Vaccine Potentiation by Combination Adjuvants
Abstract
:1. Introduction
2. Liposomes
Cationic Liposomes
Adjuvant | Phase | Vaccine antigen | Outcomes | References. |
---|---|---|---|---|
CAF01 | I | Mycobacterium tuberculosis Ag85B-ESAT-6 | No study results posted | ClinicalTrails.gov identifier NCT00922363 |
CAF01 | I | HIV peptide cocktail AFO-18 | Induction of T-cell responses in some of the vaccinees; no significant changes in viral load or CD4+ T cell counts | ClinicalTrials.gov identifier NCT01141205 [23] |
JVRS-100 adjuvant | I | Fluzone® | No study results posted | ClinicalTrials.gov identifier NCT00662272 |
JVRS-100 adjuvant | II | Fluzone® | No study results posted | ClinicalTrials.gov identifier NCT00936468 |
3. Immune Stimulating Complexes (ISCOMs)
Adjuvants | Phase | Subjects | Comments | References |
---|---|---|---|---|
NY-ESO-1-ISCOMATRIX | II | Individuals with advanced melanoma | Study ongoing | ClinicalTrails.gov identifier NCT 00518206 |
ISCOM and PANFLUVAC | I | Healthy Adults | Study ongoing | ClinicalTrails.gov identifier NCT00868218 |
IC31®/Ag85B-ESAT-6 (TB vaccine) | Preclinical | Neonatal murine model | ↓ Bacterial growth, differentiation of CD4+ T cells into multifunctional Th1 and Th17 cells secreting IL-2, TNF-α and IFN-γ, antigen-specific DCs expressing co-stimulatory molecules CD80, CD86 and CD40 in the DLNs | [34,35] |
IC31®/Ag85B-ESAT-6 (TB vaccine) | Preclinical | Cynomolgus macaques | ↓ Clinical infections and prevents reactivation of latent infections | [36] |
IC31®/Ag85B-ESAT-6 (TB vaccine) | Preclinical | Cynomolgus macaques | ↓ Clinical infections and prevents reactivation of latent infections | [36] |
IC31®/Ag85B-ESAT-6 (TB vaccine) | I | Healthy mycobacterially naïve individuals | Potent and persistent antigen-specific IFN-γ+ T-cell responses, sustained for 2.5 years | [37] |
IC31®/Ag85B-ESAT-6 (TB vaccine) | I | Prior TB-infected individuals | Strong antigen-specific T-cell responses, sustained for 32 weeks | [38] |
IC31®/H1N1 (Influenza vaccine) | Preclinical | Young and aged mice | ↑ HI titers, IgG2a Abs and IFN-γ producing CD4+ T-cell responses, sustained for 200 days after a single dose vaccination | [39] |
IC31®/HSV-2 (Genital herpes vaccine) | Preclinical | Mice | High neutralizing HSV-specific Ab responses and splenic IFN-γ responses | [40] |
4. Montanide
5. IC31®
6. Triple Combination Adjuvant
7. Adjuvant Systems
7.1. AS04
7.2. AS03
7.3. AS02
Adjuvants | Phase | Subjects | Summary | References |
---|---|---|---|---|
AS04/HPV-16/18 (CervarixTM) | III | Girls and women (10–75 years) | Ab responses in serum and cervicovaginal secretions up to 36 months | [97] |
III | >8,000 women (15–25 years) | Vaccine efficacy 92.9% against cervical intraepithelial neoplasia grade 2 and above (CIN2+) 34.9 months post vaccination and high vaccine efficacy against CIN2+ associated with 12 non-vaccine oncogenic strains (cross-protection) | [98] | |
IIIb | HIV-seronegative young African girls (10–25 years) | 100% seroprotection, which sustained up to 12-month post-vaccination, high neutralizing Abs and total IgG titers sustained for 8.4 years post-vaccination | [99,100] | |
IIIb | Young girls (9–15 years) | Co-administered HPV-16/18/AS04 with inactivated hepatitis A and B (HAB) or dTpa-IPV: immunogenicity was no inferior than any of the vaccine alone | [101] | |
AS04/HBV (Fendrix®) | Elderly, immunocompromised and renal insufficiency patients | Rapid and high seroprotection at 3 month (74% vs . 52%) and 3 year (73% vs . 52%) compared to HB-alum vaccinated individuals | [102] | |
AS03 + Influenza A (H1N1 vaccine) | II and III | Volunteers (18–60 years), high-risk elderly (61–88 years) and children (3–9 years) | Higher seroconversion levels and 4-fold Ag-sparing effect compared to nonadjuvanted vaccine, ↑ H1N1 specific CD4+ T cells | [103,104,105] |
AS03 + Influenza A (H1N1 vaccine) | II | Children (6 months–12 years) | Higher immunogenicity compared to nonadjuvanated vaccines | [106] |
AS03 + H1N1 influenza pandemic vaccine 2009 | Multiple populations | Vaccine efficacy: 72%–97% | [107] | |
AS02+RTS,S (Malaria vaccine) | IIb | 131 semi-immune adults | Vaccine efficacy: 71% in 9 wks, strong Ab and T-cell responses to CSP | [108] |
IIb | 2,022 children (1–4 years) | Vaccine efficacy: 29.9% for first clinical episodes and 57.7% for severe malaria. Vaccine efficacy: 48.6% at 18 months for several malaria cases | [109] | |
AS02 + Mtb72F (TB vaccine) | I | Purified Protein Derivative (PPD)-negative adults (18–40 years) | ↑ Humoral and polyfunctional CD4+ T-cell responses expressing CD40L, IL-2, TNF-α and IFN-γ, sustained for 9 months and 1 year after primary and booster immunization, respectively | [110] |
AS02 + HBV | III | 450 healthy individuals Renal insufficiency patients; inprior HB vaccinated individuals | High seroprotection rates after first (75.9%) and second vaccine doses (99.7%) Seroprotection rate (76.9%) Seroprotection rates were 89.0% one month post-booster vaccination | [111,112] |
AS02 + MAGE-A3 | Advanced tumor patients, Lung cancer patients | Anti-MAGE-A3-specific Ab responses in 96% of the advanced tumor patients and 30% patients showed ↑ IFN-γ responses | [113,114] | |
AS01/RTS,S (malaria vaccine) | Preclinical | Rhesus monkeys | ↑ Ag-specific Ab and IFN-γ producing Th1-type responses | [115,116] |
AS01/MSP-1 (malaria vaccine) | IIa | 102 healthy human volunteers | Vaccine efficacy was higher (50%) compared to RTS,S/AS02A vaccine; ↑ CSP-specific IgG titers and polyfunctional CD4+ T cells expressing IL-2, IFN-γ, TNF-α, or CD40L | [117] |
AS01/M72 (TB vaccine) | I/II | 110 PPD-negative human volunteers | Vaccine specific Th1 CD4+ T-cell responses compared to M72/AS02 vaccine | [118] |
AS01/M72 (TB vaccine) | II | 540 children, aged 5–17 months | RTS,S/AS01E induced higher CD4+ T-cell responses as compared to RTS,S/AS02D | [119] |
AS01/F4 (HIV-1 vaccine) | I/II | 180 healthy volunteers (18–40 years) | High frequencies of polyfunctional CD4+ T-cell responses characterized by CD40L, IL-2 in combination with TNF-α and/or IFN-γ, which persisted for 44 days post-vaccination. | [120] |
7.4. AS01
8. Nanoemulsions
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Christensen, D.; Korsholm, K.S.; Andersen, P.; Agger, E.M. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 2012, 10, 513–521. [Google Scholar]
- Korsholm, K.S.; Andersen, P.L.; Christensen, D. Cationic liposomal vaccine adjuvants in animal challenge models: Overview and current clinical status. Expert Rev. Vaccines 2012, 11, 561–577. [Google Scholar] [CrossRef]
- Gall, D. The adjuvant activity of aliphatic nitrogenous bases. Immunology 1966, 11, 369–386. [Google Scholar]
- Stanfield, J.P.; Gall, D.; Bracken, P.M. Single-dose antenatal tetanus immunisation. Lancet 1973, 1, 215–219. [Google Scholar]
- Veronesi, R.; Correa, A.; Alterio, D. Single dose immunization against tetanus. Promising results in human trials. Rev. Inst. Med. Trop. Sao Paulo 1970, 12, 46–54. [Google Scholar]
- Van Donkersgoed, J.; McCartney, D.; van Drunen Littel-van den Hurk, S. Efficacy of an experimental BHV-1 subunit giv vaccine in beef calves challenged with BHV-1 in aerosol. Can. J. Vet. Res. 1996, 60, 55–58. [Google Scholar]
- Davidsen, J.; Rosenkrands, I.; Christensen, D.; Vangala, A.; Kirby, D.; Perrie, Y.; Agger, E.M.; Andersen, P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6'-dibehenate)—A novel adjuvant inducing both strong CMI and antibody responses. Biochim. Biophys. Acta 2005, 1718, 22–31. [Google Scholar] [CrossRef]
- Henriksen-Lacey, M.; Christensen, D.; Bramwell, V.W.; Lindenstrom, T.; Agger, E.M.; Andersen, P.; Perrie, Y. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3-beta-[N-(N',N'-dimethylaminoethane)carbomyl] cholesterol (DC-CHOL), and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP): Prolonged liposome retention mediates stronger th1 responses. Mol. Pharm. 2011, 8, 153–161. [Google Scholar] [CrossRef]
- Kamath, A.T.; Rochat, A.F.; Christensen, D.; Agger, E.M.; Andersen, P.; Lambert, P.H.; Siegrist, C.A. A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells. PLoS One 2009, 4, e5771. [Google Scholar] [CrossRef]
- Milicic, A.; Kaur, R.; Reyes-Sandoval, A.; Tang, C.K.; Honeycutt, J.; Perrie, Y.; Hill, A.V. Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PLoS One 2012, 7, e34255. [Google Scholar]
- Agger, E.M.; Cassidy, J.P.; Brady, J.; Korsholm, K.S.; Vingsbo-Lundberg, C.; Andersen, P. Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccines; immunity, pathology and protection. Immunology 2008, 124, 175–185. [Google Scholar] [CrossRef]
- Langermans, J.A.; Doherty, T.M.; Vervenne, R.A.; van der Laan, T.; Lyashchenko, K.; Greenwald, R.; Agger, E.M.; Aagaard, C.; Weiler, H.; van Soolingen, D.; et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005, 23, 2740–2750. [Google Scholar] [CrossRef]
- Korsholm, K.S.; Petersen, R.V.; Agger, E.M.; Andersen, P. T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology 2010, 129, 75–86. [Google Scholar] [CrossRef]
- Solodin, I.; Brown, C.S.; Bruno, M.S.; Chow, C.Y.; Jang, E.H.; Debs, R.J.; Heath, T.D. A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery. Biochemistry 1995, 34, 13537–13544. [Google Scholar]
- McLean, J.W.; Fox, E.A.; Baluk, P.; Bolton, P.B.; Haskell, A.; Pearlman, R.; Thurston, G.; Umemoto, E.Y.; McDonald, D.M. Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am. J. Physiol. 1997, 273, H387–H404. [Google Scholar]
- Zaks, K.; Jordan, M.; Guth, A.; Sellins, K.; Kedl, R.; Izzo, A.; Bosio, C.; Dow, S. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol. 2006, 176, 7335–7345. [Google Scholar]
- Morrey, J.D.; Motter, N.E.; Taro, B.; Lay, M.; Fairman, J. Efficacy of cationic lipid-DNA complexes (CLDC) on hepatitis B virus in transgenic mice. Antivir. Res. 2008, 79, 71–79. [Google Scholar] [CrossRef]
- Lay, M.; Callejo, B.; Chang, S.; Hong, D.K.; Lewis, D.B.; Carroll, T.D.; Matzinger, S.; Fritts, L.; Miller, C.J.; Warner, J.F.; et al. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone®) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine 2009, 27, 3811–3820. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Farley, N.; Bravo, F.J.; Earwood, J.; McNeal, M.; Fairman, J.; Cardin, R. The adjuvant CLDC increases protection of a herpes simplex type 2 glycoprotein D vaccine in guinea pigs. Vaccine 2010, 28, 3748–3753. [Google Scholar] [CrossRef]
- Gowen, B.B.; Fairman, J.; Dow, S.; Troyer, R.; Wong, M.H.; Jung, K.H.; Melby, P.C.; Morrey, J.D. Prophylaxis with cationic liposome-DNA complexes protects hamsters from phleboviral disease: Importance of liposomal delivery and CPG motifs. Antivir. Res. 2009, 81, 37–46. [Google Scholar] [CrossRef]
- Troyer, R.M.; Propst, K.L.; Fairman, J.; Bosio, C.M.; Dow, S.W. Mucosal immunotherapy for protection from pneumonic infection with francisella tularensis. Vaccine 2009, 27, 4424–4433. [Google Scholar] [CrossRef]
- Jones, A.; Bosio, C.; Duffy, A.; Goodyear, A.; Schriefer, M.; Dow, S. Protection against pneumonic plague following oral immunization with a non-replicating vaccine. Vaccine 2010, 28, 5924–5929. [Google Scholar] [CrossRef]
- Hansen, C.; Jespersen, S.; Te, D.D.; Rodrigues, C.M.; Janitzek, C.M.; Vinner, L.; Katzenstein, T.L.; Andersen, P.; Kromann, I.; Andreasen, L.V.; et al. Therapeutic vaccination using cationic liposome-adjuvanted HIV type 1 peptides representing HLA-supertype-restricted subdominant T cell epitopes: Safety, immunogenicity and feasibility in guinea-bissau. AIDS Res. Hum. Retrovir. 2013. [Google Scholar] [CrossRef]
- Schnurr, M.; Orban, M.; Robson, N.C.; Shin, A.; Braley, H.; Airey, D.; Cebon, J.; Maraskovsky, E.; Endres, S. Iscomatrix adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J. Immunol. 2009, 182, 1253–1259. [Google Scholar]
- Drane, D.; Maraskovsky, E.; Gibson, R.; Mitchell, S.; Barnden, M.; Moskwa, A.; Shaw, D.; Gervase, B.; Coates, S.; Houghton, M.; et al. Priming of CD4+ and CD8+ T cell responses using a HCV core iscomatrix vaccine: A phase I study in healthy volunteers. Hum. Vaccines 2009, 5, 151–157. [Google Scholar] [CrossRef]
- Lovgren Bengtsson, K.; Morein, B.; Osterhaus, A.D. Iscom technology-based matrix m adjuvant: Success in future vaccines relies on formulation. Expert Rev. Vaccines 2011, 10, 401–403. [Google Scholar]
- Eriksson, A.M.; Schon, K.M.; Lycke, N.Y. The cholera toxin-derived CTA1-DD vaccine adjuvant administered intranasally does not cause inflammation or accumulate in the nervous tissues. J. Immunol. 2004, 173, 3310–3319. [Google Scholar]
- Lycke, N. From toxin to adjuvant: The rational design of a vaccine adjuvant vector, CTA1-DD/iscom. Cell Microbiol. 2004, 6, 23–32. [Google Scholar] [CrossRef]
- Eliasson, D.G.; Helgeby, A.; Schon, K.; Nygren, C.; El-Bakkouri, K.; Fiers, W.; Saelens, X.; Lovgren, K.B.; Nystrom, I.; Lycke, N.Y. A novel non-toxic combined CTA1-DD and iscoms adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 2011, 29, 3951–3961. [Google Scholar] [CrossRef]
- Jacobs, C.; Duewell, P.; Heckelsmiller, K.; Wei, J.; Bauernfeind, F.; Ellermeier, J.; Kisser, U.; Bauer, C.A.; Dauer, M.; Eigler, A.; et al. An iscom vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int. J. Cancer 2011, 128, 897–907. [Google Scholar] [CrossRef]
- Kostetsky, E.Y.; Sanina, N.M.; Mazeika, A.N.; Tsybulsky, A.V.; Vorobyeva, N.S.; Shnyrov, V.L. Tubular immunostimulating complex based on cucumarioside A2-2 and monogalactosyldiacylglycerol from marine macrophytes. J. Nanobiotechnol. 2011, 9, 35. [Google Scholar] [CrossRef]
- Sanina, N.M.; Kostetsky, E.Y.; Shnyrov, V.L.; Tsybulsky, A.V.; Novikova, O.D.; Portniagina, O.Y.; Vorobieva, N.S.; Mazeika, A.N.; Bogdanov, M.V. The influence of monogalactosyldiacylglycerols from different marine macrophytes on immunogenicity and conformation of protein antigen of tubular immunostimulating complex. Biochimie 2012, 94, 1048–1056. [Google Scholar] [CrossRef]
- Bayry, J.; Prabhudas, K.; Gopalakrishna, S.; Patil, P.K.; Ramakrishna, C.; Misra, L.D.; Suryanarayana, V.V. Protective immune response to 16 kDa immunoreactive recombinant protein encoding the C-terminal VP1 portion of foot and mouth disease virus type Asia 1. Microbiol. Immunol. 1999, 43, 765–771. [Google Scholar] [CrossRef]
- Kamath, A.T.; Rochat, A.-F.; Valenti, M.P.; Agger, E.M.; Lingnau, K.; Andersen, P.; Lambert, P.-H.; Siegrist, C.-A. Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31® adjuvant. PLoS One 2008, 3, e3683. [Google Scholar] [CrossRef]
- Aagaard, C.; Hoang, T.T.K.T.; Izzo, A.; Billeskov, R.; Troudt, J.; Arnett, K.; Keyser, A.; Elvang, T.; Andersen, P.; Dietrich, J. Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31® against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One 2009, 4, e5930. [Google Scholar]
- Lin, P.L.; Dietrich, J.; Tan, E.; Abalos, R.M.; Burgos, J.; Bigbee, C.; Bigbee, M.; Milk, L.; Gideon, H.P.; Rodgers, M.; et al. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Investig. 2012, 122, 303–314. [Google Scholar] [CrossRef]
- Van Dissel, J.T.; Arend, S.M.; Prins, C.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Klein, M.R.; Rosenkrands, I.; Ottenhoff, T.H.M.; et al. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine 2010, 28, 3571–3581. [Google Scholar] [CrossRef]
- Van Dissel, J.T.; Soonawala, D.; Joosten, S.A.; Prins, C.; Arend, S.M.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Hoff, S.T.; et al. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous bcg vaccination or tuberculosis infection. Vaccine 2011, 29, 2100–2109. [Google Scholar] [CrossRef]
- Riedl, K.; Riedl, R.; von Gabain, A.; Nagy, E.; Lingnau, K. The novel adjuvant IC31® strongly improves influenza vaccine-specific cellular and humoral immune responses in young adult and aged mice. Vaccine 2008, 26, 3461–3468. [Google Scholar] [CrossRef]
- Wizel, B.; Persson, J.; Thorn, K.; Nagy, E.; Harandi, A.M. Nasal and skin delivery of IC31®-adjuvanted recombinant HSV-2 gD protein confers protection against genital herpes. Vaccine 2012, 30, 4361–4368. [Google Scholar] [CrossRef]
- Bonhoure, F.; Gaucheron, J. Montanide ISA 51 VG as adjuvant for human vaccines. J. Immunother. 2006, 29, 647–648. [Google Scholar]
- Langermans, J.A.; Hensmann, M.; van Gijlswiik, M.; Zhang, D.; Pan, W.; Giersing, B.K.; Locke, E.; Dubovsk, F.; Wittes, J.; Thomas, A.W. Preclinical evaluation of a chimeric malaria vaccine candidate in montanide ISA 720®: Immunogenicity and safety in rhesus macaques. Hum. Vaccines 2006, 2, 222–226. [Google Scholar] [CrossRef]
- Langermans, J.A.; Schmidt, A.; Vervenne, R.A.; Birkett, A.J.; Calvo-Calle, J.M.; Hensmann, M.; Thornton, G.B.; Dubovsky, F.; Weiler, H.; Nardin, E.; et al. Effect of adjuvant on reactogenicity and long-term immunogenicity of the malaria vaccine ICC-1132 in macaques. Vaccine 2005, 23, 4935–4943. [Google Scholar] [CrossRef]
- Chianese-Bullock, K.A.; Pressley, J.; Garbee, C.; Hibbitts, S.; Murphy, C.; Yamshchikov, G.; Petroni, G.R.; Bissonette, E.A.; Neese, P.Y.; Grosh, W.W.; et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J. Immunol. 2005, 174, 3080–3086. [Google Scholar]
- Hersey, P.; Menzies, S.W.; Coventry, B.; Nguyen, T.; Farrelly, M.; Collins, S.; Hirst, D.; Johnson, H. Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol. Immunother. 2005, 54, 208–218. [Google Scholar] [CrossRef]
- Markovic, S.N.; Suman, V.J.; Ingle, J.N.; Kaur, J.S.; Pitot, H.C.; Loprinzi, C.L.; Rao, R.D.; Creagan, E.T.; Pittelkow, M.R.; Allred, J.B.; et al. Peptide vaccination of patients with metastatic melanoma: Improved clinical outcome in patients demonstrating effective immunization. Am. J. Clin. Oncol. 2006, 29, 352–360. [Google Scholar] [CrossRef]
- Sabbatini, P.J.; Tsuji, T.; Ferran, L.; Ritter, E.; Sedrak, C.; Tuballes, K.; Jungbluth, A.A.; Ritter, G.; Aghajanian, C.; Bell-McGuinn, K.; et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin. Cancer Res. 2012, 18, 6497–6508. [Google Scholar] [CrossRef]
- Goldinger, S.M.; Dummer, R.; Baumgaertner, P.; Mihic-Probst, D.; Schwarz, K.; Hammann-Haenni, A.; Willers, J.; Geldhof, C.; Prior, J.O.; Kündig, T.M.; et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur. J. Immunol. 2012, 42, 3049–3061. [Google Scholar] [CrossRef] [Green Version]
- Karbach, J.; Gnjatic, S.; Bender, A.; Neumann, A.; Weidmann, E.; Yuan, J.; Ferrara, C.A.; Hoffmann, E.; Old, L.J.; Altorki, N.K.; et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and montanide® ISA-51: Association with survival. Int. J. Cancer 2010, 126, 909–918. [Google Scholar]
- Kuball, J.; de Boer, K.; Wagner, E.; Wattad, M.; Antunes, E.; Weeratna, R.D.; Vicari, A.P.; Lotz, C.; van Dorp, S.; Hol, S.; et al. Pitfalls of vaccinations with WT1-, proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol. Immunother. 2010, 60, 161–171. [Google Scholar]
- Aguilar, F.F.; Barranco, J.J.; Fuentes, E.B.; Aguilera, L.C.; Saez, Y.L.; Santana, M.D.; Vazquez, E.P.; Baker, R.B.; Acosta, O.R.; Perez, H.G.; et al. Very small size proteoliposomes (VSSP) and montanide combination enhance the humoral immuno response in a gnrh based vaccine directed to prostate cancer. Vaccine 2012, 30, 6595–6599. [Google Scholar] [CrossRef]
- Li, H.; Qian, Z.M. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev. 2002, 22, 225–250. [Google Scholar] [CrossRef]
- Buschle, M.; Schmidt, W.; Zauner, W.; Mechtler, K.; Trska, B.; Kirlappos, H.; Birnstiel, M.L. Transloading of tumor antigen-derived peptides into antigen-presenting-cells. Proc. Natl. Acad. Sci. USA 1997, 94, 3256–3261. [Google Scholar]
- Mattner, F.; Fleitmann, J.-K.; Lingnau, K.; Schmidt, W.; Egyed, A.; Fritz, J.; Zauner, W.; Wittmann, B.; Gorny, I.; Berger, M.; et al. Vaccination with poly-l-arginine as immunostimulant for peptide vaccines: Induction of potent and long-lasting T-cell responses against cancer antigens. Cancer Res. 2002, 62, 1477–1480. [Google Scholar]
- Lingnau, K.; Egyed, A.; Schellack, C.; Mattner, F.; Buschle, M.; Schmidt, W. Poly-l-arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG ODN) for enhanced and prolonged immune responses and prevents the CpG ODN-induced systemic release of pro-inflammatory cytokines. Vaccine 2002, 20, 3498–3508. [Google Scholar] [CrossRef]
- Fritz, J.H.; Brunner, S.; Birnstiel, M.L.; Buschle, M.; Gabain, A.; Mattner, F.; Zauner, W. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a Th2-type immune response to co-injected antigens. Vaccine 2004, 22, 3274–3284. [Google Scholar] [CrossRef]
- Lingnau, K.; Riedl, K.; von Gabain, A. IC31® and IC30, novel types of vaccine adjuvant based on peptide delivery systems. Expert Rev. Vaccines 2007, 6, 741–746. [Google Scholar] [CrossRef]
- Sparwasser, T.; Miethke, T.; Lipford, G.; Borschert, K.; Hacker, H.; Heeg, K.; Wagner, H. Bacterial DNA causes septic shock. Nature 1997, 386, 336–337. [Google Scholar] [CrossRef]
- Schellack, C.; Prinz, K.; Egyed, A.; Fritz, J.R.H.; Wittmann, B.; Ginzler, M.; Swatosch, G.; Zauner, W.; Kast, C.; Akira, S.; et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 2006, 24, 5461–5472. [Google Scholar] [CrossRef]
- Aichinger, M.C.; Ginzler, M.; Weghuber, J.; Zimmermann, L.; Riedl, K.; Schutz, G.; Nagy, E.; von Gabain, A.; Schweyen, R.; Henics, T. Adjuvating the adjuvant: Facilitated delivery of an immunomodulatory oligonucleotide to TLR9 by a cationic antimicrobial peptide in dendritic cells. Vaccine 2011, 29, 426–436. [Google Scholar]
- Steinman, R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 1991, 9, 271–296. [Google Scholar] [CrossRef]
- Salvador, A.; Igartua, M.; Hernandez, R.M.; Pedraz, J.L. Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines. Vaccine 2012, 30, 589–596. [Google Scholar] [CrossRef]
- Salvador, A.; Igartua, M.; Hernandez, R.M.; Pedraz, J.L. An overview on the field of micro- and nano-technologies for synthetic peptide-based vaccines. J. Drug Deliv. 2011, 2011. Article ID 181646. [Google Scholar]
- Wieczorek, M.; Jenssen, H.; Kindrachuk, J.; Scott, W.R.; Elliott, M.; Hilpert, K.; Cheng, J.T.; Hancock, R.E.; Straus, S.K. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem. Biol. 2010, 17, 970–980. [Google Scholar] [CrossRef]
- Cherkasov, A.; Hilpert, K.; Jenssen, H.; Fjell, C.D.; Waldbrook, M.; Mullaly, S.C.; Volkmer, R.; Hancock, R.E. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 2009, 4, 65–74. [Google Scholar]
- Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef]
- Eng, N.F.; Garlapati, S.; Gerdts, V.; Potter, A.; Babiuk, L.A.; Mutwiri, G.K. The potential of polyphosphazenes for delivery of vaccine antigens and immunotherapeutic agents. Curr. Drug Deliv. 2010, 7, 13–20. [Google Scholar] [CrossRef]
- Mutwiri, G.; Benjamin, P.; Soita, H.; Townsend, H.; Yost, R.; Roberts, B.; Andrianov, A.K.; Babiuk, L.A. Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine 2007, 25, 1204–1213. [Google Scholar] [CrossRef]
- Kindrachuk, J.; Jenssen, H.; Elliott, M.; Townsend, R.; Nijnik, A.; Lee, S.F.; Gerdts, V.; Babiuk, L.A.; Halperin, S.A.; Hancock, R.E. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine 2009, 27, 4662–4671. [Google Scholar] [CrossRef]
- Dybvig, T. Host defence peptides BMAP-27 and BMAP-28 Down-Regulate Proliferation of Porcine T Cells through Induction of T Cell Anergy. M.S. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2010. [Google Scholar]
- Garlapati, S.; Eng, N.F.; Wilson, H.L.; Buchanan, R.; Mutwiri, G.K.; Babiuk, L.A.; Gerdts, V. Pcpp (poly[di(carboxylatophenoxy)-phosphazene]) microparticles co-encapsulating ovalbumin and CpG oligo-deoxynucleotides are potent enhancers of antigen specific Th1 immune responses in mice. Vaccine 2010, 28, 8306–8314. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Latimer, L.; Landi, A.; Jenssen, H.; Hancock, R.E.; Babiuk, L.A.; van Drunen Littel-van den Hurk, S. The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. Vaccine 2009, 27, 2055–2064. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Mapletoft, J.W.; Latimer, L.; Babiuk, L.A.; Hurk, S. CpG oligonucleotide, host defense peptide and polyphosphazene act synergistically, inducing long-lasting, balanced immune responses in cattle. Vaccine 2009, 27, 2048–2054. [Google Scholar]
- Kovacs-Nolan, J.; Mapletoft, J.W.; Lawman, Z.; Babiuk, L.A.; van Drunen Littel-van den Hurk, S. Formulation of bovine respiratory syncytial virus fusion protein with cpg oligodeoxynucleotide, cationic host defence peptide and polyphosphazene enhances humoral and cellular responses and induces a protective type 1 immune response in mice. J. Gener. Virol. 2009, 90, 1892–1905. [Google Scholar] [CrossRef]
- Polewicz, M.; Gracia, A.; Buchanan, R.; Strom, S.; Halperin, S.A.; Potter, A.A.; Babiuk, L.A.; Gerdts, V. Influence of maternal antibodies on active pertussis toxoid immunization of neonatal mice and piglets. Vaccine 2011, 29, 7718–7726. [Google Scholar] [CrossRef]
- Gracia, A.; Polewicz, M.; Halperin, S.A.; Hancock, R.E.; Potter, A.A.; Babiuk, L.A.; Gerdts, V. Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations. Vaccine 2011, 29, 1595–1604. [Google Scholar] [CrossRef]
- Polewicz, M.; Gracia, A.; Garlapati, S.; van Kessel, J.; Strom, S.; Halperin, S.A.; Hancock, R.E.; Potter, A.A.; Babiuk, L.A.; Gerdts, V. Novel vaccine formulations against pertussis offer earlier onset of immunity and provide protection in the presence of maternal antibodies. Vaccine 2013, 31, 3148–3155. [Google Scholar] [CrossRef]
- Garlapati, S.; Garg, R.; Brownlie, R.; Latimer, L.; Simko, E.; Hancock, R.E.; Babiuk, L.A.; Gerdts, V.; Potter, A.; van Drunen Littel-van den Hurk, S. Enhanced immune responses and protection by vaccination with respiratory syncytial virus fusion protein formulated with CpG oligodeoxynucleotide and innate defense regulator peptide in polyphosphazene microparticles. Vaccine 2012, 30, 5206–5214. [Google Scholar] [CrossRef]
- Garg, R.; Latimer, L.; Simko, E.; Gerdts, V.; Potter, A.; van den Hurk, S. Induction of mucosal immunity and protection by intranasal immunization with a respiratory syncytial virus subunit vaccine formulation. J. Gener. Virol. 2014, 95, 301–306. [Google Scholar] [CrossRef]
- Shim, D.H.; Ko, H.J.; Volker, G.; Potter, A.A.; Mutwiri, G.; Babiuk, L.A.; Kweon, M.N. Efficacy of poly[di(sodium carboxylatophenoxy)phosphazene] (PCPP) as mucosal adjuvant to induce protective immunity against respiratory pathogens. Vaccine 2010, 28, 2311–2317. [Google Scholar]
- Garçon, N.; van Mechelen, M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 2011, 10, 471–486. [Google Scholar] [CrossRef]
- Bourne, N.; Milligan, G.N.; Stanberry, L.R.; Stegall, R.; Pyles, R.B. Impact of immunization with glycoprotein D2/AS04 on herpes simplex virus type 2 shedding into the genital tract in guinea pigs that become infected. J. Infect. Dis. 2005, 192, 2117–2123. [Google Scholar] [CrossRef]
- Stanberry, L.R.; Spruance, S.L.; Cunningham, A.L.; Bernstein, D.I.; Mindel, A.; Sacks, S.; Tyring, S.; Aoki, F.Y.; Slaoui, M.; Denis, M.; et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Eng. J. Med. 2002, 347, 1652–1661. [Google Scholar] [CrossRef]
- Belshe, R.B.; Leone, P.A.; Bernstein, D.I.; Wald, A.; Levin, M.J.; Stapleton, J.T.; Gorfinkel, I.; Morrow, R.L.A.; Ewell, M.G.; Stokes-Riner, A.; et al. Efficacy results of a trial of a herpes simplex vaccine. N. Eng. J. Med. 2012, 366, 34–43. [Google Scholar] [CrossRef]
- Didierlaurent, A.M.; Morel, S.; Lockman, L.; Giannini, S.L.; Bisteau, M.; Carlsen, H.; Kielland, A.; Vosters, O.; Vanderheyde, N.; Schiavetti, F.; et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 2009, 183, 6186–6197. [Google Scholar] [CrossRef]
- Segal, L.; Wilby, O.K.; Willoughby, C.R.; Veenstra, S.P.; Deschamps, M. Evaluation of the intramuscular administration of cervarix™ vaccine on fertility, pre- and post-natal development in rats. Reprod. Toxicol. 2011, 31, 111–120. [Google Scholar] [CrossRef]
- Traber, M.G. Vitamin E regulatory mechanisms. Annu. Rev. Nutr. 2007, 27, 347–362. [Google Scholar] [CrossRef]
- Do, R.; Kiss, R.S.; Gaudet, D.; Engert, J.C. Squalene synthase: A critical enzyme in the cholesterol biosynthesis pathway. Clin. Genet. 2009, 75, 19–29. [Google Scholar] [CrossRef]
- Akers, M.J. Excipient–drug interactions in parenteral formulations. J. Pharm. Sci. 2002, 91, 2283–2300. [Google Scholar] [CrossRef]
- Morel, S.; Didierlaurent, A.; Bourguignon, P.; Delhaye, S.; Baras, B.; Jacob, V.; Planty, C.; Elouahabi, A.; Harvengt, P.; Carlsen, H.; et al. Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 2011, 29, 2461–2473. [Google Scholar] [CrossRef]
- Moris, P.; van der Most, R.; Leroux-Roels, I.; Clement, F.; Dramé, M.; Hanon, E.; Leroux-Roels, G.; van Mechelen, M. H5N1 influenza vaccine formulated with AS03A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J. Clin. Immunol. 2011, 31, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.J.; Wu, J.Y.; Gardner, B.H.; Munroe, K.J.; Leombruno, D.; Recchia, J.; Kensil, C.R.; Coughlin, R.T. Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses. J. Immunol. 1992, 148, 2357–2362. [Google Scholar]
- Newman, M.J.; Wu, J.Y.; Gardner, B.H.; Anderson, C.A.; Kensil, C.R.; Recchia, J.; Coughlin, R.T.; Powell, M.F. Induction of cross-reactive cytotoxic T-lymphocyte responses specific for HIV-1 gp120 using saponin adjuvant (QS-21) supplemented subunit vaccine formulations. Vaccine 1997, 15, 1001–1007. [Google Scholar] [CrossRef]
- Newman, M.J.; Wu, J.Y.; Coughlin, R.T.; Murphy, C.I.; Seals, J.R.; Wyand, M.S.; Kensil, C.R. Immunogenicity and toxicity testing of an experimental HIV-1 vaccine in nonhuman primates. AIDS Res. Hum. Retrovir. 1992, 8, 1413–1418. [Google Scholar]
- Garcon, N.; Heppner, D.G.; Cohen, J. Development of RTS,S/AS02: A purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev. Vaccines 2003, 2, 231–238. [Google Scholar] [CrossRef]
- Stoute, J.A.; Slaoui, M.; Heppner, D.G.; Momin, P.; Kester, K.E.; Desmons, P.; Wellde, B.T.; Garcon, N.; Krzych, U.; Marchand, M.; et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Eng. J. Med. 1997, 336, 86–91. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Kocken, M.; Petäjä, T.; Einstein, M.H.; Spaczynski, M.; Louwers, J.A.; Pedersen, C.; Levin, M.; Zahaf, T.; Poncelet, S.; et al. Correlation between levels of human papillomavirus (HPV)-16 and 18 antibodies in serum and cervicovaginal secretions in girls and women vaccinated with the HPV-16/18 AS04-adjuvanted vaccine. Hum. Vaccines 2010, 6, 1054–1061. [Google Scholar] [CrossRef]
- Wheeler, C.M.; Castellsague, X.; Garland, S.M.; Szarewski, A.; Paavonen, J.; Naud, P.; Salmeron, J.; Chow, S.-N.; Apter, D.; Kitchener, H.; et al. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic hpv types: 4-year end-of-study analysis of the randomised, double-blind patricia trial. Lancet Oncol. 2012, 13, 100–110. [Google Scholar] [CrossRef]
- Sow, P.S.; Watson-Jones, D.; Kiviat, N.; Changalucha, J.; Mbaye, K.D.; Brown, J.; Bousso, K.; Kavishe, B.; Andreasen, A.; Toure, M.; et al. Safety and immunogenicity of human papillomavirus-16/18 AS04-adjuvanted vaccine: A randomized trial in 10–25-year-old HIV-seronegative african girls and young women. J. Infect. Diseases 2013, 207, 1753–1763. [Google Scholar] [CrossRef]
- Roteli-Martins, C.M.; Naud, P.; de Borba, P.; Teixeira, J.C.; de Carvalho, N.S.; Zahaf, T.; Sanchez, N.; Geeraerts, B.; Descamps, D. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: Up to 8.4 years of follow-up. Hum. Vaccines Immunother. 2012, 8, 390–397. [Google Scholar]
- Pedersen, C.; Breindahl, M.; Aggarwal, N.; Berglund, J.; Oroszlan, G.; Silfverdal, S.A.; Szuts, P.; O’Mahony, M.; David, M.-P.; Dobbelaere, K.; et al. Randomized trial: Immunogenicity and safety of coadministered human papillomavirus-16/18 AS04-adjuvanted vaccine and combined hepatitis A and B vaccine in girls. J. Adolesc. Health 2012, 50, 38–46. [Google Scholar] [CrossRef]
- Kong, N.C.T.; Beran, J.; Kee, S.A.; Miguel, J.L.; Sanchez, C.; Bayas, J.M.; Vilella, A.; Calbo-Torrecillas, F.; Lopez de Novales, E.; Srinivasa, K.; et al. A new adjuvant improves the immune response to hepatitis B vaccine in hemodialysis patients. Kidney Int. 2007, 73, 856–862. [Google Scholar]
- Chu, D.W.-S.; Hwang, S.-J.; Lim, F.S.; Oh, H.M.L.; Thongcharoen, P.; Yang, P.-C.; Bock, H.L.; Drame, M.; Gillard, P.; Hutagalung, Y.; et al. Immunogenicity and tolerability of an AS03A-adjuvanted prepandemic influenza vaccine: A phase III study in a large population of asian adults. Vaccine 2009, 27, 7428–7435. [Google Scholar] [CrossRef]
- Díez-Domingo, J.; Garcés-Sanchez, M.; Baldó, J.-M.; Planelles, M.V.; Ubeda, I.; JuBert, A.; Marés, J.; Moris, P.; Garcia-Corbeira, P.; Dramé, M.; et al. Immunogenicity and safety of H5N1 A/Vietnam/1194/2004 (Clade 1) AS03-adjuvanted prepandemic candidate influenza vaccines in children aged 3 to 9 years: A phase II, randomized, open, controlled study. Pediatr. Infect. Disease J. 2010, 29, e35–e46. [Google Scholar]
- Roman, F.; Vaman, T.; Kafeja, F.; Hanon, E.; van Damme, P. AS03A-adjuvanted influenza a (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 2010, 51, 668–677. [Google Scholar] [CrossRef]
- Waddington, C.; Andrews, N.; Hoschler, K.; Walker, W.; Oeser, C.; Reiner, A.; John, T.; Wilkins, S.; Casey, M.; Eccleston, P.; et al. Open-label, randomised, parallel-group, multicentre study to evaluate the safety, tolerability and immunogenicity of an AS03(B)/oil-in-water emulsion-adjuvanted (AS03(B)) split-virion versus non-adjuvanted whole-virion H1N1 influenza vaccine in UK children 6 months to 12 years of age. Health Technol. Assess. 2010, 14, 1–130. [Google Scholar]
- Garcon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 2012, 11, 349–366. [Google Scholar] [CrossRef]
- Bojang, K.A.; Milligan, P.J.M.; Pinder, M.; Vigneron, L.; Alloueche, A.; Kester, K.E.; Ballou, W.R.; Conway, D.J.; Reece, W.H.H.; Gothard, P.; et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in the gambia: A randomised trial. Lancet 2001, 358, 1927–1934. [Google Scholar] [CrossRef]
- Alonso, P.L.; Sacarlal, J.; Aponte, J.J.; Leach, A.; Macete, E.; Aide, P.; Sigauque, B.; Milman, J.; Mandomando, I.; Bassat, Q.; et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in mozambican children: Single-blind extended follow-up of a randomised controlled trial. Lancet 2005, 366, 2012–2018. [Google Scholar] [CrossRef]
- Leroux-Roels, I.; Leroux-Roels, G.; Ofori-Anyinam, O.; Moris, P.; De Kock, E.; Clement, F.; Dubois, M.-C.; Koutsoukos, M.; Demoitie, M.-A.; Cohen, J.; et al. Evaluation of the safety and immunogenicity of two antigen concentrations of the MTB72F/AS02A candidate tuberculosis vaccine in purified protein derivative-negative adults. Clin. Vaccine Immunol. 2010, 17, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Beran, J.; Hobzova, L.; Wertzova, V.; Kuriyakose, S.; Leyssen, M.; Surquin, M.; Houard, S. Safety and immunogenicity of an investigational adjuvanted hepatitis B vaccine (HB-AS02V) in healthy adults. Hum. Vaccines 2010, 6, 578–584. [Google Scholar] [CrossRef]
- Tielemans, C.L.; Vlasak, J.; Kosa, D.; Billiouw, J.-M.; Verpooten, G.A.; Mezei, I.; Ryba, M.; Peeters, P.C.; Mat, O.; Jadoul, M.Y.; et al. Immunogenicity and safety of an investigational AS02V-adjuvanted hepatitis b vaccine in patients with renal insufficiency who failed to respond or to maintain antibody levels after prior vaccination: Results of two open, randomized, comparative trials. Vaccine 2011, 29, 1159–1166. [Google Scholar] [CrossRef]
- Vantomme, V.R.; Dantinne, C.; Amrani, N.; Permanne, P.; Gheysen, D.; Bruck, C.; Stoter, G.; Britten, C.M.; Keilholz, U.; Lamers, C.H.J.; et al. Immunologic analysis of a phase I/II study of vaccination with mage-3 protein combined with the AS02B adjuvant in patients with mage-3-positive tumors. J. Immunother. 2004, 27, 124–135. [Google Scholar]
- Atanackovic, D.; Altorki, N.K.; Cao, Y.; Ritter, E.; Ferrara, C.A.; Ritter, G.; Hoffman, E.W.; Bokemeyer, C.; Old, L.J.; Gnjatic, S. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl. Acad. Sci. USA 2008, 105, 1650–1655. [Google Scholar] [CrossRef]
- Stewart, V.A.; McGrath, S.M.; Walsh, D.S.; Davis, S.; Hess, A.S.; Ware, L.A.; Kester, K.E.; Cummings, J.F.; Burge, J.R.; Voss, G.; et al. Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine 2006, 24, 6483–6492. [Google Scholar] [CrossRef]
- Stewart, V.A.; McGrath, S.M.; Dubois, P.M.; Pau, M.G.; Mettens, P.; Shott, J.; Cobb, M.; Burge, J.R.; Larson, D.; Ware, L.A.; et al. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infect. Immun. 2007, 75, 2283–2290. [Google Scholar] [CrossRef]
- Kester, K.E.; Cummings, J.F.; Ofori-Anyinam, O.; Ockenhouse, C.F.; Krzych, U.; Moris, P.; Schwenk, R.; Nielsen, R.A.; Debebe, Z.; Pinelis, E.; et al. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: Safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 2009, 200, 337–346. [Google Scholar] [CrossRef]
- Leroux-Roels, I.; Forgus, S.; de Boever, F.; Clement, F.; Demoitie, M.A.; Mettens, P.; Moris, P.; Ledent, E.; Leroux-Roels, G.; Ofori-Anyinam, O.; et al. Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and MTB72F/AS02 tuberculosis candidate vaccine formulations: A randomized trial. Vaccine 2013, 31, 2196–2206. [Google Scholar] [CrossRef]
- Ansong, D.; Asante, K.P.; Vekemans, J.; Owusu, S.K.; Owusu, R.; Brobby, N.A.; Dosoo, D.; Osei-Akoto, A.; Osei-Kwakye, K.; Asafo-Adjei, E.; et al. T cell responses to the RTS,S/AS01(E) and RTS,S/AS02(D) malaria candidate vaccines administered according to different schedules to ghanaian children. PLoS One 2011, 6, e18891. [Google Scholar] [CrossRef]
- Van Braeckel, E.; Bourguignon, P.; Koutsoukos, M.; Clement, F.; Janssens, M.; Carletti, I.; Collard, A.; Demoitie, M.-A.; Voss, G.; Leroux-Roels, G.; et al. An adjuvanted polyprotein HIV-1 vaccine induces polyfunctional cross-reactive CD4+ T cell responses in seronegative volunteers. Clin. Infect. Dis. 2011, 52, 522–531. [Google Scholar] [CrossRef]
- Pichyangkul, S.; Gettayacamin, M.; Miller, R.S.; Lyon, J.A.; Angov, E.; Tongtawe, P.; Ruble, D.L.; Heppner, D.G., Jr.; Kester, K.E.; Ballou, W.R.; et al. Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP142 formulated with novel adjuvants or with alum. Vaccine 2004, 22, 3831–3840. [Google Scholar] [CrossRef]
- Dey, A.K.; Srivastava, I.K. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev. Vaccines 2011, 10, 227–251. [Google Scholar] [CrossRef]
- Schultze, V.; D’Agosto, V.; Wack, A.; Novicki, D.; Zorn, J.; Hennig, R. Safety of MF59 adjuvant. Vaccine 2008, 26, 3209–3222. [Google Scholar] [CrossRef]
- Stanberry, L.R.; Simon, J.K.; Johnson, C.; Robinson, P.L.; Morry, J.; Flack, M.R.; Gracon, S.; Myc, A.; Hamouda, T.; Baker, J.R., Jr. Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W805EC combined with approved seasonal influenza antigens. Vaccine 2012, 30, 307–316. [Google Scholar] [CrossRef]
- Baudner, B.C.; Ronconi, V.; Casini, D.; Tortoli, M.; Kazzaz, J.; Singh, M.; Hawkins, L.D.; Wack, A.; O’Hagan, D.T. MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm. Res. 2009, 26, 1477–1485. [Google Scholar] [CrossRef]
- Singh, M.; Kazzaz, J.; Ugozzoli, M.; Baudner, B.; Pizza, M.; Giuliani, M.; Hawkins, L.D.; Otten, G.; O’Hagan, D.T. MF59 oil-in-water emulsion in combination with a synthetic TLR4 agonist (E6020) is a potent adjuvant for a combination meningococcus vaccine. Hum. Vaccines Immunother. 2012, 8, 486–490. [Google Scholar] [CrossRef]
- Wack, A.; Baudner, B.C.; Hilbert, A.K.; Manini, I.; Nuti, S.; Tavarini, S.; Scheffczik, H.; Ugozzoli, M.; Singh, M.; Kazzaz, J.; et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 2008, 26, 552–561. [Google Scholar] [CrossRef]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef]
- Li, S.; Rouphael, N.; Duraisingham, S.; Romero-Steiner, S.; Presnell, S.; Davis, C.; Schmidt, D.S.; Johnson, S.E.; Milton, A.; Rajam, G.; et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 2014, 15, 195–204. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Levast, B.; Awate, S.; Babiuk, L.; Mutwiri, G.; Gerdts, V.; Van Drunen Littel-van den Hurk, S. Vaccine Potentiation by Combination Adjuvants. Vaccines 2014, 2, 297-322. https://doi.org/10.3390/vaccines2020297
Levast B, Awate S, Babiuk L, Mutwiri G, Gerdts V, Van Drunen Littel-van den Hurk S. Vaccine Potentiation by Combination Adjuvants. Vaccines. 2014; 2(2):297-322. https://doi.org/10.3390/vaccines2020297
Chicago/Turabian StyleLevast, Benoît, Sunita Awate, Lorne Babiuk, George Mutwiri, Volker Gerdts, and Sylvia Van Drunen Littel-van den Hurk. 2014. "Vaccine Potentiation by Combination Adjuvants" Vaccines 2, no. 2: 297-322. https://doi.org/10.3390/vaccines2020297
APA StyleLevast, B., Awate, S., Babiuk, L., Mutwiri, G., Gerdts, V., & Van Drunen Littel-van den Hurk, S. (2014). Vaccine Potentiation by Combination Adjuvants. Vaccines, 2(2), 297-322. https://doi.org/10.3390/vaccines2020297