Challenges and Achievements in Prevention and Treatment of Smallpox
Abstract
:1. Human Smallpox
2. Human Infections by Orthopoxviruses
2.1. Variola Virus (VARV)
2.2. Monkeypox Virus (MPXV)
2.3. Cowpox Virus (CPXV)
2.4. Vaccinia virus (VACV)
3. Smallpox Vaccines
3.1. First Generation Vaccines
3.2. Second Generation Vaccines
3.3. Third and Fourth Generation Vaccines
3.3.1. Modified Vaccinia Ankara (MVA)
3.3.2. LC16m8
3.3.3. NYVAC
3.3.4. dVV-L
3.3.5. Fourth Generation Vaccines
4. Vaccine Potency
5. Correlates of Immunity
6. Animal Models
6.1. VACV, CPXV, and ECTV in Mice
6.2. VACV and Rabbitpox in Rabbits
6.3. MPXV in Rodents and Non-Human Primates (NHPs)
6.4. VARV, CPXV, and Calpox in NHPs
7. Antiviral Therapy
7.1. Vaccinia Immune Globulin (VIG)
7.2. Antiviral Drugs
7.2.1. Cidofovir
7.2.2. Tecovirimat (ST-246)
8. Attempts to Extend the Efficacy of Postexposure Vaccination
8.1. Combining Vaccine and Antivirals
8.2. Combining Vaccine with Immune Modifiers
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, A.; Ladnyi, I.D. Smallpox and Its Eradication; World Health Organization: Geneva, Switzerland, 1988. [Google Scholar]
- WHO. The Global Eradication of Smallpox: Final Report of the Global Commission for the Certification of Smallpox Eradication; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Alibek, K. Biohazard; Random House: New York, NY, USA, 1999. [Google Scholar]
- Arita, I. Discovery of forgotten variola specimens at the national institutes of health in the USA. Expert Rev. Anti-Infect. Ther. 2014, 12, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Director of Laboratory Science and Safety, FDA. Report to the Commissioner FDA Review of the 2014 Discovery of Vials Labeled “Variola” and Other Vials Discovered in an FDA-Occupied Building on the NIH Campus; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2016.
- Kupferschmidt, K. Labmade smallpox is possible, study shows. Science (N. Y.) 2017, 357, 115–116. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M. Smallpox samples are found in FDA storage room in Maryland. BMJ (Clin. Res. Ed.) 2014, 349, g4545. [Google Scholar] [CrossRef] [PubMed]
- Damon, I.K. Fields Virology; Howley, D.M.K.P.M., Ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume 2, pp. 2947–2975. [Google Scholar]
- Breman, J.G.; Henderson, D.A. Diagnosis and management of smallpox. N. Engl. J. Med. 2002, 346, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Bidgood, S.R.; Mercer, J. Cloak and dagger: Alternative immune evasion and modulation strategies of poxviruses. Viruses 2015, 7, 4800–4825. [Google Scholar] [CrossRef] [PubMed]
- Bourquain, D.; Dabrowski, P.W.; Nitsche, A. Comparison of host cell gene expression in cowpox, monkeypox or Vaccinia virus-infected cells reveals virus-specific regulation of immune response genes. Virol. J. 2013, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Esteban, D.J.; Buller, R.M. Ectromelia virus: The causative agent of mousepox. J. Gen. Virol. 2005, 86, 2645–2659. [Google Scholar] [CrossRef] [PubMed]
- Israely, T.; Melamed, S.; Achdout, H.; Erez, N.; Politi, B.; Waner, T.; Lustig, S.; Paran, N. TLR3 and TLR9 agonists improve postexposure vaccination efficacy of live smallpox vaccines. PLoS ONE 2014, 9, e110545. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B.; Hensley, L.E.; Martinez, M.J.; Leduc, J.W.; Rubins, K.H.; Relman, D.A.; Huggins, J.W. Exploring the potential of Variola virus infection of Cynomolgus macaques as a model for human smallpox. Proc. Natl. Acad. Sci. USA 2004, 101, 15196–15200. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.F.; Hammoud, D.A.; Lackemeyer, M.G.; Yellayi, S.; Solomon, J.; Bohannon, J.K.; Janosko, K.B.; Jett, C.; Cooper, K.; Blaney, J.E.; et al. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease. Virology 2015, 481, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Stanford, M.M.; McFadden, G.; Karupiah, G.; Chaudhri, G. Immunopathogenesis of poxvirus infections: Forecasting the impending storm. Immunol. Cell Biol. 2007, 85, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Hutson, C.L.; Lee, K.N.; Abel, J.; Carroll, D.S.; Montgomery, J.M.; Olson, V.A.; Li, Y.; Davidson, W.; Hughes, C.; Dillon, M.; et al. Monkeypox zoonotic associations: Insights from laboratory evaluation of animals associated with the multi-state us outbreak. Am. J. Trop. Med. Hyg. 2007, 76, 757–768. [Google Scholar] [PubMed]
- Nalca, A.; Rimoin, A.W.; Bavari, S.; Whitehouse, C.A. Reemergence of monkeypox: Prevalence, diagnostics, and countermeasures. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 41, 1765–1771. [Google Scholar]
- Rimoin, A.W.; Mulembakani, P.M.; Johnston, S.C.; Lloyd Smith, J.O.; Kisalu, N.K.; Kinkela, T.L.; Blumberg, S.; Thomassen, H.A.; Pike, B.L.; Fair, J.N.; et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the democratic republic of Congo. Proc. Natl. Acad. Sci. USA 2010, 107, 16262–16267. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Hammarlund, E.; Slifka, M.K.; Fruh, K. Cowpox virus evades CTL recognition and inhibits the intracellular transport of MHC class I molecules. J. Immunol. 2007, 178, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Alcami, A. Crme, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J. Virol. 2001, 75, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Fields Virology; Howley, D.M.K.P.M., Ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume 2, pp. 2905–2945. [Google Scholar]
- Costa, G.B.; Borges, I.A.; Alves, P.A.; Miranda, J.B.; Luiz, A.P.; Ferreira, P.C.; Abrahao, J.S.; Moreno, E.C.; Kroon, E.G.; Trindade Gde, S. Alternative routes of zoonotic Vaccinia virus transmission, brazil. Emerg. Infect. Dis. 2015, 21, 2244–2246. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.B.; Miranda, J.B.; Almeida, G.G.; Silva de Oliveira, J.; Pinheiro, M.S.; Goncalves, S.A.; Pimenta Dos Reis, J.K.; Goncalves, R.; Ferreira, P.C.; Bonjardim, C.A.; et al. Detection of Vaccinia virus in urban domestic cats, brazil. Emerg. Infect. Dis. 2017, 23, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.S.; Figueiredo, P.O.; Costa, G.B.; Assis, F.L.; Drumond, B.P.; da Fonseca, F.G.; Nogueira, M.L.; Kroon, E.G.; Trindade, G.S. Vaccinia virus natural infections in brazil: The good, the bad, and the ugly. Viruses 2017, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Abrahao, J.S.; Campos, R.K.; Trindade Gde, S.; Guimaraes da Fonseca, F.; Ferreira, P.C.; Kroon, E.G. Outbreak of severe zoonotic Vaccinia virus infection, southeastern brazil. Emerg. Infect. Dis. 2015, 21, 695–698. [Google Scholar] [CrossRef] [PubMed]
- De Assis, F.L.; Vinhote, W.M.; Barbosa, J.D.; de Oliveira, C.H.; de Oliveira, C.M.; Campos, K.F.; Silva, N.S.; Trindade Gde, S. Reemergence of Vaccinia virus during zoonotic outbreak, para state, brazil. Emerg. Infect. Dis. 2013, 19, 2017–2020. [Google Scholar] [CrossRef] [PubMed]
- Laguardia-Nascimento, M.; de Oliveira, A.P.F.; Azevedo, I.C.; Rivetti Junior, A.V.; Camargos, M.F.; Fonseca Junior, A.A. Spread of poxviruses in livestock in brazil associated with cases of double and triple infection. Arch. Virol. 2017, 162, 2797–2801. [Google Scholar] [CrossRef] [PubMed]
- Willis, N.J. Edward jenner and the eradication of smallpox. Scott. Med. J. 1997, 42, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Winkelstein, W., Jr. Not just a country doctor: Edward jenner, scientist. Epidemiol. Rev. 1992, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Esparza, J.; Schrick, L.; Damaso, C.R.; Nitsche, A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine 2017, 35, 7222–7230. [Google Scholar] [CrossRef] [PubMed]
- Schrick, L.; Tausch, S.H.; Dabrowski, P.W.; Damaso, C.R.; Esparza, J.; Nitsche, A. An early American smallpox vaccine based on horsepox. N. Engl. J. Med. 2017, 377, 1491–1492. [Google Scholar] [CrossRef] [PubMed]
- Paran, N.; Sutter, G. Smallpox vaccines: New formulations and revised strategies for vaccination. Hum. Vaccines 2009, 5, 824–831. [Google Scholar] [CrossRef]
- Voigt, E.A.; Kennedy, R.B.; Poland, G.A. Defending against smallpox: A focus on vaccines. Expert Rev. Vaccines 2016, 15, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Collier, L.H. The development of a stable smallpox vaccine. J. Hyg. 1955, 53, 76–101. [Google Scholar] [CrossRef] [PubMed]
- Nalca, A.; Zumbrun, E.E. Acam2000: The new smallpox vaccine for united states strategic national stockpile. Drug Des. Dev. Ther. 2010, 4, 71–79. [Google Scholar] [CrossRef]
- Bray, M. Pathogenesis and potential antiviral therapy of complications of smallpox vaccination. Antivir. Res. 2003, 58, 101–114. [Google Scholar] [CrossRef]
- Mota, B.E.; Gallardo-Romero, N.; Trindade, G.; Keckler, M.S.; Karem, K.; Carroll, D.; Campos, M.A.; Vieira, L.Q.; da Fonseca, F.G.; Ferreira, P.C.; et al. Adverse events post smallpox-vaccination: Insights from tail scarification infection in mice with Vaccinia virus. PLoS ONE 2011, 6, e18924. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Engler, R. Smallpox, vaccination and adverse reactions to smallpox vaccine. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Volz, A.; Sutter, G. Modified Vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017, 97, 187–243. [Google Scholar] [PubMed]
- Achdout, H.; Lustig, S.; Israely, T.; Erez, N.; Politi, B.; Tamir, H.; Israeli, O.; Waner, T.; Melamed, S.; Paran, N. Induction, treatment and prevention of eczema vaccinatum in atopic dermatitis mouse models. Vaccine 2017, 35, 4245–4254. [Google Scholar] [CrossRef] [PubMed]
- Edghill-Smith, Y.; Golding, H.; Manischewitz, J.; King, L.R.; Scott, D.; Bray, M.; Nalca, A.; Hooper, J.W.; Whitehouse, C.A.; Schmitz, J.E.; et al. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against Monkeypox virus. Nat. Med. 2005, 11, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.N.; Hurley, M.Y.; Dinh, D.V.; Mraz, S.; Vera, J.G.; von Bredow, D.; von Krempelhuber, A.; Roesch, S.; Virgin, G.; Arndtz-Wiedemann, N.; et al. A multicenter, open-label, controlled phase ii study to evaluate safety and immunogenicity of MVA smallpox vaccine (IMVAMUNE) in 18–40 year old subjects with diagnosed atopic dermatitis. PLoS ONE 2015, 10, e0138348. [Google Scholar] [CrossRef]
- Kremer, M.; Suezer, Y.; Volz, A.; Frenz, T.; Majzoub, M.; Hanschmann, K.M.; Lehmann, M.H.; Kalinke, U.; Sutter, G. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog. 2012, 8, e1002557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overton, E.T.; Stapleton, J.; Frank, I.; Hassler, S.; Goepfert, P.A.; Barker, D.; Wagner, E.; von Krempelhuber, A.; Virgin, G.; Meyer, T.P.; et al. Safety and immunogenicity of modified vaccinia Ankara-bavarian nordic smallpox vaccine in vaccinia-naive and experienced human immunodeficiency virus-infected individuals: An open-label, controlled clinical phase II trial. Open Forum Infect. Dis. 2015, 2, ofv040. [Google Scholar] [CrossRef] [PubMed]
- Von Sonnenburg, F.; Perona, P.; Darsow, U.; Ring, J.; von Krempelhuber, A.; Vollmar, J.; Roesch, S.; Baedeker, N.; Kollaritsch, H.; Chaplin, P. Safety and immunogenicity of modified vaccinia Ankara as a smallpox vaccine in people with atopic dermatitis. Vaccine 2014, 32, 5696–5702. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.S.; Earl, P.L.; Eller, L.A.; Moss, B. Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic Vaccinia virus challenge. Proc. Natl. Acad. Sci. USA 2004, 101, 4590–4595. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann-Roth, E.M.; von Sonnenburg, F.; de la Motte, S.; Arndtz-Wiedemann, N.; von Krempelhuber, A.; Uebler, N.; Vollmar, J.; Virgin, G.; Chaplin, P. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS ONE 2015, 10, e0122653. [Google Scholar] [CrossRef] [PubMed]
- Belyakov, I.M.; Earl, P.; Dzutsev, A.; Kuznetsov, V.A.; Lemon, M.; Wyatt, L.S.; Snyder, J.T.; Ahlers, J.D.; Franchini, G.; Moss, B.; et al. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl. Acad. Sci. USA 2003, 100, 9458–9463. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, S.; Bruhl, P.; Mayrhofer, J.; Schmid, K.; Gerencer, M.; Falkner, F.G. The nonreplicating smallpox candidate vaccines defective vaccinia lister (dVV-L) and modified vaccinia Ankara (MVA) elicit robust long-term protection. Virology 2005, 341, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Drexler, I.; Staib, C.; Kastenmuller, W.; Stevanovic, S.; Schmidt, B.; Lemonnier, F.A.; Rammensee, H.G.; Busch, D.H.; Bernhard, H.; Erfle, V.; et al. Identification of Vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines. Proc. Natl. Acad. Sci. USA 2003, 100, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Whitbeck, J.C.; Cohen, G.H.; Eisenberg, R.J.; Hartmann, C.J.; Jackson, D.L.; Kulesh, D.A.; et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004, 428, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Paran, N.; Suezer, Y.; Lustig, S.; Israely, T.; Schwantes, A.; Melamed, S.; Katz, L.; Preuss, T.; Hanschmann, K.M.; Kalinke, U.; et al. Postexposure immunization with modified Vaccinia virus Ankara or conventional lister vaccine provides solid protection in a murine model of human smallpox. J. Infect. Dis. 2009, 199, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; van Amerongen, G.; Kondova, I.; Kuiken, T.; van Lavieren, R.F.; Pistoor, F.H.; Niesters, H.G.; van Doornum, G.; van der Zeijst, B.A.; Mateo, L.; et al. Modified Vaccinia virus Ankara protects macaques against respiratory challenge with Monkeypox virus. J. Virol. 2005, 79, 7845–7851. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, M.; Tashiro, M.; Shida, H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. Proc. Natl. Acad. Sci. USA 2005, 102, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.L.; Vanderplasschen, A.; Law, M. The formation and function of extracellular enveloped Vaccinia virus. J. Gen. Virol. 2002, 83, 2915–2931. [Google Scholar] [CrossRef] [PubMed]
- Putz, M.M.; Midgley, C.M.; Law, M.; Smith, G.L. Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nat. Med. 2006, 12, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.F.; Kanatani, Y.; Fujii, T.; Saito, T.; Yokote, H.; Smith, G.L. Serological responses in humans to the smallpox vaccine LC16m8. J. Gen. Virol. 2011, 92, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.S.; Gurwith, M.; Dekker, C.L.; Frey, S.E.; Edwards, K.M.; Kenner, J.; Lock, M.; Empig, C.; Morikawa, S.; Saijo, M.; et al. Safety and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naive adults. J. Infect. Dis. 2011, 204, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Eto, A.; Saito, T.; Yokote, H.; Kurane, I.; Kanatani, Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine 2015, 33, 6106–6111. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, I.; Ami, Y.; Suzaki, Y.; Nagata, N.; Fukushi, S.; Ogata, M.; Morikawa, S.; Hasegawa, H.; Mizuguchi, M.; Kurane, I.; et al. A single vaccination of nonhuman primates with highly attenuated smallpox vaccine, LC16m8, provides long-term protection against monkeypox. Jpn. J. Infect. Dis. 2017, 70, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Kenner, J.; Cameron, F.; Empig, C.; Jobes, D.V.; Gurwith, M. LC16m8: An attenuated smallpox vaccine. Vaccine 2006, 24, 7009–7022. [Google Scholar] [CrossRef] [PubMed]
- Meseda, C.A.; Mayer, A.E.; Kumar, A.; Garcia, A.D.; Campbell, J.; Listrani, P.; Manischewitz, J.; King, L.R.; Golding, H.; Merchlinsky, M.; et al. Comparative evaluation of the immune responses and protection engendered by LC16m8 and dryvax smallpox vaccines in a mouse model. Clin. Vaccine Immunol. 2009, 16, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Fujii, T.; Kanatani, Y.; Shinmura, Y.; Yokote, H.; Hashizume, S. Freeze-dried live attenuated smallpox vaccine prepared in cell culture “LC16-kaketsuken”: Post-marketing surveillance study on safety and efficacy compliant with good clinical practice. Vaccine 2015, 33, 6120–6127. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Fujii, T.; Kanatani, Y.; Saijo, M.; Morikawa, S.; Yokote, H.; Takeuchi, T.; Kuwabara, N. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA 2009, 301, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Yokote, H.; Shinmura, Y.; Kanehara, T.; Maruno, S.; Kuranaga, M.; Matsui, H.; Hashizume, S. Vaccinia virus strain LC16m8 defective in the B5R gene keeps strong protection comparable to its parental strain lister in immunodeficient mice. Vaccine 2015, 33, 6112–6119. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.N.; Cecchinato, V.; Andresen, V.; Heraud, J.M.; Hryniewicz, A.; Parks, R.W.; Venzon, D.; Chung, H.K.; Karpova, T.; McNally, J.; et al. Smallpox vaccine safety is dependent on T cells and not B cells. J. Infect. Dis. 2011, 203, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Yokote, H.; Shinmura, Y.; Kanehara, T.; Maruno, S.; Kuranaga, M.; Matsui, H.; Hashizume, S. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. Clin. Vaccine Immunol. 2014, 21, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Danon, Y.L.; Sutter, G. Use of the LC16m8 smallpox vaccine in immunocompromised individuals is still too risky. Clin. Vaccine Immunol. 2015, 22, 604. [Google Scholar] [CrossRef] [PubMed]
- Edghill-Smith, Y.; Venzon, D.; Karpova, T.; McNally, J.; Nacsa, J.; Tsai, W.P.; Tryniszewska, E.; Moniuszko, M.; Manischewitz, J.; King, L.R.; et al. Modeling a safer smallpox vaccination regimen, for human immunodeficiency virus type 1-infected patients, in immunocompromised macaques. J. Infect. Dis. 2003, 188, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Di Pilato, M.; Mejias-Perez, E.; Sorzano, C.O.S.; Esteban, M. Distinct roles of Vaccinia virus NF-kappaB inhibitor proteins A52, B15, and K7 in the immune response. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Midgley, C.M.; Putz, M.M.; Weber, J.N.; Smith, G.L. Vaccinia virus strain nyvac induces substantially lower and qualitatively different human antibody responses compared with strains lister and dryvax. J. Gen. Virol. 2008, 89, 2992–2997. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Esteban, M. Enhancing poxvirus vectors vaccine immunogenicity. Hum. Vaccines Immunother. 2014, 10, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Perdiguero, B.; Heeney, J.L.; Seaman, M.S.; Montefiori, D.C.; Yates, N.L.; Tomaras, G.D.; Ferrari, G.; Foulds, K.E.; Roederer, M.; et al. HIV/AIDS vaccine candidates based on replication-competent recombinant poxvirus NYVAC-C-KC expressing trimeric gp140 and gag-derived virus-like particles or lacking the viral molecule B19 that inhibits type I interferon activate relevant HIV-1-specific B and T cell immune functions in nonhuman primates. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Ober, B.T.; Bruhl, P.; Schmidt, M.; Wieser, V.; Gritschenberger, W.; Coulibaly, S.; Savidis-Dacho, H.; Gerencer, M.; Falkner, F.G. Immunogenicity and safety of defective Vaccinia virus lister: Comparison with modified Vaccinia virus Ankara. J. Virol. 2002, 76, 7713–7723. [Google Scholar] [CrossRef] [PubMed]
- Golden, J.W.; Josleyn, M.; Mucker, E.M.; Hung, C.F.; Loudon, P.T.; Wu, T.C.; Hooper, J.W. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates. PLoS ONE 2012, 7, e42353. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Smallpox vaccines: Targets of protective immunity. Immunol. Rev. 2011, 239, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Pacchioni, S.M.; Bissa, M.; Zanotto, C.; Morghen Cde, G.; Illiano, E.; Radaelli, A. L1R, A27L, A33R and B5R Vaccinia virus genes expressed by fowlpox recombinants as putative novel Orthopox virus vaccines. J. Transl. Med. 2013, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Paran, N.; Lustig, S.; Zvi, A.; Erez, N.; Israely, T.; Melamed, S.; Politi, B.; Ben-Nathan, D.; Schneider, P.; Lachmi, B.; et al. Active vaccination with Vaccinia virus A33 protects mice against lethal Vaccinia and Ectromelia viruses but not against Cowpox virus; elucidation of the specific adaptive immune response. Virol. J. 2013, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, S.; Arora, D.D.; Sehgal, C.L.; Raghavan, N.G.; Topa, P.K.; Subrahmanyam, Y.K. Comparative studies of smallpox vaccination by the bifurcated needle and rotary lancet techniques. Bull. World Health Org. 1970, 42, 305–310. [Google Scholar] [PubMed]
- Rubin, B.A. A note on the development of the bifurcated needle for smallpox vaccination. WHO Chron. 1980, 34, 180–181. [Google Scholar] [PubMed]
- Orr, N.; Forman, M.; Marcus, H.; Lustig, S.; Paran, N.; Grotto, I.; Klement, E.; Yehezkelli, Y.; Robin, G.; Reuveny, S.; et al. Clinical and immune responses after revaccination of Israeli adults with the lister strain of Vaccinia virus. J. Infect. Dis. 2004, 190, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.M.; Newman, F.K.; Davidson, W.B.; Olson, V.A.; Smith, S.K.; Holman, R.C.; Yan, L.; Frey, S.E.; Belshe, R.B.; Karem, K.L.; et al. Analysis of Variola and Vaccinia virus neutralization assays for smallpox vaccines. Clin. Vaccine Immunol. 2012, 19, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.L.; Nichols, D.K.; Martinez, M.J.; Raymond, J.W. Animal models of Orthopox virus infection. Vet. Pathol. 2010, 47, 852–870. [Google Scholar] [CrossRef] [PubMed]
- Keckler, M.S.; Reynolds, M.G.; Damon, I.K.; Karem, K.L. The effects of post-exposure smallpox vaccination on clinical disease presentation: Addressing the data gaps between historical epidemiology and modern surrogate model data. Vaccine 2013, 31, 5192–5201. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Isaacs, S.N. Therapeutic vaccines and antibodies for treatment of Orthopox virus infections. Viruses 2010, 2, 2381–2403. [Google Scholar] [CrossRef] [PubMed]
- Buller, R.M.; Palumbo, G.J. Poxvirus pathogenesis. Microbiol. Rev. 1991, 55, 80–122. [Google Scholar] [PubMed]
- Fenner, F. Studies in infectious ectromelia in mice; natural transmission; the portal of entry of the virus. Aust. J. Exp. Biol. Med. Sci. 1947, 25, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.J. The pathogenesis and immunobiology of mousepox. Adv. Immunol. 2016, 129, 251–276. [Google Scholar] [PubMed]
- Parker, S.; Touchette, E.; Oberle, C.; Almond, M.; Robertson, A.; Trost, L.C.; Lampert, B.; Painter, G.; Buller, R.M. Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antivir. Res. 2008, 77, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.M.; Rice, A.D.; Moyer, R.W. Rabbitpox virus and Vaccinia virus infection of rabbits as a model for human smallpox. J. Virol. 2007, 81, 11084–11095. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.D.; Adams, M.M.; Lampert, B.; Foster, S.; Robertson, A.; Painter, G.; Moyer, R.W. Efficacy of cmx001 as a prophylactic and presymptomatic antiviral agent in New Zealand white rabbits infected with Rabbitpox virus, a model for Orthopox virus infections of humans. Viruses 2011, 3, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.D.; Adams, M.M.; Wallace, G.; Burrage, A.M.; Lindsey, S.F.; Smith, A.J.; Swetnam, D.; Manning, B.R.; Gray, S.A.; Lampert, B.; et al. Efficacy of CMX001 as a post exposure antiviral in New Zealand white rabbits infected with Rabbitpox virus, a model for Orthopox virus infections of humans. Viruses 2011, 3, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Greene, H.S.N. A pandemic of rabbit-pox. Proc. Soc. Exp. Biol. Med. 1933, 30, 892–894. [Google Scholar] [CrossRef]
- Li, G.; Chen, N.; Roper, R.L.; Feng, Z.; Hunter, A.; Danila, M.; Lefkowitz, E.J.; Buller, R.M.; Upton, C. Complete coding sequences of the Rabbitpox virus genome. J. Gen. Virol. 2005, 86, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Barnewall, R.E.; Fisher, D.A.; Robertson, A.B.; Vales, P.A.; Knostman, K.A.; Bigger, J.E. Inhalational Monkeypox virus infection in Cynomolgus macaques. Front. Cell. Infect. Microbiol. 2012, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.; Goff, A.; Frimm, A.; Corrado, M.L.; Hensley, L.E.; Byrd, C.M.; Mucker, E.; Shamblin, J.; Bolken, T.C.; Wlazlowski, C.; et al. St-246 antiviral efficacy in a nonhuman primate monkeypox model: Determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother. 2009, 53, 1817–1822. [Google Scholar] [CrossRef] [PubMed]
- Tree, J.A.; Hall, G.; Pearson, G.; Rayner, E.; Graham, V.A.; Steeds, K.; Bewley, K.R.; Hatch, G.J.; Dennis, M.; Taylor, I.; et al. Sequence of pathogenic events in Cynomolgus macaques infected with aerosolized Monkeypox virus. J. Virol. 2015, 89, 4335–4344. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Cotter, C.A.; Moss, B. Comparative live bioluminescence imaging of Monkeypox virus dissemination in a wild-derived inbred mouse (Mus musculus castaneus) and outbred African dormouse (Graphiurus kelleni). Virology 2015, 475, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Moss, B. Genetic studies of the susceptibility of classical and wild-derived inbred mouse strains to Monkeypox virus. Virology 2015, 481, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Moss, B. Insufficient innate immunity contributes to the susceptibility of the castaneous mouse to Orthopox virus infection. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Falendysz, E.A.; Lopera, J.G.; Doty, J.B.; Nakazawa, Y.; Crill, C.; Lorenzsonn, F.; Kalemba, L.N.; Ronderos, M.D.; Mejia, A.; Malekani, J.M.; et al. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus) sp. PLoS Negl. Trop. Dis. 2017, 11, e0005809. [Google Scholar] [CrossRef] [PubMed]
- Falendysz, E.A.; Lopera, J.G.; Lorenzsonn, F.; Salzer, J.S.; Hutson, C.L.; Doty, J.; Gallardo-Romero, N.; Carroll, D.S.; Osorio, J.E.; Rocke, T.E. Further assessment of Monkeypox virus infection in Gambian pouched rats (Cricetomys gambianus) using in vivo bioluminescent imaging. PLoS Negl. Trop. Dis. 2015, 9, e0004130. [Google Scholar] [CrossRef] [PubMed]
- Schultz, D.A.; Sagartz, J.E.; Huso, D.L.; Buller, R.M. Experimental infection of an African dormouse (Graphiurus kelleni) with Monkeypox virus. Virology 2009, 383, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Titova, K.A.; Sergeev, A.A.; Zamedyanskaya, A.S.; Galahova, D.O.; Kabanov, A.S.; Morozova, A.A.; Bulychev, L.E.; Sergeev, A.A.; Glotova, T.I.; Shishkina, L.N.; et al. Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy. J. Gen. Virol. 2015, 96, 2832–2843. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.F.; Hammoud, D.A.; Perry, D.L.; Solomon, J.; Moore, I.N.; Lackemeyer, M.G.; Bohannon, J.K.; Sayre, P.J.; Minai, M.; Papaneri, A.B.; et al. Exposure of rhesus monkeys to Cowpox virus Brighton Red by large-particle aerosol droplets results in an upper respiratory tract disease. J. Gen. Virol. 2016, 97, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.F.; Yellayi, S.; Cann, J.A.; Johnson, A.; Smith, A.L.; Paragas, J.; Jahrling, P.B.; Blaney, J.E. Cowpox virus infection of Cynomolgus macaques as a model of hemorrhagic smallpox. Virology 2011, 418, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.; St Claire, M.; Yellayi, S.; Bollinger, L.; Jahrling, P.B.; Paragas, J.; Blaney, J.E.; Johnson, R.F. Intrabronchial inoculation of Cynomolgus macaques with Cowpox virus. J. Gen. Virol. 2012, 93, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Kramski, M.; Matz-Rensing, K.; Stahl-Hennig, C.; Kaup, F.J.; Nitsche, A.; Pauli, G.; Ellerbrok, H. A novel highly reproducible and lethal nonhuman primate model for Orthopox virus infection. PLoS ONE 2010, 5, e10412. [Google Scholar] [CrossRef] [PubMed]
- Matz-Rensing, K.; Stahl-Hennig, C.; Kramski, M.; Pauli, G.; Ellerbrok, H.; Kaup, F.J. The pathology of experimental poxvirus infection in common marmosets (Callithrix jacchus): Further characterization of a new primate model for Orthopox virus infections. J. Comp. Pathol. 2012, 146, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Gan, L.L.; Abd El Wahed, A.; Shi, T.; Ellerbrok, H.; Kaup, F.J.; Stahl-Hennig, C.; Matz-Rensing, K. Dynamics of pathological and virological findings during experimental Calpox virus infection of common marmosets (Callithrix jacchus). Viruses 2017, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, A.; King, D.S.; Mosier, S.; Jordan, R.; Jones, K.F.; Hruby, D.E.; Grosenbach, D.W. Impact of ST-246® on ACAM2000 smallpox vaccine reactogenicity, immunogenicity, and protective efficacy in immunodeficient mice. Vaccine 2010, 29, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Crickard, L.; Babas, T.; Seth, S.; Silvera, P.; Koriazova, L.; Crotty, S. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies. PLoS ONE 2012, 7, e48706. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.J.; Lane, J.M. Clinical efficacy of intramuscular Vaccinia immune globulin: A literature review. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 39, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Israely, T.; Paran, N.; Lustig, S.; Erez, N.; Politi, B.; Shafferman, A.; Melamed, S. A single Cidofovir treatment rescues animals at progressive stages of lethal Orthopox virus disease. Virol. J. 2012, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Quenelle, D.C.; Kern, E.R. Treatment of Vaccinia and Cowpox virus infections in mice with CMX001 and ST-246. Viruses 2010, 2, 2681–2695. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F. Orthopox virus inhibitors that are active in animal models: An update from 2008 to 2012. Future Virol. 2013, 8, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, S.K.; Kim, M.; Reche, P.A.; Morehead, T.J.; Damon, I.K.; Welsh, R.M.; Reinherz, E.L. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Investig. 2005, 115, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.W.; Reed, J.L.; Snoy, P.J.; Mikolajczyk, M.G.; Bray, M.; Scott, D.E.; Kennedy, M.C. Postexposure prevention of progressive Vaccinia in scid mice treated with Vaccinia immune globulin. Clin. Vaccine Immunol. 2011, 18, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Lustig, S.; Maik-Rachline, G.; Paran, N.; Melamed, S.; Israely, T.; Erez, N.; Orr, N.; Reuveny, S.; Ordentlich, A.; Laub, O.; et al. Effective post-exposure protection against lethal Orthopox viruses infection by vaccinia immune globulin involves induction of adaptive immune response. Vaccine 2009, 27, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Zaitseva, M.; Shotwell, E.; Scott, J.; Cruz, S.; King, L.R.; Manischewitz, J.; Diaz, C.G.; Jordan, R.A.; Grosenbach, D.W.; Golding, H. Effects of postchallenge administration of ST-246 on dissemination of IHD-J-LUC Vaccinia virus in normal mice and in immune-deficient mice reconstituted with T cells. J. Virol. 2013, 87, 5564–5576. [Google Scholar] [CrossRef] [PubMed]
- Nanning, W. Prophylactic effect of antivaccinia gamma-globulin against post-vaccinal encephalitis. Bull. World Health Org. 1962, 27, 317–324. [Google Scholar] [PubMed]
- Clark, K.M.; Johnson, J.B.; Kock, N.D.; Mizel, S.B.; Parks, G.D. Parainfluenza virus 5-based vaccine vectors expressing Vaccinia virus (VACV) antigens provide long-term protection in mice from lethal intranasal VACV challenge. Virology 2011, 419, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Benhnia, M.R.; McCausland, M.M.; Laudenslager, J.; Granger, S.W.; Rickert, S.; Koriazova, L.; Tahara, T.; Kubo, R.T.; Kato, S.; Crotty, S. Heavily isotype-dependent protective activities of human antibodies against Vaccinia virus extracellular virion antigen B5. J. Virol. 2009, 83, 12355–12367. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Cheng, H.; Dai, Z.; Bu, Z.; Sigal, L.J. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal Orthopox virus infection in a natural host. Virology 2006, 345, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Gilchuk, I.; Gilchuk, P.; Sapparapu, G.; Lampley, R.; Singh, V.; Kose, N.; Blum, D.L.; Hughes, L.J.; Satheshkumar, P.S.; Townsend, M.B.; et al. Cross-neutralizing and protective human antibody specificities to poxvirus infections. Cell 2016, 167, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Lustig, S.; Fogg, C.; Whitbeck, J.C.; Eisenberg, R.J.; Cohen, G.H.; Moss, B. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of Vaccinia virus protect mice against a lethal respiratory challenge. J. Virol. 2005, 79, 13454–13462. [Google Scholar] [CrossRef] [PubMed]
- Zajonc, D.M. Antibody recognition of immunodominant Vaccinia virus envelope proteins. Sub-Cell. Biochem. 2017, 83, 103–126. [Google Scholar]
- Andrei, G.; Snoeck, R. Cidofovir activity against poxvirus infections. Viruses 2010, 2, 2803–2830. [Google Scholar] [CrossRef] [PubMed]
- Duraffour, S.; Matthys, P.; van den Oord, J.J.; De Schutter, T.; Mitera, T.; Snoeck, R.; Andrei, G. Study of Camelpox virus pathogenesis in athymic nude mice. PLoS ONE 2011, 6, e21561. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Emerging antiviral drugs. Expert Opin. Emerg. Drugs 2008, 13, 393–416. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F. Progress in the discovery of compounds inhibiting Orthopox viruses in animal models. Antivir. Chem. Chemother. 2008, 19, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, A.; Prigge, J.T.; Silvera, P.M.; Honeychurch, K.M.; Hruby, D.E.; Grosenbach, D.W. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for Monkeypox virus infection. Antimicrob. Agents Chemother. 2015, 59, 4296–4300. [Google Scholar] [CrossRef] [PubMed]
- Grosenbach, D.W.; Jordan, R.; King, D.S.; Berhanu, A.; Warren, T.K.; Kirkwood-Watts, D.L.; Tyavanagimatt, S.; Tan, Y.; Wilson, R.L.; Jones, K.F.; et al. Immune responses to the smallpox vaccine given in combination with ST-246, a small-molecule inhibitor of poxvirus dissemination. Vaccine 2008, 26, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Mucker, E.M.; Goff, A.J.; Shamblin, J.D.; Grosenbach, D.W.; Damon, I.K.; Mehal, J.M.; Holman, R.C.; Carroll, D.; Gallardo, N.; Olson, V.A.; et al. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with Variola virus (smallpox). Antimicrob. Agents Chemother. 2013, 57, 6246–6253. [Google Scholar] [CrossRef] [PubMed]
- Nalca, A.; Hatkin, J.M.; Garza, N.L.; Nichols, D.K.; Norris, S.W.; Hruby, D.E.; Jordan, R. Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antivir. Res. 2008, 79, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.K.; Self, J.; Weiss, S.; Carroll, D.; Braden, Z.; Regnery, R.L.; Davidson, W.; Jordan, R.; Hruby, D.E.; Damon, I.K. Effective antiviral treatment of systemic Orthopox virus disease: ST-246 treatment of prairie dogs infected with Monkeypox virus. J. Virol. 2011, 85, 9176–9187. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; Neyts, J.; Naesens, L.; van Amerongen, G.; van Lavieren, R.F.; Holy, A.; De Clercq, E.; Niesters, H.G.; Fries, E.; Maas, C.; et al. Antiviral treatment is more effective than smallpox vaccination upon lethal Monkeypox virus infection. Nature 2006, 439, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Massoudi, M.S.; Barker, L.; Schwartz, B. Effectiveness of postexposure vaccination for the prevention of smallpox: Results of a delphi analysis. J. Infect. Dis. 2003, 188, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, P.P. Can postexposure vaccination against smallpox succeed? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2003, 36, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Espenshade, O.; Bassler, J.; Gong, K.; Lin, S.; Peters, E.; Rhodes, L., Jr.; Spano, Y.E.; et al. Rapid protection in a monkeypox model by a single injection of a replication-deficient Vaccinia virus. Proc. Natl. Acad. Sci. USA 2008, 105, 10889–10894. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, C.; Hausmann, J.; Lauterbach, H.; Schmidt, M.; Akira, S.; Wagner, H.; Chaplin, P.; Suter, M.; O’Keeffe, M.; Hochrein, H. Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. J. Clin. Investig. 2008, 118, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Staib, C.; Suezer, Y.; Kisling, S.; Kalinke, U.; Sutter, G. Short-term, but not post-exposure, protection against lethal Orthopox virus challenge after immunization with modified Vaccinia virus Ankara. J. Gen. Virol. 2006, 87, 2917–2921. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, A.; King, D.S.; Mosier, S.; Jordan, R.; Jones, K.F.; Hruby, D.E.; Grosenbach, D.W. ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation. Antimicrob. Agents Chemother. 2009, 53, 4999–5009. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.; Crump, R.; Foster, S.; Hartzler, H.; Hembrador, E.; Lanier, E.R.; Painter, G.; Schriewer, J.; Trost, L.C.; Buller, R.M. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with Ectromelia virus. Antivir. Res. 2014, 111, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Kempe, C.H.; Bowles, C.; Meiklejohn, G.; Berge, T.O.; St Vincent, L.; Babu, B.V.; Govindarajan, S.; Ratnakannan, N.R.; Downie, A.W.; Murthy, V.R. The use of vaccinia hyperimmune gamma-globulin in the prophylaxis of smallpox. Bull. World Health Org. 1961, 25, 41–48. [Google Scholar] [PubMed]
- Volz, A.; Langenmayer, M.; Jany, S.; Kalinke, U.; Sutter, G. Rapid expansion of CD8+ T cells in wild-type and type I interferon receptor-deficient mice correlates with protection after low-dose emergency immunization with modified Vaccinia virus Ankara. J. Virol. 2014, 88, 10946–10957. [Google Scholar] [CrossRef] [PubMed]
- Holechek, S.A.; Denzler, K.L.; Heck, M.C.; Schriewer, J.; Buller, R.M.; Legrand, F.A.; Verardi, P.H.; Jones, L.A.; Yilma, T.; Jacobs, B.L. Use of a recombinant Vaccinia virus expressing interferon gamma for post-exposure protection against Vaccinia and Ectromelia viruses. PLoS ONE 2013, 8, e77879. [Google Scholar] [CrossRef] [PubMed]
- Perera, L.P.; Waldmann, T.A.; Mosca, J.D.; Baldwin, N.; Berzofsky, J.A.; Oh, S.K. Development of smallpox vaccine candidates with integrated interleukin-15 that demonstrate superior immunogenicity, efficacy, and safety in mice. J. Virol. 2007, 81, 8774–8783. [Google Scholar] [CrossRef] [PubMed]
Treatment | Host (Pathogen) | Incubation Period | Therapeutic Value | Ref. |
---|---|---|---|---|
Vaccine | Human | 7–14 | Effective up to 4 days postexposure (anecdotal). | [85,139,140] |
Vaccine (Lister, MVA) | Mouse (ECTV) | 6 | Effective up to 4 days postexposure (Lister 108, MVA 108). | [53] |
Vaccine + VIG | Mouse (ECTV) | 6 | Maintains vaccine efficacy. Effective up to 3 days postexposure. | [120] |
Vaccine (Lister, MVA) + CDV | Mouse (ECTV) | 6 | Maintains vaccine efficacy. Effective up to 3 days postexposure. | [115] |
Vaccine + CMX001 | Mouse (ECTV) | 6 | Effective 2 days postexposure (no data on delayed treatment). Maintains vaccine efficacy. | [145] |
Vaccine + ST-246 | Mouse (VACV-WR) | 3 | Maintains vaccine efficacy. Effective up to 3 days postexposure. | [134,144] |
NHP (MPXV) | 2–3 | Effective 3 days postexposure (no data on delayed treatment). Maintains vaccine efficacy. | [133] | |
Vaccine (Lister) + Poly(I:C) | Mouse (ECTV) | 6 | Effective up to 5 days postexposure. | [13] |
Exposure Background | Appearance | Therapeutic Approach | |||
---|---|---|---|---|---|
Vaccine | VIG | Antiviral Drug | Immune Stimulator | ||
Unexposed | Asymptomatic | + 1 | |||
Unknown | Asymptomatic (incubating) | + 2 | |||
+ 2 | +/− 3 | ||||
+ 2 | + | ||||
+ 2 | + | ||||
Exposed | Symptomatic | − 4 | + | ||
+/− 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melamed, S.; Israely, T.; Paran, N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines 2018, 6, 8. https://doi.org/10.3390/vaccines6010008
Melamed S, Israely T, Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines. 2018; 6(1):8. https://doi.org/10.3390/vaccines6010008
Chicago/Turabian StyleMelamed, Sharon, Tomer Israely, and Nir Paran. 2018. "Challenges and Achievements in Prevention and Treatment of Smallpox" Vaccines 6, no. 1: 8. https://doi.org/10.3390/vaccines6010008
APA StyleMelamed, S., Israely, T., & Paran, N. (2018). Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines, 6(1), 8. https://doi.org/10.3390/vaccines6010008