.; et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics 2013, 132, e341–e348. [Google Scholar] [CrossRef]
- Lee, N.; Lui, G.C.; Wong, K.T.; Li, T.C.; Tse, E.C.; Chan, J.Y.; Yu, J.; Wong, S.S.; Choi, K.W.; Wong, R.Y.; et al. High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections. Clin. Infect. Dis. 2013, 57, 1069–1077. [Google Scholar] [CrossRef]
- Lehners, N.; Schnitzler, P.; Geis, S.; Puthenparambil, J.; Benz, M.A.; Alber, B.; Luft, T.; Dreger, P.; Eisenbach, C.; Kunz, C.; et al. Risk factors and containment of respiratory syncytial virus outbreak in a hematology and transplant unit. Bone Marrow Transpl. 2013, 48, 1548–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemaly, R.F.; Shah, D.P.; Boeckh, M.J. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin. Infect. Dis. 2014, 59, 344–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, S.; Raybould, J.E.; Sastry, S.; de la Cruz, O. Respiratory viruses in transplant recipients: More than just a cold. Clinical syndromes and infection prevention principles. Int. J. Infect. Dis. 2017, 62, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Guthrie, K.A.; Waghmare, A.; Walsh, E.E.; Falsey, A.R.; Kuypers, J.; Cent, A.; Englund, J.A.; Boeckh, M. Respiratory syncytial virus in hematopoietic cell transplant recipients: Factors determining progression to lower respiratory tract disease. J. Infect. Dis. 2014, 209, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Ribavirin aerosol approved for severe cases of RSV in infants and young children. FDA Drug Bull 1986, 16, 7. [Google Scholar]
- American Academy of Pediatrics Subcommittee on Diagnosis and Management of Bronchiolitis. Diagnosis and management of bronchiolitis. Pediatrics 2006, 118, 1774–1793. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.; Oliver, C.; Prince, G.A.; Hemming, V.G.; Pfarr, D.S.; Wang, S.C.; Dormitzer, M.; O’Grady, J.; Koenig, S.; Tamura, J.K.; et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 1997, 176, 1215–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, J.R. Palivizumab prophylaxis of respiratory syncytial virus disease from 1998 to 2002: Results from four years of palivizumab usage. Pediatr. Infect. Dis. J. 2003, 22, 46–54. [Google Scholar] [CrossRef]
- Joint statement with the Fetus and Newborn Committee. Palivizumab and respiratory syncytial virus immune globulin intravenous for the prophylaxis of respiratory syncytial virus infection in high risk infants. Paediatr. Child Health 1999, 4, 474–489. [Google Scholar]
- American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn. Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. Pediatrics 2003, 112, 1442–1446. [Google Scholar] [CrossRef]
- WHO Vaccine Pipeline Tracker. Available online: https://docs.google.com/spreadsheets/d/19otvINcayJURCMg76xWO4KvuyedYbMZDcXqbyJGdcZM/pubhtml# (accessed on 14 January 2020).
- Gonzalez-Reyes, L.; Ruiz-Arguello, M.B.; Garcia-Barreno, B.; Calder, L.; Lopez, J.A.; Albar, J.P.; Skehel, J.J.; Wiley, D.C.; Melero, J.A. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc. Natl. Acad. Sci. USA 2001, 98, 9859–9864. [Google Scholar] [CrossRef] [Green Version]
- Bolt, G.; Pedersen, L.O.; Birkeslund, H.H. Cleavage of the respiratory syncytial virus fusion protein is required for its surface expression: Role of furin. Virus Res. 2000, 68, 25–33. [Google Scholar] [CrossRef]
- Schwarz, T.F.; McPhee, R.A.; Launay, O.; Leroux-Roels, G.; Talli, J.; Picciolato, M.; Gao, F.; Cai, R.; Nguyen, T.L.; Dieussaert, I.; et al. Immunogenicity and Safety of 3 Formulations of a Respiratory Syncytial Virus Candidate Vaccine in Nonpregnant Women: A Phase 2, Randomized Trial. J. Infect. Dis. 2019, 220, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Novavax. A Study to Determine the Safety and Efficacy of the RSV F Vaccine to Protect Infants via Maternal Immunization; ClinicalTrials.gov Identifier: NCT02624947; ClinicalTrials.gov: Rockville, MD, USA, 2019.
- GlaxoSmithKline. Safety, Reactogenicity and Immunogenicity Study of Different Formulations of GlaxoSmithKline (GSK) Biologicals’ Investigational RSV Vaccine (GSK3003891A), in Healthy Women; ClinicalTrials.gov Identifier: NCT02360475; ClinicalTrials.gov: Rockville, MD, USA, 2016.
- Fuentes, S.; Coyle, E.M.; Beeler, J.; Golding, H.; Khurana, S. Antigenic fingerprinting following primary RSV infection in young children identifies novel antigenic sites and reveals unlinked evolution of human antibody repertoires to fusion and attachment glycoproteins. PLoS Pathog. 2016, 12, e1005554. [Google Scholar] [CrossRef]
- Fuentes, S.; Hahn, M.; Chilcote, K.; Chemaly, R.F.; Shah, D.P.; Ye, X.; Avadhanula, V.; Piedra, P.A.; Golding, H.; Khurana, S. Antigenic fingerprinting of respiratory syncytial virus (rsv)-a-infected hematopoietic cell transplant recipients reveals importance of mucosal anti-rsv g antibodies in control of rsv infection in Humans. J. Infect. Dis. 2020, 221, 636–646. [Google Scholar] [CrossRef]
- Ye, X.; Iwuchukwu, O.P.; Avadhanula, V.; Aideyan, L.O.; McBride, T.J.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.A.; Shah, D.P.; Chemaly, R.F.; et al. Comparison of palivizumab-like antibody binding to different conformations of the rsv f protein in rsv-infected adult hematopoietic cell transplant recipients. J. Infect. Dis. 2018, 217, 1247–1256. [Google Scholar] [CrossRef]
- Ye, X.; Iwuchukwu, O.P.; Avadhanula, V.; Aideyan, L.O.; McBride, T.J.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.A.; Shah, D.P.; Chemaly, R.F.; et al. Antigenic site-specific competitive antibody responses to the fusion protein of respiratory syncytial virus were associated with viral clearance in hematopoietic cell transplantation adults. Front. Immunol. 2019, 10, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hause, A.M.; Henke, D.M.; Avadhanula, V.; Shaw, C.A.; Tapia, L.I.; Piedra, P.A. Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B. PLoS ONE 2017, 12, e0175792. [Google Scholar]
- Avadhanula, V.; Chemaly, R.F.; Shah, D.P.; Ghantoji, S.S.; Azzi, J.M.; Aideyan, L.O.; Mei, M.; Piedra, P.A. Infection with novel respiratory syncytial virus genotype Ontario (ON1) in adult hematopoietic cell transplant recipients, Texas, 2011–2013. J. Infect. Dis. 2015, 211, 582–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, G.; Budz, L.; Herrler, G. Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J. Biol. Chem. 2001, 276, 31642–31650. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.L.; Mottet, G. Post-translational processing and oligomerization of the fusion glycoprotein of human respiratory syncytial virus. J. Gen. Virol. 1991, 72, 3095–3101. [Google Scholar] [CrossRef]
- Krarup, A.; Truan, D.; Furmanova-Hollenstein, P.; Bogaert, L.; Bouchier, P.; Bisschop, I.J.M.; Widjojoatmodjo, M.N.; Zahn, R.; Schuitemaker, H.; McLellan, J.S.; et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 2015, 6, 8143. [Google Scholar] [CrossRef] [Green Version]
- Leemans, A.; Boeren, M.; Van der Gucht, W.; Pintelon, I.; Roose, K.; Schepens, B.; Saelens, X.; Bailey, D.; Martinet, W.; Caljon, G.; et al. Removal of the n-glycosylation sequon at position n116 located in p27 of the respiratory syncytial virus fusion protein elicits enhanced antibody responses after DNA immunization. Viruses 2018, 10, 426. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, K.; McQuillin, J.; Gardner, P.S. Cell-free and cell-bound antibody in nasal secretions from infants with respiratory syncytial virus infection. Infect. Immun. 1979, 23, 276–281. [Google Scholar] [CrossRef] [Green Version]
Variable | Duration of RSV Shedding | p-Values a | RSV Type | p-Values a | ||
---|---|---|---|---|---|---|
<14 Days (n = 17) | ≥14 Days (n=16) | RSV/A (n = 16) | RSV/B (n =17) | |||
Age (y), mean ± SD | 52.4 ± 14.6 | 50.3 ± 18.2 | 0.72 | 52.5 ± 15.4 | 50.4 ± 17.4 | 0.71 |
Female, % (n) | 62.5 (10) | 37.5 (6) | 0.30 | 56.3 (9) | 43.8 (7) | 0.49 |
Race, % (n) | 0.38 | 0.54 | ||||
White | 41.2 (7) | 58.8 (10) | 47.1 (8) | 52.9 (9) | ||
Black | 75.0 (3) | 25.0 (1) | 25.0 (1) | 75.0 (3) | ||
Hispanic | 50.0 (5) | 50.0 (5) | 50.0 (5) | 25.0 (5) | ||
Asian | 100.0 (2) | 0.0 (0) | 100.0 (2) | 0.0 (0) | ||
ANC b at enrollment, mean ± SD (n) | 3.35 ± 2.32 (16) | 2.82 ± 1.92 (15) | 0.50 | 3.35 ± 2.52 | 2.82 ± 1.62 (15) | 0.49 |
ALC c at enrollment, mean ± SD (n) | 1.29 ± 0.69 (16) | 1.10 ± 1.09 (15) | 0.57 | 1.25 ± 0.78 | 1.16 ± 1.03 (15) | 0.79 |
BMI d, mean ± SD | 27.3 ± 6.0 | 28.3 ± 7.5 | 0.70 | 27.8 ± 8.3 | 27.8 ± 5.0 | >0.99 |
Type of transplant, % (n) | 0.12 | 0.12 | ||||
autologous | 77.8 (7) | 22.2 (2) | 22.2 (2) | 77.8 (7) | ||
allogeneic | 41.7 (10) | 58.3 (14) | 58.3 (14) | 41.7 (10) | ||
Time from HCT (d), median (range) | 251 (6–945) | 99.5 (5–1067) | 0.23 | 272.5 (6–1067) | 157 (5–486) | 0.20 |
p27 Antibody Test | Acute (n = 33) | Convalescent (n = 33) | Fold Change | p Value b |
---|---|---|---|---|
Serum IgG ELISA | 413.1 (234.3, 719.1) a | 653.2 (387.6, 1069.5) | 1.9 | 0.075 |
Serum IgA ELISA | 36.6 (18.2, 66.1) | 34.0 (13.8, 69.4) | 0.9 | 0.84 |
Serum P27CA | 288.3 (109.5, 752.6) | 2361.5 (1043.7, 4910.5) | 8.1 | <0.001 |
Mucosal IgG ELISA | 2.7 (0.8, 9.6) | 1.3 (0.4, 3.7) | 0.5 | 0.463 |
Mucosal IgA ELISA | 2.4 (1.0, 5.6) | 1.1 (0.5, 2.3) | 0.5 | 0.280 |
Mucosal P27CA | 146.3 (75.0, 287.4) | 134.6 (77.0, 251.6) | 0.9 | 0.762 |
p27 Antibody Test | Serum | <14 Days (n = 17) | Fold Change | ≥14 Days (n = 16) | Fold Change | p-Value b |
---|---|---|---|---|---|---|
Serum IgG ELISA | Acute | 405.0 (174.3, 946.4)a | 1.1 | 422.0 (203.6, 946.0) | 2.2 | 0.942 |
Convalescent | 461.6 (24.7, 922.0) | 944.7 (439.5, 1920.2) | 0.183 | |||
Serum IgA ELISA | Acute | 43.8 (14.6, 105.8) | 0.6 | 30.3 (11.1, 60.1) | 1.6 | 0.587 |
Convalescent | 24.4 (6.1, 74.1) | 48.2 (15.9, 108.0) | 0.413 | |||
Serum P27CA | Acute | 484.5 (118.6, 1833.0) | 9.8 | 166.1 (52.1, 639.4) | 6.8 | 0.271 |
Convalescent | 4756.7 (1593.3, 10,822.9) | 1122.2 (318.5, 3027.5) | 0.071 | |||
Mucosal IgG ELISA | Acute | 2.9 (0.4, 21.1) | 0.2 | 2.6 (0.4, 13.6) | 0.9 | 0.935 |
Convalescent | 0.7 (0.1, 4.1) | 2.3 (0.4, 12.3) | 0.574 | |||
Mucosal IgA ELISA | Acute | 1.7 (0.5, 6.0) | 0.4 | 3.5 (0.9, 11.2) | 0.5 | 0.430 |
Convalescent | 0.7 (0.2, 2.5) | 1.6 (0.4, 5.2) | 0.772 | |||
Mucosal P27CA | Acute | 197.5 (71.0, 563.1) | 1.0 | 106.4 (46.0, 283.0) | 0.8 | 0.378 |
Convalescent | 200.1 (84.7, 470.9) | 88.3 (41.2, 213.7) | 0.195 |
P27 Antibody Test | Serum Type | RSV/A (n = 16) | Fold Change | RSV/B (n = 17) | Fold Change | p Value b |
---|---|---|---|---|---|---|
Serum IgG ELISA | Acute | 462.7 (187.8, 1176.0) a | 1.3 | 371.3 (189.8, 746.1) | 1.9 | 0.698 |
Convalescent | 593.0 (262.9, 1206.1) | 715.4 (340.6, 1549.5) | 0.730 | |||
Serum IgA ELISA | Acute | 50.3 (18.1, 119.6) | 0.5 | 27.2 (10.0, 61.1) | 1.6 | 0.363 |
Convalescent | 26.8 (7.6, 73.7) | 42.5 (11.0, 117.7) | 0.580 | |||
Serum P27CA | Acute | 1081.8 (250.1, 3565.9) | 2.5 | 83.0 (33.42, 267.2) | 25.0 | 0.006 |
Convalescent | 2710.9 (898.7, 6992.4) | 2073.9 (501.5, 6835.9) | 0.744 | |||
Mucosal IgG ELISA | Acute | 4.9 (1.7, 32.8) | 0.4 | 1.6 (0.3, 8.1) | 0.6 | 0.378 |
Convalescent | 1.8 (0.3, 10.1) | 1.0 (0.2, 4.9) | 0.854 | |||
Mucosal IgA ELISA | Acute | 1.5 (0.4, 5.9) | 0.7 | 3.7 (1.3, 10.7) | 0.3 | 0.339 |
Convalescent | 1.0 (0.3, 3.4) | 1.2 (0.4, 3.6) | 0.567 | |||
Mucosal P27CA | Acute | 173.0 (73.5, 450.1) | 0.9 | 125.0 (47.1, 351.7) | 0.9 | 0.645 |
Convalescent | 166.1 (67.0, 482.8) | 110.4 (53.2, 233.8) | 0.522 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Cabral de Rezende, W.; Iwuchukwu, O.P.; Avadhanula, V.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.-A.; Shah, D.P.; Chemaly, R.F.; Piedra, P.A. Antibody Response to the Furin Cleavable Twenty-Seven Amino Acid Peptide (p27) of the Fusion Protein in Respiratory Syncytial Virus (RSV) Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Vaccines 2020, 8, 192. https://doi.org/10.3390/vaccines8020192
Ye X, Cabral de Rezende W, Iwuchukwu OP, Avadhanula V, Ferlic-Stark LL, Patel KD, Piedra F-A, Shah DP, Chemaly RF, Piedra PA. Antibody Response to the Furin Cleavable Twenty-Seven Amino Acid Peptide (p27) of the Fusion Protein in Respiratory Syncytial Virus (RSV) Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Vaccines. 2020; 8(2):192. https://doi.org/10.3390/vaccines8020192
Chicago/Turabian StyleYe, Xunyan, Wanderson Cabral de Rezende, Obinna Patrick Iwuchukwu, Vasanthi Avadhanula, Laura L. Ferlic-Stark, Kirtida D. Patel, Felipe-Andres Piedra, Dimpy P. Shah, Roy F. Chemaly, and Pedro A. Piedra. 2020. "Antibody Response to the Furin Cleavable Twenty-Seven Amino Acid Peptide (p27) of the Fusion Protein in Respiratory Syncytial Virus (RSV) Infected Adult Hematopoietic Cell Transplant (HCT) Recipients" Vaccines 8, no. 2: 192. https://doi.org/10.3390/vaccines8020192