Messenger RNA and Plasmid DNA Vaccines for the Treatment of Cancer
Abstract
1. Introduction to Nucleic Acid Vaccines for the Treatment of Cancer
2. Mechanisms of Action of DNA Versus mRNA Vaccines
2.1. Mechanisms of Cellular Uptake and Antigen Presentation
2.2. Mechanisms of Innate Immune Recognition
2.3. Types of Immune Responses Generated by Immunization with mRNA or DNA Vaccines
3. mRNA and DNA Vaccines in Preclinical Animal Models Encoding the Same Antigens
3.1. Mucin 1 (MUC1)
3.2. Melanoma Antigen Family A (MAGE-A)
3.3. Human Papillomavirus (HPV)
3.4. Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS)
3.5. Summary of Preclinical Models Encoding the Same Antigens
4. Monotherapies of mRNA and DNA Vaccines in Human Clinical Trials
Summary of Human Clinical Trials Using Monotherapy mRNA or DNA Vaccines
5. Methods to Improve mRNA and DNA Vaccines as Monotherapies
5.1. Methods to Improve mRNA Vaccine Efficacy
5.2. Methods to Improve DNA Vaccine Efficacy
6. Combination Therapies Using mRNA or DNA Vaccines
6.1. Combination Therapies with Radiotherapy
6.2. Combination Therapies with Immune Checkpoint Inhibitors (ICI)
6.3. Combination Therapies with Toll-like Receptor Agonists
6.4. Combination Therapies with Chemotherapy
7. Concluding Remarks and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, X. Drug Resistance and Combating Drug Resistance in Cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef]
- Coley, W.B. The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 1910, 3, 1–48. [Google Scholar] [CrossRef]
- McCarthy, E.F. The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas. Iowa Orthop. J. 2006, 26, 154–158. [Google Scholar]
- Larocca, C.; Schlom, J. Viral Vector-Based Therapeutic Cancer Vaccines. Cancer J. 2011, 17, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Tang, Y.; Xu, W.; Hao, X.; Li, Y.; Huang, S.; Xiang, D.; Wu, J. Bacteria-Based Immunotherapy for Cancer: A Systematic Review of Preclinical Studies. Front. Immunol. 2023, 14, 1140463. [Google Scholar] [CrossRef] [PubMed]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef]
- Tiwari, A.; Alcover, K.; Carpenter, E.; Thomas, K.; Krum, J.; Nissen, A.; Van Decar, S.; Smolinsky, T.; Valdera, F.; Vreeland, T.; et al. Utility of Cell-Based Vaccines as Cancer Therapy: Systematic Review and Meta-Analysis. Hum. Vaccines Immunother. 2024, 20, 2323256. [Google Scholar] [CrossRef]
- MacGregor, R.R.; Boyer, J.D.; Ugen, K.E.; Lacy, K.E.; Gluckman, S.J.; Bagarazzi, M.L.; Chattergoon, M.A.; Baine, Y.; Higgins, T.J.; Ciccarelli, R.B.; et al. First Human Trial of a DNA-Based Vaccine for Treatment of Human Immunodeficiency Virus Type 1 Infection: Safety and Host Response. J. Infect. Dis. 1998, 178, 92–100. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, Y.; Bai, Y.; Liang, Z.; Mao, Q.; Liu, D.; Wu, X.; Xu, M. Research Advances on the Stability of mRNA Vaccines. Viruses 2023, 15, 668. [Google Scholar] [CrossRef]
- Rosa, S.S.; Prazeres, D.M.F.; Azevedo, A.M.; Marques, M.P.C. mRNA Vaccines Manufacturing: Challenges and Bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef]
- Dolgin, E. The Tangled History of mRNA Vaccines. Nature 2021, 597, 318–324. [Google Scholar] [CrossRef]
- Abbasi, J. India’s New COVID-19 DNA Vaccine for Adolescents and Adults Is a First. JAMA 2021, 326, 1365. [Google Scholar] [CrossRef]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef]
- Leitner, W.W.; Ying, H.; Restifo, N.P. DNA and RNA-Based Vaccines: Principles, Progress and Prospects. Vaccine 1999, 18, 765–777. [Google Scholar] [CrossRef]
- Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M.R.; Sadat, S.M. Polymeric Nanoparticles: Potent Vectors for Vaccine Delivery Targeting Cancer and Infectious Diseases. Hum. Vaccines Immunother. 2014, 10, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J.; Fougère, C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines 2022, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.L.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol. 2016, 37, 724–737. [Google Scholar] [CrossRef]
- Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic Cell Subsets in Cancer Immunity and Tumor Antigen Sensing. Cell. Mol. Immunol. 2023, 20, 432–447. [Google Scholar] [CrossRef]
- Colbert, J.D.; Cruz, F.M.; Rock, K.L. Cross-Presentation of Exogenous Antigens on MHC I Molecules. Curr. Opin. Immunol. 2020, 64, 1–8. [Google Scholar] [CrossRef]
- Kozak, M.; Hu, J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines 2024, 12, 71. [Google Scholar] [CrossRef]
- Zhou, R.; Geiger, R.C.; Dean, D.A. Intracellular Trafficking of Nucleic Acids. Expert Opin. Drug Deliv. 2004, 1, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Al Fayez, N.; Nassar, M.S.; Alshehri, A.A.; Alnefaie, M.K.; Almughem, F.A.; Alshehri, B.Y.; Alawad, A.O.; Tawfik, E.A. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023, 15, 1972. [Google Scholar] [CrossRef] [PubMed]
- Ledwith, B.J.; Manam, S.; Troilo, P.J.; Barnum, A.B.; Pauley, C.J.; Griffiths, T.G.; Harper, L.B.; Beare, C.M.; Bagdon, W.J.; Nichols, W.W. Plasmid DNA Vaccines: Investigation of Integration into Host Cellular DNA Following Intramuscular Injection in Mice. Intervirology 2000, 43, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Hassett, K.J.; Rajlic, I.L.; Bahl, K.; White, R.; Cowens, K.; Jacquinet, E.; Burke, K.E. mRNA Vaccine Trafficking and Resulting Protein Expression after Intramuscular Administration. Mol. Ther. Nucleic Acids 2024, 35, 102083. [Google Scholar] [CrossRef]
- Restifo, N.P.; Ying, H.; Hwang, L.; Leitner, W.W. The Promise of Nucleic Acid Vaccines. Gene Ther. 2000, 7, 89–92. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, C.; Walker, P.G.; Dong, Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr. Top. Microbiol. Immunol. 2022, 440, 71–110. [Google Scholar] [CrossRef]
- Bidram, M.; Zhao, Y.; Shebardina, N.G.; Baldin, A.V.; Bazhin, A.V.; Ganjalikhany, M.R.; Zamyatnin, A.A.; Ganjalikhani-Hakemi, M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines 2021, 9, 1060. [Google Scholar] [CrossRef]
- Eusébio, D.; Neves, A.R.; Costa, D.; Biswas, S.; Alves, G.; Cui, Z.; Sousa, Â. Methods to Improve the Immunogenicity of Plasmid DNA Vaccines. Drug Discov. Today 2021, 26, 2575–2592. [Google Scholar] [CrossRef]
- Colluru, V.T.; McNeel, D.G. B Lymphocytes as Direct Antigen-Presenting Cells for Anti-Tumor DNA Vaccines. Oncotarget 2016, 7, 67901–67918. [Google Scholar] [CrossRef]
- Rastogi, I.; McNeel, D.G. B Cells Require Licensing by Dendritic Cells to Serve as Primary Antigen-Presenting Cells for Plasmid DNA. Oncoimmunology 2023, 12, 2212550. [Google Scholar] [CrossRef]
- Lee, J.; Ahn, E.; Kissick, H.T.; Ahmed, R. Reinvigorating Exhausted T Cells by Blockade of the PD-1 Pathway. Onco Ther. 2015, 6, 7–17. [Google Scholar] [CrossRef]
- Zheng, L.; Bandara, S.R.; Tan, Z.; Leal, C. Lipid Nanoparticle Topology Regulates Endosomal Escape and Delivery of RNA to the Cytoplasm. Proc. Natl. Acad. Sci. USA 2023, 120, e2301067120. [Google Scholar] [CrossRef] [PubMed]
- Schlich, M.; Palomba, R.; Costabile, G.; Mizrahy, S.; Pannuzzo, M.; Peer, D.; Decuzzi, P. Cytosolic Delivery of Nucleic Acids: The Case of Ionizable Lipid Nanoparticles. Bioeng. Transl. Med. 2021, 6, e10213. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid Nanoparticles for mRNA Delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Cui, L.; Renzi, S.; Quagliarini, E.; Digiacomo, L.; Amenitsch, H.; Masuelli, L.; Bei, R.; Ferri, G.; Cardarelli, F.; Wang, J.; et al. Efficient Delivery of DNA Using Lipid Nanoparticles. Pharmaceutics 2022, 14, 1698. [Google Scholar] [CrossRef]
- Algarni, A.; Pilkington, E.H.; Suys, E.J.A.; Al-Wassiti, H.; Pouton, C.W.; Truong, N.P. In Vivo Delivery of Plasmid DNA by Lipid Nanoparticles: The Influence of Ionizable Cationic Lipids on Organ-Selective Gene Expression. Biomater. Sci. 2022, 10, 2940–2952. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Dong, C.; Zhu, W.; Wang, B.-Z. mRNA Vaccine Nanoplatforms and Innate Immunity. Viruses 2024, 16, 120. [Google Scholar] [CrossRef]
- Anderson, B.R.; Muramatsu, H.; Jha, B.K.; Silverman, R.H.; Weissman, D.; Kariko, K. Nucleoside Modifications in RNA Limit Activation of 2′-5′-Oligoadenylate Synthetase and Increase Resistance to Cleavage by RNase L. Nucleic Acids Res. 2011, 39, 9329–9338. [Google Scholar] [CrossRef]
- Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of Pseudouridine into mRNA Enhances Translation by Diminishing PKR Activation. Nucleic Acids Res. 2010, 38, 5884–5892. [Google Scholar] [CrossRef]
- Alameh, M.-G.; Weissman, D.; Pardi, N. Messenger RNA-Based Vaccines Against Infectious Diseases. In mRNA Vaccines; Yu, D., Petsch, B., Eds.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2020; Volume 440, pp. 111–145. ISBN 978-3-031-18069-9. [Google Scholar]
- Zahid, A.; Ismail, H.; Li, B.; Jin, T. Molecular and Structural Basis of DNA Sensors in Antiviral Innate Immunity. Front. Immunol. 2020, 11, 613039. [Google Scholar] [CrossRef]
- Kreiter, S.; Vormehr, M.; Van De Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J.C.; et al. Mutant MHC Class II Epitopes Drive Therapeutic Immune Responses to Cancer. Nature 2015, 520, 692–696. [Google Scholar] [CrossRef]
- Deng, Z.; Tian, Y.; Song, J.; An, G.; Yang, P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front. Immunol. 2022, 13, 887125. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Li, J.; He, J.; Yu, G.; Wang, J.; Lin, X. Intranasal Prime-Boost RNA Vaccination Elicits Potent T Cell Response for Lung Cancer Therapy. Signal Transduct. Target. Ther. 2025, 10, 101. [Google Scholar] [CrossRef]
- Fan, T.; Xu, C.; Wu, J.; Cai, Y.; Cao, W.; Shen, H.; Zhang, M.; Zhu, H.; Yang, J.; Zhu, Z.; et al. Lipopolyplex-Formulated mRNA Cancer Vaccine Elicits Strong Neoantigen-Specific T Cell Responses and Antitumor Activity. Sci. Adv. 2024, 10, eadn9961. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jeang, J.; Yang, A.; Wu, T.C.; Hung, C.-F. DNA Vaccine for Cancer Immunotherapy. Hum. Vaccines Immunother. 2014, 10, 3153–3164. [Google Scholar] [CrossRef] [PubMed]
- Buonaguro, L.; Tagliamonte, M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines 2020, 8, 615. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic Cancer Vaccines: Advancements, Challenges and Prospects. Signal Transduct. Target. Ther. 2023, 8, 450. [Google Scholar] [CrossRef]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising Targets for Cancer Therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, M.; Qin, Y.; Gao, W.; Tao, L.; Su, W.; Zhong, J. Neoantigen: A New Breakthrough in Tumor Immunotherapy. Front. Immunol. 2021, 12, 672356. [Google Scholar] [CrossRef]
- Snyder, L.A.; Goletz, T.J.; Gunn, G.R.; Shi, F.F.; Harris, M.C.; Cochlin, K.; McCauley, C.; McCarthy, S.G.; Branigan, P.J.; Knight, D.M. A MUC1/IL-18 DNA Vaccine Induces Anti-Tumor Immunity and Increased Survival in MUC1 Transgenic Mice. Vaccine 2006, 24, 3340–3352. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Miao, Y.; Shen, J.; Li, D.; Deng, X.; Yang, C.; Ji, Y.; Dai, Z.; Ma, Y. Unlocking PD-1 Antibody Resistance: The MUC1 DNA Vaccine Augments CD8+ T Cell Infiltration and Attenuates Tumour Suppression. Scand. J. Immunol. 2024, 99, e13356. [Google Scholar] [CrossRef]
- Choi, D.-H.; Woo, J.K.; Choi, Y.; Seo, H.-S.; Kim, C.-W. A Novel Chimeric DNA Vaccine: Enhancement of Preventive and Therapeutic Efficacy of DNA Vaccine by Fusion of Mucin 1 to a Heat Shock Protein 70 Gene. Mol. Med. Rep. 2011, 4, 885–890. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Zhang, F.; Geng, F.; Xia, Q.; Lu, Z.; Xu, P.; Xie, Y.; Wu, H.; Yu, B.; et al. MUC1 and Survivin Combination Tumor Gene Vaccine Generates Specific Immune Responses and Anti-Tumor Effects in a Murine Melanoma Model. Vaccine 2016, 34, 2648–2655. [Google Scholar] [CrossRef]
- Liu, C.; Xie, Y.; Sun, B.; Geng, F.; Zhang, F.; Guo, Q.; Wu, H.; Yu, B.; Wu, J.; Yu, X.; et al. MUC1- and Survivin-Based DNA Vaccine Combining Immunoadjuvants CpG and Interleukin-2 in a Bicistronic Expression Plasmid Generates Specific Immune Responses and Antitumour Effects in a Murine Colorectal Carcinoma Model. Scand. J. Immunol. 2018, 87, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, H.; Xie, Y.; Zhou, X.; Wang, Y.; Zhou, J.; Long, S.; Hu, Z.; Zhang, S.; Qiu, W.; et al. Combination of CTLA-4 Blockade with MUC1 mRNA Nanovaccine Induces Enhanced Anti-Tumor CTL Activity by Modulating Tumor Microenvironment of Triple Negative Breast Cancer. Transl. Oncol. 2022, 15, 101298. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, L.; Zhang, H.; Quan, Y. Enhancing the Antitumour-Specific Immunity of a Lung DNA Vaccine in Vivo by Fusion Expression of MAGE-A3 and Soluble PD-1. Biotechnol. Biotechnol. Equip. 2017, 31, 1064–1069. [Google Scholar] [CrossRef]
- Duperret, E.K.; Liu, S.; Paik, M.; Trautz, A.; Stoltz, R.; Liu, X.; Ze, K.; Perales-Puchalt, A.; Reed, C.; Yan, J.; et al. A Designer Cross-Reactive DNA Immunotherapeutic Vaccine That Targets Multiple MAGE-A Family Members Simultaneously for Cancer Therapy. Clin. Cancer Res. 2018, 24, 6015–6027. [Google Scholar] [CrossRef]
- Choi, K.; Jeong, H.; Lee, D.H.; Lee, J.W.; Hong, J.-E.; Baek, J.E.; Park, Y.S. Innovative Cancer Immunotherapy with MAGE-A3 mRNA Cancer Vaccines. Cancers 2024, 16, 3428. [Google Scholar] [CrossRef]
- Cheng, W.-F.; Hung, C.-F.; Chai, C.-Y.; Hsu, K.-F.; He, L.; Ling, M.; Wu, T.-C. Tumor-Specific Immunity and Antiangiogenesis Generated by a DNA Vaccine Encoding Calreticulin Linked to a Tumor Antigen. J. Clin. Investig. 2001, 108, 669–678. [Google Scholar] [CrossRef]
- Farzanehpour, M.; Soleimanjahi, H.; Hassan, Z.M.; Amanzadeh, A.; Ghaemi, A.; Fazeli, M. HSP70 Modified Response against HPV Based Tumor. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 228–234. [Google Scholar] [PubMed]
- Trimble, C.; Lin, C.-T.; Hung, C.-F.; Pai, S.; Juang, J.; He, L.; Gillison, M.; Pardoll, D.; Wu, L.; Wu, T.-C. Comparison of the CD8+ T Cell Responses and Antitumor Effects Generated by DNA Vaccine Administered through Gene Gun, Biojector, and Syringe. Vaccine 2003, 21, 4036–4042. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Ferrall, L.; Gaillard, S.; Wang, C.; Chi, W.-Y.; Huang, C.-H.; Roden, R.B.S.; Wu, T.-C.; Chang, Y.-N.; Hung, C.-F. Development of DNA Vaccine Targeting E6 and E7 Proteins of Human Papillomavirus 16 (HPV16) and HPV18 for Immunotherapy in Combination with Recombinant Vaccinia Boost and PD-1 Antibody. mBio 2021, 12, e03224-20. [Google Scholar] [CrossRef]
- Qiu, K.; Duan, X.; Mao, M.; Song, Y.; Rao, Y.; Cheng, D.; Feng, L.; Shao, X.; Jiang, C.; Huang, H.; et al. mRNA-LNP Vaccination-Based Immunotherapy Augments CD8+ T Cell Responses against HPV-Positive Oropharyngeal Cancer. npj Vaccines 2023, 8, 144. [Google Scholar] [CrossRef]
- Zhou, K.; Yuzhakov, O.; Behloul, N.; Wang, D.; Bhagat, L.; Chu, D.; Zhang, X.; Cheng, X.; Fan, L.; Huang, X.; et al. HPV16 E6/E7 -Based mRNA Vaccine Is Therapeutic in Mice Bearing Aggressive HPV-Positive Lesions. Front. Immunol. 2023, 14, 1213285. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Chen, Y.; Zhou, R.; Wang, Q.; Zhang, T.; Yi, D.; Liu, Q.; Zhang, Y.; Zhang, W.; et al. Immunogenicity and Effectiveness of an mRNA Therapeutic Vaccine for HPV-Related Malignancies. Life Sci. Alliance 2024, 7, e202302448. [Google Scholar] [CrossRef]
- Weng, T.-Y.; Yen, M.-C.; Huang, C.-T.; Hung, J.-J.; Chen, Y.-L.; Chen, W.-C.; Wang, C.-Y.; Chang, J.-Y.; Lai, M.-D. DNA Vaccine Elicits an Efficient Antitumor Response by Targeting the Mutant Kras in a Transgenic Mouse Lung Cancer Model. Gene Ther. 2014, 21, 888–896. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Zou, S.; Xu, Z.; Cao, D.; Zhang, S.; Wei, M.; Zhan, Q.; Wen, C.; Li, F.; et al. Combination Therapy of KRAS G12V mRNA Vaccine and Pembrolizumab: Clinical Benefit in Patients with Advanced Solid Tumors. Cell Res. 2024, 34, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liu, W.; Brown, D.M.; Bong, Y.-S.; He, J.; Shen, D.; Wang, C.Y. Abstract 5738: A Pan-Ras mRNA Vaccine Elicits Specific Immune Responses and Inhibits Tumor Growth in the Mouse Model of Colon Cancer. Cancer Res. 2023, 83, 5738. [Google Scholar] [CrossRef]
- Shin, S.-H.; Han, Y.; Lim, C.G.; Heo, Y.H.; Jeong, S.; Kim, Y.-Y.; Choi, I.Y. Abstract LB222: An mRNA-Based Cancer Vaccine Multi-Targeting KRAS Mutations Inhibits Tumor Growth by Increasing Immune Response in KRAS Mutant LL/2 Mouse Model. Cancer Res. 2023, 83, LB222. [Google Scholar] [CrossRef]
- Li, C.; Ke, F.; Mao, S.; Montemayor, Z.; Traore, M.D.M.; Balsa, A.D.; Djibo, M.; Karekar, N.; Hu, H.; Wen, H.; et al. SARS-CoV-2 B Epitope-Guided Neoantigen NanoVaccines Enhance Tumor-Specific CD4/CD8 T Cell Immunity through B Cell Antigen Presentation. ACS Nano 2025, 19, 7038–7054. [Google Scholar] [CrossRef]
- Gao, T.; Cen, Q.; Lei, H. A Review on Development of MUC1-Based Cancer Vaccine. Biomed. Pharmacother. 2020, 132, 110888. [Google Scholar] [CrossRef]
- Liu, C.; Lu, Z.; Xie, Y.; Guo, Q.; Geng, F.; Sun, B.; Wu, H.; Yu, B.; Wu, J.; Zhang, H.; et al. Soluble PD-1-Based Vaccine Targeting MUC1 VNTR and Survivin Improves Anti-Tumor Effect. Immunol. Lett. 2018, 200, 33–42. [Google Scholar] [CrossRef]
- Esfandiary, A.; Ghafouri-Fard, S. MAGE-A3: An Immunogenic Target Used in Clinical Practice. Immunotherapy 2015, 7, 683–704. [Google Scholar] [CrossRef]
- Gjerstorff, M.F.; Andersen, M.H.; Ditzel, H.J. Oncogenic Cancer/Testis Antigens: Prime Candidates for Immunotherapy. Oncotarget 2015, 6, 15772–15787. [Google Scholar] [CrossRef] [PubMed]
- Alsalloum, A.; Shevchenko, J.; Sennikov, S. The Melanoma-Associated Antigen Family A (MAGE-A): A Promising Target for Cancer Immunotherapy? Cancers 2023, 15, 1779. [Google Scholar] [CrossRef]
- Monie, A.; Tsen, S.-W.D.; Hung, C.-F.; Wu, T.-C. Therapeutic HPV DNA Vaccines. Expert Rev. Vaccines 2009, 8, 1221–1235. [Google Scholar] [CrossRef] [PubMed]
- CDC. HPV Vaccination. Available online: https://www.cdc.gov/hpv/vaccines/index.html (accessed on 4 January 2025).
- Asimgil, H.; Ertetik, U.; Çevik, N.C.; Ekizce, M.; Doğruöz, A.; Gökalp, M.; Arık-Sever, E.; Istvanffy, R.; Friess, H.; Ceyhan, G.O.; et al. Targeting the Undruggable Oncogenic KRAS: The Dawn of Hope. JCI Insight 2022, 7, e153688. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef] [PubMed]
- Tiriveedhi, V.; Fleming, T.P.; Goedegebuure, P.S.; Naughton, M.; Ma, C.; Lockhart, C.; Gao, F.; Gillanders, W.E.; Mohanakumar, T. Mammaglobin-A cDNA Vaccination of Breast Cancer Patients Induces Antigen-Specific Cytotoxic CD4+ICOShi T Cells. Breast Cancer Res. Treat. 2013, 138, 109–118. [Google Scholar] [CrossRef]
- Tiriveedhi, V.; Tucker, N.; Herndon, J.; Li, L.; Sturmoski, M.; Ellis, M.; Ma, C.; Naughton, M.; Lockhart, A.C.; Gao, F.; et al. Safety and Preliminary Evidence of Biologic Efficacy of a Mammaglobin-A DNA Vaccine in Patients with Stable Metastatic Breast Cancer. Clin. Cancer Res. 2014, 20, 5964–5975. [Google Scholar] [CrossRef] [PubMed]
- Stanton, S.E.; Wisinski, K.B.; Gwin, W.R.; Coveler, A.; Liao, J.B.; Burkard, M.; Bailey, H.; Kim, K.; Havinghurst, T.; DeShong, K.; et al. Abstract P2-02-02: Phase I Trial of the Safety and Immunogenicity of a Tri-Antigen Vaccine Targeting HER2, IGFBP-2, and IGF-IR in Patients with Non-Metastatic Breast Cancer. Cancer Res. 2023, 83, P2-02-02. [Google Scholar] [CrossRef]
- Disis, M.L.; Guthrie, K.A.; Liu, Y.; Coveler, A.L.; Higgins, D.M.; Childs, J.S.; Dang, Y.; Salazar, L.G. Safety and Outcomes of a Plasmid DNA Vaccine Encoding the ERBB2 Intracellular Domain in Patients With Advanced-Stage ERBB2-Positive Breast Cancer: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Goedegebuure, S.P.; Chen, M.Y.; Mishra, R.; Zhang, F.; Yu, Y.Y.; Singhal, K.; Li, L.; Gao, F.; Myers, N.B.; et al. Neoantigen DNA Vaccines Are Safe, Feasible, and Induce Neoantigen-Specific Immune Responses in Triple-Negative Breast Cancer Patients. Genome Med. 2024, 16, 131. [Google Scholar] [CrossRef]
- Markowitz, J.; Shamblott, M.; Brohl, A.S.; Sarnaik, A.; Eroglu, Z.; Khushalani, N.I.; Chen, P.-L.; De-Aquino, D.B.; Sondak, V.K.; Tarhini, A.A.; et al. IFx-Hu2.0 Phase I First in Human Study for Unresectable Melanoma for an Intralesional “in-Situ Vaccine” Approach. J. Clin. Oncol. 2022, 40, e21542. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Yuan, J.; Houghton, A.N.; Gallardo, H.F.; Rasalan, T.S.; Wang, J.; Zhang, Y.; Ranganathan, R.; Chapman, P.B.; Krown, S.E.; et al. Safety and Immunogenicity of Tyrosinase DNA Vaccines in Patients with Melanoma. Mol. Ther. 2007, 15, 2044–2050. [Google Scholar] [CrossRef]
- Yuan, J.; Ku, G.Y.; Adamow, M.; Mu, Z.; Tandon, S.; Hannaman, D.; Chapman, P.; Schwartz, G.; Carvajal, R.; Panageas, K.S.; et al. Immunologic Responses to Xenogeneic Tyrosinase DNA Vaccine Administered by Electroporation in Patients with Malignant Melanoma. J. Immunother. Cancer 2013, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Lee, P.; Snively, J.; Boswell, W.; Ounpraseuth, S.; Lee, S.; Hickingbottom, B.; Smith, J.; Johnson, D.; Weber, J.S. Phase I Study of Intranodal Delivery of a Plasmid DNA Vaccine for Patients with Stage IV Melanoma. Cancer 2003, 98, 144–154. [Google Scholar] [CrossRef]
- Perales, M.-A.; Yuan, J.; Powel, S.; Gallardo, H.F.; Rasalan, T.S.; Gonzalez, C.; Manukian, G.; Wang, J.; Zhang, Y.; Chapman, P.B.; et al. Phase I/II Study of GM-CSF DNA as an Adjuvant for a Multipeptide Cancer Vaccine in Patients With Advanced Melanoma. Mol. Ther. 2008, 16, 2022–2029. [Google Scholar] [CrossRef]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA Vaccine Drives Immunity in Checkpoint-Inhibitor-Treated Melanoma. Nature 2020, 585, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Sahin, U.; Derhovanessian, E.; Kloke, B.-P.; Simon, P.; Bukur, V.; Albrecht, C.; Paruzynski, A.; Löwer, M.; Kuhn, A.; et al. IVAC MUTANOME: A First-in-Human Phase I Clinical Trial Targeting Individual Mutant Neoantigens for the Treatment of Melanoma. Ann. Oncol. 2017, 28, xi1–xi2. [Google Scholar] [CrossRef]
- McNeel, D.G.; Dunphy, E.J.; Davies, J.G.; Frye, T.P.; Johnson, L.E.; Staab, M.J.; Horvath, D.L.; Straus, J.; Alberti, D.; Marnocha, R.; et al. Safety and Immunological Efficacy of a DNA Vaccine Encoding Prostatic Acid Phosphatase in Patients With Stage D0 Prostate Cancer. J. Clin. Oncol. 2009, 27, 4047–4054. [Google Scholar] [CrossRef]
- McNeel, D.G.; Becker, J.T.; Eickhoff, J.C.; Johnson, L.E.; Bradley, E.; Pohlkamp, I.; Staab, M.J.; Liu, G.; Wilding, G.; Olson, B.M. Real-Time Immune Monitoring to Guide Plasmid DNA Vaccination Schedule Targeting Prostatic Acid Phosphatase in Patients with Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2014, 20, 3692–3704. [Google Scholar] [CrossRef]
- McNeel, D.G.; Eickhoff, J.C.; Johnson, L.E.; Roth, A.R.; Perk, T.G.; Fong, L.; Antonarakis, E.S.; Wargowski, E.; Jeraj, R.; Liu, G. Phase II Trial of a DNA Vaccine Encoding Prostatic Acid Phosphatase (pTVG-HP [MVI-816]) in Patients With Progressive, Nonmetastatic, Castration-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 3507–3517. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.E.; Eickhoff, J.C.; Ferrari, A.C.; Schweizer, M.T.; Wargowski, E.; Olson, B.M.; McNeel, D.G. Multicenter Phase I Trial of a DNA Vaccine Encoding the Androgen Receptor Ligand-Binding Domain (pTVG-AR, MVI-118) in Patients with Metastatic Prostate Cancer. Clin. Cancer Res. 2020, 26, 5162–5171. [Google Scholar] [CrossRef]
- Kübler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; Vom Dorp, F.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L.; et al. Self-Adjuvanted mRNA Vaccination in Advanced Prostate Cancer Patients: A First-in-Man Phase I/IIa Study. J. Immunother. Cancer 2015, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, F.; Tötterman, T.; Maltais, A.-K.; Pisa, P.; Yachnin, J. DNA Vaccine Coding for the Rhesus Prostate Specific Antigen Delivered by Intradermal Electroporation in Patients with Relapsed Prostate Cancer. Vaccine 2013, 31, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, Efficacy, and Immunogenicity of VGX-3100, a Therapeutic Synthetic DNA Vaccine Targeting Human Papillomavirus 16 and 18 E6 and E7 Proteins for Cervical Intraepithelial Neoplasia 2/3: A Randomised, Double-Blind, Placebo-Controlled Phase 2b Trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef]
- Kim, T.J.; Jin, H.-T.; Hur, S.-Y.; Yang, H.G.; Seo, Y.B.; Hong, S.R.; Lee, C.-W.; Kim, S.; Woo, J.-W.; Park, K.S.; et al. Clearance of Persistent HPV Infection and Cervical Lesion by Therapeutic DNA Vaccine in CIN3 Patients. Nat. Commun. 2014, 5, 5317. [Google Scholar] [CrossRef]
- Hasan, Y.; Spiotto, M.T.; Furtado, L.V.; Tergas, A.I.; Lee, N.K.; Brooks, R.A.; McCall, A.R.; Golden, D.W.; Jolly, S.; Fleming, G.F.; et al. A Phase 1/2A Trial of Synthetic DNA Vaccine Immunotherapy Targeting HPV-16 and -18 after Chemoradiation for Cervical Cancer. J. Clin. Oncol. 2018, 36, 5525. [Google Scholar] [CrossRef]
- Hillemanns, P.; Denecke, A.; Woelber, L.; Böhmer, G.; Jentschke, M.; Schjetne, K.W.; Bruins Slot, K.M.H.; Fredriksen, A.B. A Therapeutic Antigen-Presenting Cell-Targeting DNA Vaccine VB10.16 in HPV16-Positive High-Grade Cervical Intraepithelial Neoplasia: Results from a Phase I/IIa Trial. Clin. Cancer Res. 2022, 28, 4885–4892. [Google Scholar] [CrossRef] [PubMed]
- Trimble, C.L.; Peng, S.; Kos, F.; Gravitt, P.; Viscidi, R.; Sugar, E.; Pardoll, D.; Wu, T.C. A Phase I Trial of a Human Papillomavirus DNA Vaccine for HPV16+ Cervical Intraepithelial Neoplasia 2/3. Clin. Cancer Res. 2009, 15, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Vogelzang, N.J.; Ernstoff, M.S.; Goodman, O.B.; Cranmer, L.D.; Marshall, J.L.; Miles, S.; Rosario, D.; Diamond, D.C.; Qiu, Z.; et al. A Phase 1 Study of a Vaccine Targeting Preferentially Expressed Antigen in Melanoma and Prostate-Specific Membrane Antigen in Patients With Advanced Solid Tumors. J. Immunother. 2011, 34, 556–567. [Google Scholar] [CrossRef]
- Sebastian, M.; Schröder, A.; Scheel, B.; Hong, H.S.; Muth, A.; von Boehmer, L.; Zippelius, A.; Mayer, F.; Reck, M.; Atanackovic, D.; et al. A Phase I/IIa Study of the mRNA-Based Cancer Immunotherapy CV9201 in Patients with Stage IIIB/IV Non-Small Cell Lung Cancer. Cancer Immunol. Immunother. 2019, 68, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Wick, A.; Sahm, F.; Riehl, D.; Von Deimling, A.; Bendszus, M.; Kickingereder, P.; Beckhove, P.; Schmitz-Winnenthal, F.H.; Jungk, C.; et al. VXM01 Phase I Study in Patients with Progressive Glioblastoma: Final Results. J. Clin. Oncol. 2018, 36, 2017. [Google Scholar] [CrossRef]
- Bloom, K.; Van Den Berg, F.; Arbuthnot, P. Self-Amplifying RNA Vaccines for Infectious Diseases. Gene Ther. 2021, 28, 117–129. [Google Scholar] [CrossRef]
- Maine, C.J.; Richard, G.; Spasova, D.S.; Miyake-Stoner, S.J.; Sparks, J.; Moise, L.; Sullivan, R.P.; Garijo, O.; Choz, M.; Crouse, J.M.; et al. Self-Replicating RNAs Drive Protective Anti-Tumor T Cell Responses to Neoantigen Vaccine Targets in a Combinatorial Approach. Mol. Ther. 2021, 29, 1186–1198. [Google Scholar] [CrossRef]
- Ramos Da Silva, J.; Bitencourt Rodrigues, K.; Formoso Pelegrin, G.; Silva Sales, N.; Muramatsu, H.; De Oliveira Silva, M.; Porchia, B.F.M.M.; Moreno, A.C.R.; Aps, L.R.M.M.; Venceslau-Carvalho, A.A.; et al. Single Immunizations of Self-Amplifying or Non-Replicating mRNA-LNP Vaccines Control HPV-Associated Tumors in Mice. Sci. Transl. Med. 2023, 15, eabn3464. [Google Scholar] [CrossRef]
- First Self-Amplifying mRNA Vaccine Approved. Nat. Biotechnol. 2024, 42, 4. [CrossRef]
- Wang, X.; Liu, S.; Sun, Y.; Yu, X.; Lee, S.M.; Cheng, Q.; Wei, T.; Gong, J.; Robinson, J.; Zhang, D.; et al. Preparation of Selective Organ-Targeting (SORT) Lipid Nanoparticles (LNPs) Using Multiple Technical Methods for Tissue-Specific mRNA Delivery. Nat. Protoc. 2023, 18, 265–291. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ye, Z.; Huang, C.; Qiu, M.; Song, D.; Li, Y.; Xu, Q. Lipid Nanoparticle-Mediated Lymph Node–Targeting Delivery of mRNA Cancer Vaccine Elicits Robust CD8+ T Cell Response. Proc. Natl. Acad. Sci. USA 2022, 119, e2207841119. [Google Scholar] [CrossRef] [PubMed]
- Chilumula, S.; Hanchate, P.; Patri, S.V.; Marepally, S. Influence of Structural Modifications in Synthetic Vectors of Lipid Adjuvants on mRNA Vaccine Delivery. Biomater. Sci. 2025, 13, 4952–4969. [Google Scholar] [CrossRef]
- Chatzikleanthous, D.; O’Hagan, D.T.; Adamo, R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol. Pharm. 2021, 18, 2867–2888. [Google Scholar] [CrossRef]
- Mochida, Y.; Uchida, S. mRNA Vaccine Designs for Optimal Adjuvanticity and Delivery. RNA Biol. 2024, 21, 422–448. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kimura, M.; Karaki, T.; Tanaka, H.; Ono, C.; Ishida, T.; Matsuura, Y.; Hirai, T.; Akita, H.; Shimizu, T.; et al. Modulating Immunogenicity and Reactogenicity in mRNA-Lipid Nanoparticle Vaccines through Lipid Component Optimization. ACS Nano 2025, 19, 27977–28001. [Google Scholar] [CrossRef]
- Vadovics, M.; Zhao, W.; Daley, E.F.; Lam, K.; Daly, O.; Rashid, K.; Lee, H.R.; Schreiner, P.; Lundgreen, K.A.; Gaudette, B.T.; et al. Tailoring the Adjuvanticity of Lipid Nanoparticles by PEG Lipid Ratio and Phospholipid Modifications. Nat. Nanotechnol. 2025, 1–11. [Google Scholar] [CrossRef]
- Sardesai, N.Y.; Weiner, D.B. Electroporation Delivery of DNA Vaccines: Prospects for Success. Curr. Opin. Immunol. 2011, 23, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Kisakov, D.N.; Belyakov, I.M.; Kisakova, L.A.; Yakovlev, V.A.; Tigeeva, E.V.; Karpenko, L.I. The Use of Electroporation to Deliver DNA-Based Vaccines. Expert Rev. Vaccines 2024, 23, 102–123. [Google Scholar] [CrossRef]
- Broderick, K.E.; Kardos, T.; McCoy, J.R.; Fons, M.P.; Kemmerrer, S.; Sardesai, N.Y. Piezoelectric Permeabilization of Mammalian Dermal Tissue for in Vivo DNA Delivery Leads to Enhanced Protein Expression and Increased Immunogenicity. Hum. Vaccines 2011, 7, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Chudley, L.; McCann, K.; Mander, A.; Tjelle, T.; Campos-Perez, J.; Godeseth, R.; Creak, A.; Dobbyn, J.; Johnson, B.; Bass, P.; et al. DNA Fusion-Gene Vaccination in Patients with Prostate Cancer Induces High-Frequency CD8+ T-Cell Responses and Increases PSA Doubling Time. Cancer Immunol. Immunother. 2012, 61, 2161–2170. [Google Scholar] [CrossRef]
- Low, L.; Mander, A.; McCann, K.; Dearnaley, D.; Tjelle, T.; Mathiesen, I.; Stevenson, F.; Ottensmeier, C.H. DNA Vaccination with Electroporation Induces Increased Antibody Responses in Patients with Prostate Cancer. Hum. Gene Ther. 2009, 20, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High-Velocity Microprojectiles for Delivering Nucleic Acids into Living Cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Sanford, J.C.; Klein, T.M.; Wolf, E.D.; Allen, N. Delivery of substances into cells and tissues using a particle bombardment process. Part. Sci. Technol. 1987, 5, 27–37. [Google Scholar] [CrossRef]
- Uchida, M.; Li, X.W.; Mertens, P.; Alpar, H.O. Transfection by Particle Bombardment: Delivery of Plasmid DNA into Mammalian Cells Using Gene Gun. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 754–764. [Google Scholar] [CrossRef]
- Zelenin, A.V.; Titomirov, A.V.; Kolesnikov, V.A. Genetic Transformation of Mouse Cultured Cells with the Help of High-velocity Mechanical DNA Injection. FEBS Lett. 1989, 244, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.S.; Burkholder, J.; Roberts, B.; Martinell, B.; McCabe, D. In Vivo and in Vitro Gene Transfer to Mammalian Somatic Cells by Particle Bombardment. Proc. Natl. Acad. Sci. USA 1990, 87, 9568–9572. [Google Scholar] [CrossRef]
- Williams, R.S.; Johnston, S.A.; Riedy, M.; DeVit, M.J.; McElligott, S.G.; Sanford, J.C. Introduction of Foreign Genes into Tissues of Living Mice by DNA-Coated Microprojectiles. Proc. Natl. Acad. Sci. USA 1991, 88, 2726–2730. [Google Scholar] [CrossRef]
- Cheng, L.; Ziegelhoffer, P.R.; Yang, N.S. In Vivo Promoter Activity and Transgene Expression in Mammalian Somatic Tissues Evaluated by Using Particle Bombardment. Proc. Natl. Acad. Sci. USA 1993, 90, 4455–4459. [Google Scholar] [CrossRef]
- Sato, H.; Hattori, S.; Kawamoto, S.; Kudoh, I.; Hayashi, A.; Yamamoto, I.; Yoshinari, M.; Minami, M.; Kanno, H. In Vivo Gene Gun-Mediated DNA Delivery into Rodent Brain Tissue. Biochem. Biophys. Res. Commun. 2000, 270, 163–170. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Zhang, L.; Li, J.; Huang, Z.; Lu, S. The Relative Immunogenicity of DNA Vaccines Delivered by the Intramuscular Needle Injection, Electroporation and Gene Gun Methods. Vaccine 2008, 26, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.J.; Wu, M.S.; Barr, L.J.; Fuller, J.T.; Tussey, L.G.; Speller, S.; Culp, J.; Burkholder, J.K.; Swain, W.F.; Dixon, R.M.; et al. Induction of Antigen-Specific CD8+ T Cells, T Helper Cells, and Protective Levels of Antibody in Humans by Particle-Mediated Administration of a Hepatitis B Virus DNA Vaccine. Vaccine 2000, 19, 764–778. [Google Scholar] [CrossRef]
- Jones, S.; Evans, K.; McElwaine-Johnn, H.; Sharpe, M.; Oxford, J.; Lambkin-Williams, R.; Mant, T.; Nolan, A.; Zambon, M.; Ellis, J.; et al. DNA Vaccination Protects against an Influenza Challenge in a Double-Blind Randomised Placebo-Controlled Phase 1b Clinical Trial. Vaccine 2009, 27, 2506–2512. [Google Scholar] [CrossRef]
- Hooper, J.W.; Kwilas, S.A.; Josleyn, M.; Norris, S.; Hutter, J.N.; Hamer, M.; Livezey, J.; Paolino, K.; Twomey, P.; Koren, M.; et al. Phase 1 Clinical Trial of Hantaan and Puumala Virus DNA Vaccines Delivered by Needle-Free Injection. npj Vaccines 2024, 9, 221. [Google Scholar] [CrossRef]
- Khobragade, A.; Bhate, S.; Ramaiah, V.; Deshpande, S.; Giri, K.; Phophle, H.; Supe, P.; Godara, I.; Revanna, R.; Nagarkar, R.; et al. Efficacy, Safety, and Immunogenicity of the DNA SARS-CoV-2 Vaccine (ZyCoV-D): The Interim Efficacy Results of a Phase 3, Randomised, Double-Blind, Placebo-Controlled Study in India. Lancet 2022, 399, 1313–1321. [Google Scholar] [CrossRef]
- Sheridan, C. First COVID-19 DNA Vaccine Approved, Others in Hot Pursuit. Nat. Biotechnol. 2021, 39, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Carlino, M.S.; Khattak, A.; Meniawy, T.; Ansstas, G.; Taylor, M.H.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; et al. Individualised Neoantigen Therapy mRNA-4157 (V940) plus Pembrolizumab versus Pembrolizumab Monotherapy in Resected Melanoma (KEYNOTE-942): A Randomised, Phase 2b Study. Lancet 2024, 403, 632–644. [Google Scholar] [CrossRef]
- Pham, T.; Pereira, L.; Roth, S.; Galletta, L.; Link, E.; Akhurst, T.; Solomon, B.; Michael, M.; Darcy, P.; Sampurno, S.; et al. First-in-Human Phase I Clinical Trial of a Combined Immune Modulatory Approach Using TetMYB Vaccine and Anti-PD-1 Antibody in Patients with Advanced Solid Cancer Including Colorectal or Adenoid Cystic Carcinoma: The MYPHISMO Study Protocol (NCT03287427). Contemp. Clin. Trials Commun. 2019, 16, 100409. [Google Scholar] [CrossRef] [PubMed]
- Wargowski, E.; Johnson, L.E.; Eickhoff, J.C.; Delmastro, L.; Staab, M.J.; Liu, G.; McNeel, D.G. Prime-Boost Vaccination Targeting Prostatic Acid Phosphatase (PAP) in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Using Sipuleucel-T and a DNA Vaccine. J. Immunother. Cancer 2018, 6, 21. [Google Scholar] [CrossRef]
- McNeel, D.G.; Eickhoff, J.C.; Wargowski, E.; Zahm, C.; Staab, M.J.; Straus, J.; Liu, G. Concurrent, but Not Sequential, PD-1 Blockade with a DNA Vaccine Elicits Anti-Tumor Responses in Patients with Metastatic, Castration-Resistant Prostate Cancer. Oncotarget 2018, 9, 25586–25596. [Google Scholar] [CrossRef]
- McNeel, D.G.; Emamekhoo, H.; Eickhoff, J.C.; Kyriakopoulos, C.E.; Wargowski, E.; Tonelli, T.P.; Johnson, L.E.; Liu, G. Phase 2 Trial of a DNA Vaccine (pTVG-HP) and Nivolumab in Patients with Castration-Sensitive Non-Metastatic (M0) Prostate Cancer. J. Immunother. Cancer 2023, 11, e008067. [Google Scholar] [CrossRef]
- Madan, R.A.; Bilusic, M.; Stein, M.N.; Donahue, R.N.; Arlen, P.M.; Karzai, F.; Plimack, E.; Wong, Y.-N.; Geynisman, D.M.; Zibelman, M.; et al. Flutamide With or Without PROSTVAC in Non-Metastatic Castration Resistant (M0) Prostate Cancer. Oncologist 2023, 28, 642–e561. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brem, S.; Desai, A.S.; Bagley, S.J.; Kurz, S.C.; De La Fuente, M.I.; Nagpal, S.; Welch, M.R.; Hormigo, A.; Forsyth, P.A.J.; et al. Intramuscular (IM) INO-5401 + INO-9012 with Electroporation (EP) in Combination with Cemiplimab (REGN2810) in Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2022, 40, 2004. [Google Scholar] [CrossRef]
- Wick, W.; Wick, A.; Chinot, O.; Sahm, F.; Von Deimling, A.; Jungk, C.; Mansour, M.; Podola, L.; Lubenau, H.; Platten, M. KS05.6.A Oral DNA Vaccination Targeting VEGFR2 Combined with the Anti-PD-L1 Antibody Avelumab in Patients with Progressive Glioblastoma-Final Results. NCT03750071. Neuro-Oncology 2022, 24, ii6. [Google Scholar] [CrossRef]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA Neoantigen Vaccines Stimulate T Cells in Pancreatic Cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Sethna, Z.; Guasp, P.; Reiche, C.; Milighetti, M.; Ceglia, N.; Patterson, E.; Lihm, J.; Payne, G.; Lyudovyk, O.; Rojas, L.A.; et al. RNA Neoantigen Vaccines Prime Long-Lived CD8+ T Cells in Pancreatic Cancer. Nature 2025, 639, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, L.; Teague, J.E.; Morrow, M.P.; Jotova, I.; Wu, T.C.; Wang, C.; Desmarais, C.; Boyer, J.D.; Tycko, B.; Robins, H.S.; et al. Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions. Sci. Transl. Med. 2014, 6, 221ra13. [Google Scholar] [CrossRef]
- Alvarez, R.D.; Huh, W.K.; Bae, S.; Lamb, L.S.; Conner, M.G.; Boyer, J.; Wang, C.; Hung, C.-F.; Sauter, E.; Paradis, M.; et al. A Pilot Study of pNGVL4a-CRT/E7(Detox) for the Treatment of Patients with HPV16 + Cervical Intraepithelial Neoplasia 2/3 (CIN2/3). Gynecol. Oncol. 2016, 140, 245–252. [Google Scholar] [CrossRef]
- Krasny, S.; Baranau, Y.; Polyakov, S.; Zharkova, E.; Streltsova, O.; Filimonava, A.; Siarheyeva, V.; Kazlouskaya, S.; Khorau, A.; Gabai, V.; et al. Clinical Efficacy of Plasmid Encoding P62/SQSTM1 (Elenagen) in Combination with Gemcitabine in Patients with Platinum-Resistant Ovarian Cancer: A Randomized Controlled Trial. Front. Oncol. 2024, 14, 1343023. [Google Scholar] [CrossRef]
- Papachristofilou, A.; Hipp, M.M.; Klinkhardt, U.; Früh, M.; Sebastian, M.; Weiss, C.; Pless, M.; Cathomas, R.; Hilbe, W.; Pall, G.; et al. Phase Ib Evaluation of a Self-Adjuvanted Protamine Formulated mRNA-Based Active Cancer Immunotherapy, BI1361849 (CV9202), Combined with Local Radiation Treatment in Patients with Stage IV Non-Small Cell Lung Cancer. J. Immunother. Cancer 2019, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liang, Y.; Liu, N.; Sun, M. Role of the cGAS-STING Pathway in Radiotherapy for Non-Small Cell Lung Cancer. Radiat. Oncol. 2023, 18, 145. [Google Scholar] [CrossRef]
- Anderson, R.; Vallis, K. Radionuclide Therapy and Immunomodulation. In Nuclear Medicine and Immunology; Harsini, S., Alavi, A., Rezaei, N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 249–266. ISBN 978-3-030-81260-7. [Google Scholar]
- Carlson, P.M.; Morris, Z.S. Translational Development and Testing of Theranostics in Combination with Immunotherapies. In Nuclear Medicine and Immunology; Harsini, S., Alavi, A., Rezaei, N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 267–280. ISBN 978-3-030-81260-7. [Google Scholar]
- Sun, Q.; Li, J.; Ding, Z.; Liu, Z. Radiopharmaceuticals Heat Anti-Tumor Immunity. Theranostics 2023, 13, 767–786. [Google Scholar] [CrossRef]
- Carvalho, H.d.A.; Villar, R.C. Radiotherapy and Immune Response: The Systemic Effects of a Local Treatment. Clinics 2018, 73, e557s. [Google Scholar] [CrossRef]
- Muralidhar, A.; Hernandez, R.; Morris, Z.S.; Comas Rojas, H.; Bio Idrissou, M.; Weichert, J.P.; McNeel, D.G. Myeloid-Derived Suppressor Cells Attenuate the Antitumor Efficacy of Radiopharmaceutical Therapy Using90 Y-NM600 in Combination with Androgen Deprivation Therapy in Murine Prostate Tumors. J. Immunother. Cancer 2024, 12, e008760. [Google Scholar] [CrossRef]
- Salomon, N.; Selmi, A.; Grunwitz, C.; Kong, A.; Stanganello, E.; Neumaier, J.; Petschenka, J.; Diken, M.; Kreiter, S.; Türeci, Ö.; et al. Local Radiotherapy and E7 RNA-LPX Vaccination Show Enhanced Therapeutic Efficacy in Preclinical Models of HPV16+ Cancer. Cancer Immunol. Immunother. 2022, 71, 1975–1988. [Google Scholar] [CrossRef]
- Fotin-Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Thess, A.; Duchardt, K.M.; Kallen, K.-J. Highly Potent mRNA Based Cancer Vaccines Represent an Attractive Platform for Combination Therapies Supporting an Improved Therapeutic Effect. J. Gene Med. 2012, 14, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Shim, D.; Hernandez, R.; Rojas, H.C.; Idrissou, M.B.; McNeel, D.G. 785 Combining Tumor-Specific Vaccination with Radiopharmaceutical Therapy (RPT) Enhances Anti-Tumor Response in OVA-Expressing Tumor Model. J. Immunother. Cancer 2024, 12, A889. [Google Scholar] [CrossRef]
- Tseng, C.-W.; Hung, C.-F.; Alvarez, R.D.; Trimble, C.; Huh, W.K.; Kim, D.; Chuang, C.-M.; Lin, C.-T.; Tsai, Y.-C.; He, L.; et al. Pretreatment with Cisplatin Enhances E7-Specific CD8+ T-Cell-Mediated Antitumor Immunity Induced by DNA Vaccination. Clin. Cancer Res. 2008, 14, 3185–3192. [Google Scholar] [CrossRef]
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, Y.; Li, B.; Gao, T.; Wang, B.; Hua, P. Robust Anti-Tumor Immunity through the Integration of Targeted Lipid Nanoparticle-Based mRNA Nanovaccines with PD-1/PD-L1 Blockade. Mater. Today Bio. 2024, 27, 101136. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Xu, Z.; Miao, L.; Huang, L. mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol. Ther. 2018, 26, 420–434. [Google Scholar] [CrossRef]
- Fournier, C.; Mercey-Ressejac, M.; Derangère, V.; Al Kadi, A.; Rageot, D.; Charrat, C.; Leroy, A.; Vollaire, J.; Josserand, V.; Escudé, M.; et al. Nanostructured Lipid Carriers Based mRNA Vaccine Leads to a T Cell–Inflamed Tumour Microenvironment Favourable for Improving PD-1/PD-L1 Blocking Therapy and Long-Term Immunity in a Cold Tumour Model. eBioMedicine 2025, 112, 105543. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Vanvarenberg, K.; Kos, Š.; Lucas, S.; Colau, D.; Van Den Eynde, B.; Préat, V.; Vandermeulen, G. Combination of Immune Checkpoint Blockade with DNA Cancer Vaccine Induces Potent Antitumor Immunity against P815 Mastocytoma. Sci. Rep. 2018, 8, 15732. [Google Scholar] [CrossRef] [PubMed]
- Kos, S.; Lopes, A.; Preat, V.; Cemazar, M.; Lampreht Tratar, U.; Ucakar, B.; Vanvarenberg, K.; Sersa, G.; Vandermeulen, G. Intradermal DNA Vaccination Combined with Dual CTLA-4 and PD-1 Blockade Provides Robust Tumor Immunity in Murine Melanoma. PLoS ONE 2019, 14, e0217762. [Google Scholar] [CrossRef]
- Gregor, P.D.; Wolchok, J.D.; Ferrone, C.R.; Buchinshky, H.; Guevara-Patiño, J.A.; Perales, M.-A.; Mortazavi, F.; Bacich, D.; Heston, W.; Latouche, J.-B.; et al. CTLA-4 Blockade in Combination with Xenogeneic DNA Vaccines Enhances T-Cell Responses, Tumor Immunity and Autoimmunity to Self Antigens in Animal and Cellular Model Systems. Vaccine 2004, 22, 1700–1708. [Google Scholar] [CrossRef]
- Neeli, P.; Maza, P.A.M.A.; Chai, D.; Zhao, D.; Hoi, X.P.; Chan, K.S.; Young, K.H.; Li, Y. DNA Vaccines against GPRC5D Synergize with PD-1 Blockade to Treat Multiple Myeloma. npj Vaccines 2024, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Zahm, C.D.; Moseman, J.E.; Delmastro, L.E.; G Mcneel, D. PD-1 and LAG-3 Blockade Improve Anti-Tumor Vaccine Efficacy. Oncoimmunology 2021, 10, 1912892. [Google Scholar] [CrossRef]
- Bausart, M.; Vanvarenberg, K.; Ucakar, B.; Lopes, A.; Vandermeulen, G.; Malfanti, A.; Préat, V. Combination of DNA Vaccine and Immune Checkpoint Blockades Improves the Immune Response in an Orthotopic Unresectable Glioblastoma Model. Pharmaceutics 2022, 14, 1025. [Google Scholar] [CrossRef]
- Viborg, N.; Pavlidis, M.A.; Barrio-Calvo, M.; Friis, S.; Trolle, T.; Sørensen, A.B.; Thygesen, C.B.; Kofoed, S.V.; Kleine-Kohlbrecher, D.; Hadrup, S.R.; et al. DNA Based Neoepitope Vaccination Induces Tumor Control in Syngeneic Mouse Models. npj Vaccines 2023, 8, 77. [Google Scholar] [CrossRef]
- Salvatori, E.; Lione, L.; Compagnone, M.; Pinto, E.; Conforti, A.; Ciliberto, G.; Aurisicchio, L.; Palombo, F. Neoantigen Cancer Vaccine Augments Anti-CTLA-4 Efficacy. npj Vaccines 2022, 7, 15. [Google Scholar] [CrossRef]
- McNeel, D.G.; Eickhoff, J.C.; Wargowski, E.; Johnson, L.E.; Kyriakopoulos, C.E.; Emamekhoo, H.; Lang, J.M.; Brennan, M.J.; Liu, G. Phase 2 Trial of T-Cell Activation Using MVI-816 and Pembrolizumab in Patients with Metastatic, Castration-Resistant Prostate Cancer (mCRPC). J. Immunother. Cancer 2022, 10, e004198. [Google Scholar] [CrossRef]
- Jeon, D.; Hill, E.; McNeel, D.G. Toll-like Receptor Agonists as Cancer Vaccine Adjuvants. Hum. Vaccines Immunother. 2024, 20, 2297453. [Google Scholar] [CrossRef]
- Verbeke, R.; Lentacker, I.; Wayteck, L.; Breckpot, K.; Van Bockstal, M.; Descamps, B.; Vanhove, C.; De Smedt, S.C.; Dewitte, H. Co-Delivery of Nucleoside-Modified mRNA and TLR Agonists for Cancer Immunotherapy: Restoring the Immunogenicity of Immunosilent mRNA. J. Control. Release 2017, 266, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; You, X.; Wang, X.; Cui, L.; Wang, Z.; Xu, F.; Li, M.; Yang, Z.; Liu, J.; Huang, P.; et al. Delivery of mRNA Vaccine with a Lipid-like Material Potentiates Antitumor Efficacy through Toll-like Receptor 4 Signaling. Proc. Natl. Acad. Sci. USA 2021, 118, e2005191118. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, S.Y.; Seo, Y.; Kim, M.H.; Chang, J.; Lee, H. Adjuvant Incorporated Lipid Nanoparticles for Enhanced mRNA-Mediated Cancer Immunotherapy. Biomater. Sci. 2020, 8, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Rice, J.; Reesor, E.; Zope, H.; Tao, W.; Lim, M.; Ding, J.; Chen, Y.; Aduluso, D.; Zetter, B.R.; et al. Adjuvant-Pulsed mRNA Vaccine Nanoparticle for Immunoprophylactic and Therapeutic Tumor Suppression in Mice. Biomaterials 2021, 266, 120431. [Google Scholar] [CrossRef]
- Haabeth, O.A.W.; Blake, T.R.; McKinlay, C.J.; Waymouth, R.M.; Wender, P.A.; Levy, R. mRNA Vaccination with Charge-Altering Releasable Transporters Elicits Human T Cell Responses and Cures Established Tumors in Mice. Proc. Natl. Acad. Sci. USA 2018, 115, E9153–E9161. [Google Scholar] [CrossRef]
- Sajadian, A.; Tabarraei, A.; Soleimanjahi, H.; Fotouhi, F.; Gorji, A.; Ghaemi, A. Comparing the Effect of Toll-like Receptor Agonist Adjuvants on the Efficiency of a DNA Vaccine. Arch. Virol. 2014, 159, 1951–1960. [Google Scholar] [CrossRef]
- Jeon, D.; McNeel, D.G. Toll-like Receptor Agonist Combinations Augment Mouse T-Cell Anti-Tumor Immunity via IL-12- and Interferon ß-Mediated Suppression of Immune Checkpoint Receptor Expression. Oncoimmunology 2022, 11, 2054758. [Google Scholar] [CrossRef]
- Soong, R.-S.; Song, L.; Trieu, J.; Knoff, J.; He, L.; Tsai, Y.-C.; Huh, W.; Chang, Y.-N.; Cheng, W.-F.; Roden, R.B.S.; et al. Toll-like Receptor Agonist Imiquimod Facilitates Antigen-Specific CD8+ T-Cell Accumulation in the Genital Tract Leading to Tumor Control through IFNγ. Clin. Cancer Res. 2014, 20, 5456–5467. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Weir, G.M.; Liwski, R.S.; Mansour, M. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines. Cancers 2011, 3, 3114–3142. [Google Scholar] [CrossRef]
- Kerr, M.D.; McBride, D.A.; Chumber, A.K.; Shah, N.J. Combining Therapeutic Vaccines with Chemo- and Immunotherapies in the Treatment of Cancer. Expert Opin. Drug Discov. 2021, 16, 89–99. [Google Scholar] [CrossRef]
- Emens, L.A.; Middleton, G. The Interplay of Immunotherapy and Chemotherapy: Harnessing Potential Synergies. Cancer Immunol. Res. 2015, 3, 436–443. [Google Scholar] [CrossRef]
- Scurr, M.; Pembroke, T.; Bloom, A.; Roberts, D.; Thomson, A.; Smart, K.; Bridgeman, H.; Adams, R.; Brewster, A.; Jones, R.; et al. Low-Dose Cyclophosphamide Induces Antitumor T-Cell Responses, Which Associate with Survival in Metastatic Colorectal Cancer. Clin. Cancer Res. 2017, 23, 6771–6780. [Google Scholar] [CrossRef]
- Becker, J.C.; Schrama, D. The Dark Side of Cyclophosphamide: Cyclophosphamide-Mediated Ablation of Regulatory T Cells. J. Investig. Dermatol. 2013, 133, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Till, B.; Gao, Q. Chemotherapeutic Agent-Mediated Elimination of Myeloid-Derived Suppressor Cells. Oncoimmunology 2017, 6, e1331807. [Google Scholar] [CrossRef]
- Ma, W.; Pham, B.; Li, T. Cancer Neoantigens as Potential Targets for Immunotherapy. Clin. Exp. Metastasis 2022, 39, 51–60. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fletcher, R.; Yu, J.; Zhang, L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018, 5, 194–203. [Google Scholar] [CrossRef]
- Wan, S.; Pestka, S.; Jubin, R.G.; Lyu, Y.L.; Tsai, Y.-C.; Liu, L.F. Chemotherapeutics and Radiation Stimulate MHC Class I Expression through Elevated Interferon-Beta Signaling in Breast Cancer Cells. PLoS ONE 2012, 7, e32542. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Martin, K.; Theurich, S.; von Bergwelt-Baildon, M.; Zippelius, A. Cancer Chemotherapy Agents Target Intratumoral Dendritic Cells to Potentiate Antitumor Immunity. Oncoimmunology 2014, 3, e954460. [Google Scholar] [CrossRef]
- Kang, T.H.; Mao, C.-P.; Lee, S.Y.; Chen, A.; Lee, J.-H.; Kim, T.W.; Alvarez, R.D.; Roden, R.B.S.; Pardoll, D.; Hung, C.-F.; et al. Chemotherapy Acts as an Adjuvant to Convert the Tumor Microenvironment into a Highly Permissive State for Vaccination-Induced Antitumor Immunity. Cancer Res. 2013, 73, 2493–2504. [Google Scholar] [CrossRef]
- Chen, C.-A.; Ho, C.-M.; Chang, M.-C.; Sun, W.-Z.; Chen, Y.-L.; Chiang, Y.-C.; Syu, M.-H.; Hsieh, C.-Y.; Cheng, W.-F. Metronomic Chemotherapy Enhances Antitumor Effects of Cancer Vaccine by Depleting Regulatory T Lymphocytes and Inhibiting Tumor Angiogenesis. Mol. Ther. 2010, 18, 1233–1243. [Google Scholar] [CrossRef]
- Bialkowski, L.; van Weijnen, A.; Van der Jeught, K.; Renmans, D.; Daszkiewicz, L.; Heirman, C.; Stangé, G.; Breckpot, K.; Aerts, J.L.; Thielemans, K. Intralymphatic mRNA Vaccine Induces CD8 T-Cell Responses That Inhibit the Growth of Mucosally Located Tumours. Sci. Rep. 2016, 6, 22509. [Google Scholar] [CrossRef]
- Xia, Q.; Geng, F.; Zhang, F.-F.; Liu, C.-L.; Xu, P.; Lu, Z.-Z.; Xie, Y.; Sun, B.; Wu, H.; Yu, B.; et al. Cyclophosphamide Enhances Anti-Tumor Effects of a Fibroblast Activation Protein α-Based DNA Vaccine in Tumor-Bearing Mice with Murine Breast Carcinoma. Immunopharmacol. Immunotoxicol. 2017, 39, 37–44. [Google Scholar] [CrossRef] [PubMed]
Antigen | Vaccine (Vector) | Nucleic Acid | Route and Dose | Response | Tumor Model | Reference |
---|---|---|---|---|---|---|
MUC1 | pMUC1 (Vical 1055) | DNA | ID: 3 doses, biweekly (10 μg) |
| Colorectal (MC38/MUC1+) | [54] |
pcDNA3.1-MUC1 (pcDNA3.1(-)) | DNA | IM: 2 doses, biweekly (20 μg) |
| Colorectal (CT26/MUC1+) | [55] | |
MUC1-HSP70 (pcDNA3) | DNA | ID: 3 doses, weekly (100 μg) |
| Melanoma (B16/MUC1+) | [56] | |
VR-MS | DNA | IM: 3 doses, biweekly (100 μg) |
| Melanoma (B16/MUC1+survivin+) | [57] | |
CpDV-IL2-sPD1/MS (pBluescriptIISK (+)) | DNA | IM: 2 doses, biweekly (100 μg) |
| Colorectal (CT26/MUC1+ survivin+) Lung (Lewis/MUC1+ survivin+) | [58] | |
MUC1 mRNA (encapsulated in lipid/calcium/phosphate nanoparticle) | mRNA | SC: 2 doses, weekly (10 μg) |
| Triple negative breast (4T1) | [59] | |
MAGE-A | pVAX1-MAGE-A3 (pVAX1) | DNA | IM: 3 doses, every week (30 μg) with electroporation |
| Lung carcinoma (LLC) | [60] |
MAGE-A (encoding A1, A2, A3, A5, A6, A8) | DNA | IM: 3 doses, biweekly for in vitro; 4 doses, weekly for in vivo studies (25 μg) followed by electroporation |
| Inducible model of melanoma (Tyr::CreER;BrafCa/+;Ptenlox/lox) | [61] | |
MAGE-A3 mRNA-containing LNP (DMKD/PS) | mRNA | IM: 2 doses, biweekly (20 μg) |
| Colorectal (CT26) | [62] | |
HPV | HPV16 E7/CRT (pDNA3) | DNA | Gene gun: 4 doses, weekly (16 μg) |
| HPV-associated lung (TC-1) | [63] |
pcDNA/E7, pcDNA/HSP70 | DNA | IM: 2 doses, biweekly |
| HPV-associated lung (TC-1) | [64] | |
pNGVL4a/Sig/E7(detox)/HSP70 | DNA | IM (syringe needle and needle-free jet injection device): 2 doses, weekly (50 μg) Gene gun: 2 doses, weekly (2 μg) |
| HPV-associated lung (TC-1) | [65] | |
pBI-11 (codon-optimized pNGVL4a/Sig/E7(detox)/HSP70) | DNA | IM: 3 doses, 3-day interval (25 μg) |
| HPV-associated lung (TC-1) | [66] | |
HPV16 E7 mRNA-LNP | mRNA | SC, IV: 3 doses, 5-day interval (10 μg) |
| HPV-associated oropharyngeal squamous cell carcinoma (mEERL) | [67] | |
HPV16 E6/E7 mRNA-LNP | mRNA | IM or SC: 3 doses, weekly (10 μg or 20 μg); 1 or 2 doses, 10 day interval (3 μg or 10 μg) |
| HPV-associated cervical (C3.43) | [68] | |
mHTV-02 | mRNA | IM, IT, SC, IV, ID: 3 doses, weekly (6.25 μg, 12.5 μg, 25 μg) |
| HPV-associated lung (TC-1) | [69] | |
KRAS G12 | KrasG12DN17 | DNA | Gene gun: 10 doses, 5-day interval (10 μg) and/or IM: 10 doses, 5-day interval (100 μg) |
| Bi-transgenic inducible, spontaneous lung adenocarcinoma (CCSP-rtTA/Tet-Op-K-Ras4G12D) | [70] |
KRAS G12V mRNA | mRNA | 3 doses, 5-day interval (10 μg) |
| Melanoma (G12V and HLA-A11:01 overexpressing B16F10) | [71] | |
mRNA-1521 | mRNA | Immunized on day 0, 21, and 49 |
| Colon carcinoma (CT26) | [72] | |
mRNA encoding transcripts for multiple KRAS mutant ag | mRNA | Not specified |
| Lung (LL/2) | [73] | |
Neoantigens | BSARSTKPC-mRNAVax | mRNA | 20 µg mRNA; immunized every 4 days for three doses, then every 3 days for two doses; total of 5 doses |
| Pancreatic (KPC 6422) | [74] |
Cancer Type | Target Antigen | Nucleic Acid | Route and Dose | Adjuvant | Results or Recruitment Status | Reference |
---|---|---|---|---|---|---|
Breast | Mammaglobin-A (Mam-A) | DNA | IM followed by EP, administered weeks 1, 4, and 8 by jet delivery device; unknown dose | None | Increased IFNγ-producing CD4+ T cells by vaccination | NCT00807781, [84] |
None | Significant increase in the number of antigen-specific CD8+ T cells | NCT00807781, [85] | ||||
IGFBP-2, HER2, and IGF-1R | DNA | ID, administered every 28 days; 150 µg, 300 µg, or 600 µg | GM-CSF | Elevated Th1 responses by vaccination with grade 1/2 adverse events; 300 µg dose elicited persistent immune responses 6mo after vaccine administration | NCT02780401, [86] | |
HER2 intracellular domain (ICD) | DNA | ID, administered once a month for three months; 10 µg, 100 µg, or 500 µg | GM-CSF | Elicited robust HER2-specific type 1 T-cell responses; Stronger immune responses in 100 µg and 500 µg doses in comparison to 10 µg dose | NCT00436254, [87] | |
Several neoantigens | DNA | IM with electroporation; 4 mg administered 3 times, every 28 days | None | Increased IFNγ secreting CD8+ T cells | NCT02348320, [88] | |
CD105, Yb-1, SOX2, CDH3, and MDM2 | DNA | IV, administered once a month for 3 months, followed by boosters at 6 and 12 months | GM-CSF | Recruiting | NCT05455658 | |
ID, administered once a month for 3 months, with potential booster doses | GM-CSF | Active, not recruiting | NCT02157051 | |||
Melanoma | Emm55 | DNA | Intralesion; administered one time in up to 3 lesions; 0.1 mg/lesion | None | Several patients exhibited stable disease | NCT03655756, [89] |
gp75 (TYRP1) | DNA | IM; administered every three weeks for 5 vaccinations; 0.1 mg to 8 mg dose-escalation study | None | Completed (results not provided) | NCT00034554 | |
Tyrosinase | DNA | IM; administered every three weeks; 100 µg, 500 µg, or 1500 µg doses | None | Demonstrated vaccine safety and feasibility; CD8+ T cell responses detected in 7 patients; no correlation of immune response with respect to dose or treatment arm | NCT00698100, [90] | |
DNA | IM by electroporation; administered every three weeks up to five immunizations; 0.2 mg, 0.5 mg, or 1.5 mg per injection | None | Immune responses specific to tyrosinase were observed in 6/15 patients; immune responses were only detected in 1.5 mg cohort | NCT00471133, [91] | ||
DNA | IN continuously over 96 h every 14 days; 200 µg, 400 µg, or 800 µg | None | Immune responses detected in 11/26 patients | NCT00023647, [92] | ||
GM-CSF DNA plus Tyrosinase and gp100 peptides | DNA | SC; administered monthly for a total of three immunizations; 100 µg, 400 µg, or 800 µg of GM-CSF-encoding DNA followed by SC delivery of peptides to the same site on days 5 or 6 post DNA administration | GM-CSF | CD8+ T cell responses against melanoma peptides detected in 42% of patients, no correlations between dose and T cell responses were observed | NCT00580060, [93] | |
Tyrosinase and Melan-A (MART-1) | DNA | IN; continuous infusion on days 1–4 with boosters every 14 d up to four courses; 500 µg, 1000 µg, or 1500 µg | None | Completed (results not provided) | NCT00033228 | |
NY-ESO-1, MAGE-A3, tyrosinase, and TPTE | mRNA | IV; administered in 6 injections within 43 days or 8 injections within 64 days; dose escalation study with doses varying from 14.4 µg to 400 µg total RNA | None | Induced strong CD4+ and CD8+ T cell immunity against the vaccine antigens; T cells responses were not dose-dependent | NCT02410733, [94] | |
gp100 | DNA | ID or IM; once every 4 weeks up to four doses | IL-2 | Completed (results not provided) | NCT00019448 | |
DNA | IM; human gp100 in weeks 1, 4, and 7, followed by mouse gp100 in weeks 10, 13, and 16, or the reverse sequence; dose escalation study | None | Completed (results not provided) | NCT00104845 | ||
Mouse tyrosinase-related protein 2 (TYRP2) | DNA | IM; every 3 weeks for 6 injections; doses of 500 µg, 2000 µg, 4000 µg, or 8000 µg | None | Completed (results not provided) | NCT00680589 | |
Melanoma-associated antigens | mRNA | ID | GM-CSF | Completed (results not provided) | NCT00204516 | |
Naked TAAs of melanoma | mRNA | IN; 8 immunizations over 43–51 days; total RNA doses of 100 µg, 200 µg, 600 µg, or 1200 µg containing RBL001 plus RBL002 | None | Completed (results not provided) | NCT01684241 | |
Neoantigens (IVAC MUTANOME1) | mRNA | IN | None | Induced antigen-specific immune responses | NCT02035956, [95] | |
Prostate | PAP (pTVG-HP) | DNA | ID; 6 immunizations administered biweekly; 100 µg, 500 µg, or 1500 µg doses | GM-CSF | PAP-specific T-cell responses detected; responses were not correlated with treatment doses | NCT00582140, [96] |
DNA | ID; 100 µg; administered biweekly for 6 immunizations, then every 3 months until progression (Arm 1) or biweekly for 6 doses then administered every 2 weeks, 4 weeks, or 3 months as determined by immune responses | GM-CSF | NCT00849121, [97] | |||
DNA | ID; 100 µg; administered biweekly for 6 immunizations, then every 3 months for two years total treatment | GM-CSF | NCT01341652, [98] | |||
Androgen receptor ligand-binding domain (pTVG-AR) | DNA | ID; administered in biweekly immunizations for 6 doses, then every 3 months up to 12 months (schedule 1) or weeks 0, 2, 12, 14, 24, 26, 36, 38, 48, and 50 (schedule 2) | With or without GM-CSF | Th1-type immunity to the AR LBD detected; immunological responses in patients treated biweekly for 6 doses followed by boosters every 3 months (schedule 1) were superior to patients treated on the intermittent biweekly schedule (schedule 2) | NCT02411786, [99] | |
TAAs including PSA, PSCA, PSMA, STEAP1 | mRNA | ID; Phase I: 256 µg, 640 µg, 1280 µg; Phase II: 1280 µg; up to 5 immunizations | None | Induction of antigen-specific CD4+ and CD8+ T cells | EudraCT 2008-003967-37, [100] | |
Prostate Specific Antigen (PSA) | DNA | ID with electroporation; administered every 4 weeks for 5 months; doses of 50 µg to 1600 µg | None | PSA specific T cell detected | NCT00859729, [101] | |
Cervical | HPV E6 and E7 (VGX-3100) | DNA | IM with electroporation; 6 mg; administered weeks 0,4, and 12 | None | Better histological regression observed compared to placebo | NCT01304524, [102] |
HPV E6 and E7 (GX-188E) | DNA | Electroporation; 1 mg, 2 mg, or 4 mg; administered weeks 0, 4, and 12 | None | HPV-specific CD8 T-cell response detected; responses independent of dose | NCT01634503, [103] | |
DNA | Electroporation; 1 mg, 2 mg, or 4 mg doses | None | Unknown status | NCT02100085 | ||
DNA | IM with electroporation; weeks 0, 4, and 12; doses of 1 mg or 4 mg | None | Completed, Results not posted | NCT02139267 | ||
DNA | Electroporation; 1 mg and 4 mg; administered three times | None | Unknown status | NCT02411019 | ||
DNA | IM with electroporation; 1 mg administered at weeks 0,4, and 12 | None | Unknown status | NCT02596243 | ||
HPV E6 and E7 | DNA | IM with electroporation; administered at weeks 0,4,8,12 | None | Antibody responses against HPV oncoproteins detected; antigen specific T cells detected | NCT02172911, [104] | |
DNA | IM with electroporation; 1 mg, 4 mg or 8 mg doses | None | Recruiting | NCT06276101 | ||
HPV E6/E7 fusion protein | DNA | IM; 3 immunizations of 3 mg each; administered on weeks 0, 3, and 6 (cohort 1) or weeks 0, 4, and 8 (cohort 2) | None | HPV-specific T-cell responses detected; Stronger T cell responses observed in cohort 1 | NCT02529930, [105] | |
HPV E6, E7, and L2 linked with calreticulin | DNA | IM with electroporation; 0.3 mg, 1 mg, or 3 mg doses | None | Not yet recruiting | NCT04131413 | |
HPV E7 | DNA | IM; 3 doses at 1 month intervals; 0.5 mg, 1 mg, or 3 mg doses | None | HPV E7-specific T-cell responses detected; regression instances detected in 3 mg cohort | NCT00121173, [106] | |
HPV specific antigens (RG002) | mRNA | IM | None | Recruiting | NCT06273553 | |
Multiple advanced solid tumors | NY-ESO-1 | DNA | ID by particle-mediated epidermal delivery; administered weeks 1, 5, and 9; 4 µg or 8 µg | None | NY-ESO-1-specific CD4+ and CD8+ T cells detected; no difference in immune responses between 4 µg and 8 µg cohorts | NCT00199849 |
Preferentially expressed antigen in melanoma (PRAME) and prostate-specific membrane antigen (PSMA) | DNA | ID; administered on days 29 and 32 for up to 9 months; 30 µg or 300 µg | None | Increased PRAME-specific and PSMA-specific T cell responses; no difference in immune responses between low and high peptide dose cohorts | NCT00423254, [107] | |
CD105, Yb-1, SOX2, CDH3, and MDM2 | DNA | ID; administered on day 14 for 3, 21-day cycles | GM-CSF | Active, not recruiting | NCT05242965 | |
NY-ESO-1, MAGE-C1, MAGE-C2, Survivin, and TPBG | mRNA | ID; administered at weeks 1, 3, 7, 11, or at 1, 2, 3, 5, and 7; 400 µg, 800 µg, or 1600 µg total | None | Induction of immune response against five antigens; dosage did not cause significant differences in immune response | NCT00923312, [108] | |
Non-Small Cell Lung | Neoantigens | mRNA | SC | None | Recruiting | NCT03908671 |
VEGFR-2 | DNA | Oral; administered on days 1, 3, 5, and 7, then 4-weekly single doses every 4 weeks; 106 or 107 CFU | None | VEGFR-2 specific T cell response detected | NCT02718443, [109] | |
IE-1, pp65, gB | DNA | IM with electroporation; 8 mg | None | Completed (Results not provided) | NCT05698199 | |
whole tumor mRNA, pp65, LAMP | mRNA | IV; administered every 2 weeks for 3 doses following radiation, then 12 doses monthly | None | Recruiting | NCT04573140 | |
pp65 | mRNA | IV; 3 doses administered before or after tumor biopsy/resection | None | Recruiting | NCT06389591 | |
Neoantigens | DNA | IM; administered on days 1, 22, and 43 of cycle 1 and then day 1 of each subsequent cycle | Plasmid encoded IL-12 | Active, not recruiting | NCT04015700 | |
Glioblastoma | Tumor-associated antigens | mRNA | IM; administered on days 1, 8, 15, 29, 43, 57, and 71; 6 µg, 12 µg, 25 µg, 50 µg, 100 µg | None | Active, not recruiting | NCT05938387 |
Cancer Type | Target Antigen | Nucleic Acid | Route and Dose | Combination Therapy | Results or Recruitment Status | Reference |
---|---|---|---|---|---|---|
Breast | Mammaglobin-A (Mam-A) | DNA | IM; administered every 28 days for 3 months; 4 mg | Neoadjuvant endocrine therapy | Active, not recruiting | NCT02204098 |
IGFBP-2, HER2, and IGF-1R | DNA | ID; administered on day 13 and repeated up to 3 times, every 21 days, in the absence of disease progression | Paclitaxel (Chemo), trastuzumab and pertuzumab (anti-HER2) | Recruiting | NCT04329065 | |
HER2 intracellular domain (ICD) | mRNA | IV; administered every 2 weeks for 3 injections total; 4 × 108 IU | Pembrolizumab (anti-PD-1) | Recruiting | NCT03632941 | |
Neoantigens | DNA | IM; administered every 28 days ± 7 days, with at least 21 days between injections by electroporation device; 4 mg | Durvalumab (anti-PD-L1) | Active, not recruiting | NCT03199040 | |
Chemotherapy and Pembrolizumab (anti-PD-1) | Recruiting | NCT06631092 | ||||
Shared TAAs and neoantigens | mRNA | IV | Surgery and adjuvant chemotherapy | Recruiting | NCT02316457 | |
Melanoma | gp100 and TRP-2 | DNA | IM; administered up to 11 times over 85 weeks using needle-free injection device | Nivolumab (Opdivo) and Ipilimumab (Yervoy) | Recruiting | NCT04079166 |
Neoantigens | mRNA | IM; administered every 21 days up to 9 doses | Pembrolizumab | Prolonged recurrence-free survival in patients receiving vaccine plus Pembrolizumab versus Pembrolizumab alone; greater distant metastasis-free survival in combination therapy treated patients | NCT03897881 [140] | |
Colorectal | Oncoprotein MYB | DNA | ID; administered weekly for 6 weeks; 0.1 mg, 0.5 mg, or 1.0 mg | Tetanus toxoid peptides and anti-PD-1 | Completed (result not provided) | NCT03287427 [141] |
Prostate | PAP (pTVG-HP) | DNA | ID; administered bi-weekly for 4 weeks; 100 µg | Sipuleucel-T | Higher titer antibody responses to PAP detected | NCT01706458 [142] |
DNA | ID; administered every 2 weeks or every 3 weeks; 100 µg | Pembrolizumab (anti-PD-1) | PAP-specific T cells detected | NCT02499835 [143] | ||
DNA | ID; administered every 2 weeks for 6 vaccinations and then every 4 weeks for 9 vaccinations; 100 µg | Nivolumab (anti-PD-1) | PAP specific T cell responses detected with prolonged time to disease progression | NCT03600350 [144] | ||
PAP (pTVG-HP), Androgen receptor ligand-binding domain (pTVG-AR) | DNA | ID; administered on days 1 and 8 of 21 day cycles; 100 µg | Pembrolizumab (anti-PD-1) | Completed (results not provided) | NCT04090528 | |
Androgen receptor ligand-binding domain (pTVG-AR) | DNA | ID; administered weekly for 7 weeks; 100 µg | Degarelix (Androgen deprivation therapy), Cemiplimab (anti-PD-1), Fianlimab (anti-LAG-3) | Recruiting | NCT04989946 | |
PSA | DNA | SC; administered monthly | Flutamide (AR blockade) | flutamide + vaccine did not further improve patient outcome | NCT00450463 [145] | |
Three prostate cancer-specific antigens (SL-T10) | DNA | IM; multiple injections administered; 3 mg or 6 mg | GX-I7 (T-cell growth factor), Pembrolizumab (anti-PD-1) | Recruiting | NCT06344715 | |
Neoantigens | DNA | IM, followed by EP; administered starting week 21 for a total of 6 treatments every 28 days; 4 mg | Nivolumab (anti-PD-1)/ipilimumab (anti-CTLA-4) and PROSTVAC | Completed (results not provided) | NCT03532217 | |
PSMA | DNA | IM (without EP): 800 µg, 1600 µg, or 3200 µg; IM (with EP): 400 µg, 800 µg, or 1600 µg; administered at weeks 0, 4, 8, 24, and 48 | Fragment C of tetanus toxin | Antigen-specific CD4+ and CD8+ T cells detected; Stronger immune response with IM administration with EP | [124] | |
Glioblastoma | Wilms tumor gene-1 (WT1), PSMA, hTERT | DNA | IM followed by EP; administered starting on day 0 and every 3 weeks for 4 doses, then every 9 weeks until disease progression; 3 mg | INO-9012 (human IL12), cemiplimab, temozolomide, radiation | Increased antigen specific T cell populations | NCT03491683 [146] |
VEGFR-2 | DNA | Oral; administered on days 1, 3, 5, 7 every 4 weeks; 106 or 107 CFU | anti-PD-L1 | Increased number of intratumoral CD8+ T-cells detected | NCT03750071 [147] | |
Neoantigens | DNA | IM with electroporation; administered once every 28 days for up to 6 doses | Retifanlimab (anti-PD-1) | Recruiting | NCT05743595 | |
Pancreatic | mutant KRAS | mRNA | IM | Toripalimab (anti-PD-1) | Recruiting | NCT06577532 |
Neoantigens | mRNA | Unknown route; administered 9 weeks post-tumor resection | Camrelizumab (anti-PD-1), Gemcitabine, Abraxane | Recruiting | NCT06326736 | |
mRNA | Unknown route; administered 12 weeks post-tumor resection | Ipilimumab (anti-CTLA-4), gemcitabine, capecitabine | Not yet recruiting | NCT06353646 | ||
mRNA | Unknown route | Anti-PD-1 | Recruiting | NCT06496373 | ||
mRNA | Unknown route | Adebrelimab (anti-PD-L1) | Not yet recruiting | NCT06156267 | ||
mRNA | IV; 25 µg administered weekly beginning 9 weeks post tumor resection plus booster doses at weeks 17 and 46 | Atezolizumab (Anti-PD-L1), mFOLFIRINOX (chemotherapy) | 50% of patients had detectable T cell responses to at least one neoantigen; vaccine-induced T cell clonal expansion detected in all immunological responders; longer recurrence free survival in immunological responders; persistent, high-avidity T cell clones detected | NCT04161755 [148,149] | ||
Cervical | HPV E6 and E7 (GX-188E) | DNA | IM with electroporation; administered 3 times; 1 mg | GX-17 (IL-7 fused to hyFc), Imiquimod | Unknown status | NCT03206138 |
HPV E6 and E7 (GX-188E) | DNA | IM; administered on days 1 and 29; 3 mg | Imiquimod, TA-HPV(recombinant vaccinia virus expressing HPV16/18 E6-E7 fusion proteins) | Half of the patients cleared their lesions | NCT00788164 [150] | |
DNA | ID: 8 µg or 16 µg IM: 1 mg or 3 mg Intralesional: 1 mg or 3 mg Administered at weeks 0, 4, and 8 | Imiquimod | Increased CD8+ T cell infiltration in cervical dysplastic epithelium in intralesional cohort | NCT00988559 [151] | ||
Ovarian | p62/SQSTM1 | DNA | IM; 2.5 mg; administered weekly | Gemcitabine | Higher objective response rate in patients receiving combination treatment of DNA vaccine and chemo versus chemo alone; greater number of partial responders and patients with stable disease in combination group; longer progression-free survival in combination treatment group | NCT05979298 [152] |
Non-Small Cell Lung | Neoantigens | DNA | IM with electroporation; administered once every 4 weeks for 6 cycles | Durvalumab (anti-PD-L1) | Recruiting | NCT04397003 |
NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1 | mRNA | ID; administered on days 1, 8, 15, 36, and 57, or days 1, 8, 15, 29, 43, and 57; 320 µg | Local radiation | Induction of immune response against six antigens | [153] | |
NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1 | mRNA | ID; each component administered twice for a total of 12 vaccinations; 80 µg | Durvalumab (anti-PD-L1), Tremelimumab (anti-CTLA-4) | Completed (result not provided) | NCT03164772 | |
Neoantigens | mRNA | Unknown route | Adebrelimab (anti-PD-L1) | Not yet recruiting | NCT06685653 | |
Neoantigens | mRNA | Unknown route | Adebrelimab (anti-PD-L1) | Not yet recruiting | NCT06735508 | |
KRAS mutants (G12D, G12V, G12C, G13D) | mRNA | IM; administered once every 3 weeks for 9 doses; 1 mg | Pembrolizumab (anti-PD-1) | Completed (results not provided) | NCT03948763 | |
Tumor mRNA | mRNA | IV; administered 7–14 days after last dose of priming vaccine, then every two weeks for 2 doses, and then monthly for 9 doses | pp65 RNA-LP | Not yet recruiting | NCT05660408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moseman, J.E.; Shim, D.; Jeon, D.; Rastogi, I.; Schneider, K.M.; McNeel, D.G. Messenger RNA and Plasmid DNA Vaccines for the Treatment of Cancer. Vaccines 2025, 13, 976. https://doi.org/10.3390/vaccines13090976
Moseman JE, Shim D, Jeon D, Rastogi I, Schneider KM, McNeel DG. Messenger RNA and Plasmid DNA Vaccines for the Treatment of Cancer. Vaccines. 2025; 13(9):976. https://doi.org/10.3390/vaccines13090976
Chicago/Turabian StyleMoseman, Jena E., Daeun Shim, Donghwan Jeon, Ichwaku Rastogi, Kaitlyn M. Schneider, and Douglas G. McNeel. 2025. "Messenger RNA and Plasmid DNA Vaccines for the Treatment of Cancer" Vaccines 13, no. 9: 976. https://doi.org/10.3390/vaccines13090976
APA StyleMoseman, J. E., Shim, D., Jeon, D., Rastogi, I., Schneider, K. M., & McNeel, D. G. (2025). Messenger RNA and Plasmid DNA Vaccines for the Treatment of Cancer. Vaccines, 13(9), 976. https://doi.org/10.3390/vaccines13090976