Post-Polio Syndrome: Impact of Humoral Immune Deficiencies, Poliovirus Neutralizing Antibodies, Vitamin D Deficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participating Hospitals, PPS Patients and Control Groups
2.3. Quantification in Serum of Major Ig Classes and IgG Subclasses
2.4. Poliovirus Neutralization Assays and Biosafety
2.5. Determination of 25-Hydroxyvitamin D in Serum
2.6. Statistics
3. Results
3.1. Study Groups
Immunoglobulin Levels and Deficiencies Across the Study Groups
3.2. Poliovirus-Neutralizing Antibody Titers
3.3. Serum 25-Hydroxyvitamin D Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nathanson, N.; Kew, O.M. From Emergence to Eradication: The Epidemiology of Poliomyelitis Deconstructed. Am. J. Epidemiol. 2010, 172, 1213–1229. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Hromatka, B.S.; Kiefer, A.K.; Eriksson, N.; Noble, S.M.; Tung, J.Y.; Hinds, D.A. Genome-Wide Association and HLA Region Fine-Mapping Studies Identify Susceptibility Loci for Multiple Common Infections. Nat. Commun. 2017, 8, 599. [Google Scholar] [CrossRef]
- Van Eden, W.; Persijn, G.G.; Bijkerk, H.; De Vries, R.R.P.; Schuurman, R.K.B.; Van Rood, J.J. Differential Resistance to Paralytic Poliomyelitis Controlled by Histocompatibility Leukocyte Antigens. J. Infect. Dis. 1983, 147, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Kindberg, E.; Ax, C.; Fiore, L.; Svensson, L. Ala67Thr Mutation in the Poliovirus Receptor CD155 Is a Potential Risk Factor for Vaccine and Wild-type Paralytic Poliomyelitis. J. Med. Virol. 2009, 81, 933–936. [Google Scholar] [CrossRef]
- Bucciol, G.; Moens, L.; Bosch, B.; Bossuyt, X.; Casanova, J.-L.; Puel, A.; Meyts, I. Lessons Learned from the Study of Human Inborn Errors of Innate Immunity. J. Allergy Clin. Immunol. 2019, 143, 507–527. [Google Scholar] [CrossRef]
- Riller, Q.; Schmutz, M.; Fourgeaud, J.; Fischer, A.; Neven, B. Protective Role of Antibodies in Enteric Virus Infections: Lessons from Primary and Secondary Immune Deficiencies. Immunol. Rev. 2024, 328, 243–264. [Google Scholar] [CrossRef]
- Guo, J.; Bolivar-Wagers, S.; Srinivas, N.; Holubar, M.; Maldonado, Y. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Cases: A Systematic Review and Implications for Polio Eradication. Vaccine 2015, 33, 1235–1242. [Google Scholar] [CrossRef]
- Duintjer Tebbens, R.J.; Pallansch, M.A.; Cochi, S.L.; Wassilak, S.G.F.; Linkins, J.; Sutter, R.W.; Aylward, R.B.; Thompson, K.M. Economic Analysis of the Global Polio Eradication Initiative. Vaccine 2010, 29, 334–343. [Google Scholar] [CrossRef]
- Tangermann, R.H.; Costales, M.; Flavier, J. Poliomyelitis Eradication and Its Impact on Primary Health Care in the Philippines. J. Infect. Dis. 1997, 175, S272–S276. [Google Scholar] [CrossRef]
- Ivanov, A.P.; Dragunsky, E.M.; Chumakov, K.M. 1,25-Dihydroxyvitamin D3 Enhances Systemic and Mucosal Immune Responses to Inactivated Poliovirus Vaccine in Mice. J. Infect. Dis. 2006, 193, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Bilezikian, J.P.; Adler, R.A.; Banfi, G.; Bikle, D.D.; Binkley, N.C.; Bollerslev, J.; Bouillon, R.; Brandi, M.L.; Casanueva, F.F.; et al. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr. Rev. 2024, 45, 625–654. [Google Scholar] [CrossRef]
- Hurst, E.A.; Mellanby, R.J.; Handel, I.; Griffith, D.M.; Rossi, A.G.; Walsh, T.S.; Shankar-Hari, M.; Dunning, J.; Homer, N.Z.; Denham, S.G.; et al. Vitamin D Insufficiency in COVID-19 and Influenza A, and Critical Illness Survivors: A Cross-Sectional Study. BMJ Open 2021, 11, e055435. [Google Scholar] [CrossRef]
- Yeh, W.Z.; Gresle, M.; Lea, R.; Taylor, B.; Lucas, R.M.; Ponsonby, A.-L.; Mason, D.; Andrew, J.; Campbell, H.; Morahan, J.; et al. The Immune Cell Transcriptome Is Modulated by Vitamin D3 Supplementation in People with a First Demyelinating Event Participating in a Randomized Placebo-Controlled Trial. Clin. Immunol. 2024, 262, 110183. [Google Scholar] [CrossRef]
- Saggese, G.; Federico, G.; Balestri, M.; Toniolo, A. Calcitriol Inhibits the PHA-Induced Production of IL-2 and IFN-γ and the Proliferation of Human Peripheral Blood Leukocytes While Enhancing the Surface Expression of HLA Class II Molecules. J. Endocrinol. Investig. 1989, 12, 329–335. [Google Scholar] [CrossRef]
- Chauss, D.; Freiwald, T.; McGregor, R.; Yan, B.; Wang, L.; Nova-Lamperti, E.; Kumar, D.; Zhang, Z.; Teague, H.; West, E.E.; et al. Autocrine Vitamin D Signaling Switches off Pro-Inflammatory Programs of TH1 Cells. Nat. Immunol. 2022, 23, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T. Vitamin D for Multiple Sclerosis … and Other Research. BMJ 2025, 389, r601. [Google Scholar] [CrossRef] [PubMed]
- Thouvenot, E.; Laplaud, D.; Lebrun-Frenay, C.; Derache, N.; Le Page, E.; Maillart, E.; Froment-Tilikete, C.; Castelnovo, G.; Casez, O.; Coustans, M.; et al. High-Dose Vitamin D in Clinically Isolated Syndrome Typical of Multiple Sclerosis: The D-Lay MS Randomized Clinical Trial. JAMA 2025, 333, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Soldan, S.S.; Lieberman, P.M. Epstein–Barr Virus and Multiple Sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef]
- A Multicenter, Prospective, Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Clinical Trial to Assess the Efficacy and Safety of Immune Globulin Intravenous (Human) Flebogamma® 5% DIF in Patients with Post-Polio Syndrome. 2014. Available online: https://onderzoekmetmensen.nl/en/node/55451/pdf (accessed on 29 August 2025).
- Farbu, E.; Gilhus, N.E.; Barnes, M.P.; Borg, K.; De Visser, M.; Driessen, A.; Howard, R.; Nollet, F.; Opara, J.; Stalberg, E. EFNS Guideline on Diagnosis and Management of Post-polio Syndrome. Report of an EFNS Task Force. Eur. J. Neurol. 2006, 13, 795–801. [Google Scholar] [CrossRef]
- Howard, R.S. Poliomyelitis and the Postpolio Syndrome. BMJ 2005, 330, 1314–1318. [Google Scholar] [CrossRef]
- Rifai, N. Tietz Textbook of Laboratory Medicine, 7th ed.; Elsevier: Saint Louis, MO, USA, 2022; ISBN 978-0-323-83467-4. [Google Scholar]
- World Health Organization. Poliovirus Containment: Guidance to Minimize Risks for Facilities Collecting, Handling or Storing Materials Potentially Infectious for Polioviruses, 2nd ed.; WHO: Geneva, Switzerland, 2021; ISBN 978-92-4-002121-1. [Google Scholar]
- Weldon, W.C.; Oberste, M.S.; Pallansch, M.A. Standardized Methods for Detection of Poliovirus Antibodies. In Poliovirus; Martín, J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1387, pp. 145–176. ISBN 978-1-4939-3291-7. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Shaghaghi, M.; Soleyman-jahi, S.; Abolhassani, H.; Yazdani, R.; Azizi, G.; Rezaei, N.; Barbouche, M.-R.; McKinlay, M.A.; Aghamohammadi, A. New Insights into Physiopathology of Immunodeficiency-Associated Vaccine-Derived Poliovirus Infection; Systematic Review of over 5 Decades of Data. Vaccine 2018, 36, 1711–1719. [Google Scholar] [CrossRef]
- Suares, J.E.; Khan, S.; Aadrika, A.; Poojari, P.G.; Rashid, M.; Thunga, G. Vaccine-Associated Paralytic Poliomyelitis in Oral Polio Vaccine Recipients: Disproportionality Analysis Using VAERS and Systematic Review. Expert Opin. Drug Saf. 2024, 23, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, B.; Dolen, W.K. B Cell Disorders in Children—Part I. Curr. Allergy Asthma Rep. 2020, 20, 52. [Google Scholar] [CrossRef]
- Griffin, D.D.; Dolen, W.K. B Cell Disorders in Children: Part II. Curr. Allergy Asthma Rep. 2020, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Durandy, A.; Kracker, S.; Fischer, A. Primary Antibody Deficiencies. Nat. Rev. Immunol. 2013, 13, 519–533. [Google Scholar] [CrossRef]
- Jones, T.P.W.; Buckland, M.; Breuer, J.; Lowe, D.M. Viral Infection in Primary Antibody Deficiency Syndromes. Rev. Med. Virol. 2019, 29, e2049. [Google Scholar] [CrossRef] [PubMed]
- Nimmerjahn, F.; Vidarsson, G.; Cragg, M.S. Effect of Posttranslational Modifications and Subclass on IgG Activity: From Immunity to Immunotherapy. Nat. Immunol. 2023, 24, 1244–1255. [Google Scholar] [CrossRef]
- Sun, L.; Kallolimath, S.; Palt, R.; Stiasny, K.; Mayrhofer, P.; Maresch, D.; Eidenberger, L.; Steinkellner, H. Increased in Vitro Neutralizing Activity of SARS-CoV-2 IgA1 Dimers Compared to Monomers and IgG. Proc. Natl. Acad. Sci. USA 2021, 118, e2107148118. [Google Scholar] [CrossRef]
- Song, P.; Zheng, N.; Liu, Y.; Tian, C.; Wu, X.; Ma, X.; Chen, D.; Zou, X.; Wang, G.; Wang, H.; et al. Deficient Humoral Responses and Disrupted B-Cell Immunity Are Associated with Fatal SFTSV Infection. Nat. Commun. 2018, 9, 3328. [Google Scholar] [CrossRef]
- Damelang, T.; Rogerson, S.J.; Kent, S.J.; Chung, A.W. Role of IgG3 in Infectious Diseases. Trends Immunol. 2019, 40, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.-W.; Simarmata, D.; Chow, A.; Her, Z.; Teng, T.-S.; Ong, E.K.S.; Rénia, L.; Leo, Y.-S.; Ng, L.F.P. Early Appearance of Neutralizing Immunoglobulin G3 Antibodies Is Associated with Chikungunya Virus Clearance and Long-Term Clinical Protection. J. Infect. Dis. 2012, 205, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Baj, A.; Colombo, M.; Headley, J.L.; McFarlane, J.R.; Liethof, M.; Toniolo, A. Post-Poliomyelitis Syndrome as a Possible Viral Disease. Int. J. Infect. Dis. 2015, 35, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.P.; Larocca, A.M.V.; Bozzi, A.; Spinelli, G.; Germinario, C.A.; Tafuri, S.; Stefanizzi, P. Long-Term Persistence of Poliovirus Neutralizing Antibodies in the Era of Polio Elimination: An Italian Retrospective Cohort Study. Vaccine 2021, 39, 2989–2994. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Leroux-Roels, G.; Shukarev, G.; Schuitemaker, H.; Cahill, C.; De Rooij, R.; Struijs, M.; Van Zeeburg, H.; Jacquet, J.-M. Safety and Immunogenicity of a New Sabin Inactivated Poliovirus Vaccine Candidate Produced on the PER.C6® Cell-Line: A Phase 1 Randomized Controlled Trial in Adults. Hum. Vaccines Immunother. 2021, 17, 1366–1373. [Google Scholar] [CrossRef]
- Martini, M.; Orsini, D. The Fight against Poliomyelitis through the History: Past, Present and Hopes for the Future. Albert Sabin’s Missing Nobel and His “Gift to All the World’s Children”. Vaccine 2022, 40, 6802–6805. [Google Scholar] [CrossRef]
- Sherf, R.M.; Cantrell, D.; Or, K.; Marcus, E.; Shapira, A.; Benbassat, C.; Ish-Shalom, S.; Koren, R. The Risk of Bone Fractures in Post-Poliomyelitis Patients Transitioning to Middle Adulthood. Endocr. Pract. 2020, 26, 1277–1285. [Google Scholar] [CrossRef]
- Garceau, S.P.; Igbokwe, E.N.; Warschawski, Y.; Neufeld, M.E.; Safir, O.A.; Wade, J.P.; Guy, P.; Wolfstadt, J.I. Management Options and Outcomes for Patients with Femoral Fractures with Post-Polio Syndrome of the Lower Extremity: A Critical Analysis Review. JBJS Rev. 2020, 8, e0146. [Google Scholar] [CrossRef]
- Johnson, C.R.; Thacher, T.D. Vitamin D: Immune Function, Inflammation, Infections and Auto-Immunity. Paediatr. Int. Child Health 2023, 43, 29–39. [Google Scholar] [CrossRef]
- Fischer, P.R.; Johnson, C.R.; Leopold, K.N.; Thacher, T.D. Treatment of Vitamin D Deficiency in Children. Expert Rev. Endocrinol. Metab. 2023, 18, 489–502. [Google Scholar] [CrossRef]
- Goldblum, N.; Gerichter, C.B.; Tulchinsky, T.H.; Melnick, J.L. Poliomyelitis Control in Israel, the West Bank and Gaza Strip: Changing Strategies with the Goal of Eradication in an Endemic Area. Bull. World Health Organ. 1994, 72, 783–796. [Google Scholar] [PubMed]
- Sutter, R.W.; Modlin, J.F.; Zaffran, M. Completing Polio Eradication: The Case for Antiviral Drugs. J. Infect. Dis. 2016, 215, jiw547. [Google Scholar] [CrossRef] [PubMed]
- Badizadegan, K.; Kalkowska, D.A.; Thompson, K.M. Health Economic Analysis of Antiviral Drugs in the Global Polio Eradication Endgame. Med. Decis. Mak. 2023, 43, 850–862. [Google Scholar] [CrossRef]
- Ianevski, A.; Frøysa, I.T.; Lysvand, H.; Calitz, C.; Smura, T.; Schjelderup Nilsen, H.-J.; Høyer, E.; Afset, J.E.; Sridhar, A.; Wolthers, K.C.; et al. The Combination of Pleconaril, Rupintrivir, and Remdesivir Efficiently Inhibits Enterovirus Infections in Vitro, Delaying the Development of Drug-Resistant Virus Variants. Antivir. Res. 2024, 224, 105842. [Google Scholar] [CrossRef]
- Wilkinson, A.L.; Zaman, K.; Hoque, M.; Estivariz, C.F.; Burns, C.C.; Konopka-Anstadt, J.L.; Mainou, B.A.; Kovacs, S.D.; An, Q.; Lickness, J.S.; et al. Immunogenicity of Novel Oral Poliovirus Vaccine Type 2 Administered Concomitantly with Bivalent Oral Poliovirus Vaccine: An Open-Label, Non-Inferiority, Randomised, Controlled Trial. Lancet Infect. Dis. 2023, 23, 1062–1071. [Google Scholar] [CrossRef]
- Kulkarni, P.S.; Zaman, K.; Desai, S.A.; Bharati, S.; Goswami, D.R.; Sharmeen, A.T.; Rana, S.; Haque, W.; Khandelwal, A.; Manney, S.; et al. Safety and Immunogenicity of a Reduced-Dose Inactivated Poliovirus Vaccine versus a Full-Dose Inactivated Poliovirus Vaccine in Infants in Bangladesh: A Double-Blind, Non-Inferiority, Randomised, Controlled, Phase 3 Trial. Lancet Infect. Dis. 2025. [Google Scholar] [CrossRef] [PubMed]
Study Groups | |||
---|---|---|---|
Parameters | Healthy Controls (Blood Donors) | Family Members of Polio Survivors | Post-Polio Syndrome |
Number of subjects | 89 | 40 | 80 |
Percent female | 46% | 55.0% | 57.5% |
Percent polio vaccination (Salk or Sabin) | 100% | 57.7% | 22.1% |
Age (yrs) at medical visit and sample collection (median; IQR: Q1–Q3) 1 | 52.0; 42.0–58.5 | 49.0; 36.8–61.0 | 56.0; 51.8–62.0 |
Age (yrs) at diagnosis of APP (median; IQR: Q1–Q3) 1 | − | − | 2.0; 1.0–3.3 |
Age (yrs) at diagnosis of PPS (median; IQR: Q1–Q3) 1 | − | − | 49.0; 43.0–56.0 |
Parameters | Healthy Controls (Blood Donors) | Family Members of Polio Survivors | Post-Polio Syndrome |
---|---|---|---|
Ig levels below the lower reference range in the study groups (number/total, percentage) 1. | |||
IgG < 600 mg/dL | 0/50, 0% | 6/29, 21% | 10/80, 12% |
IgA < 80 mg/dL | 1/50, 2% | 7/29, 24% | 8/80, 10% |
IgM < 40 mg/dL | 1/50, 2% | 3/29, 10% | 7/80, 9% |
IgG1 < 380 mg/dL | 1/50, 0% | 7/29, 24% | 18/80, 22% |
IgG2 < 120 mg/dL | 0/50, 0% | 2/29, 7% | 3/80, 4% |
IgG3 < 18 mg/dL | 0/50, 0% | 10/29, 34% | 22/80, 27% |
IgG4 < 18 mg/dL | 1/50, 2% | 3/29, 10% | 10/80, 12% |
Parameters | Healthy Controls (Blood Donors) | Family Members of Polio Survivors | Post-Polio Syndrome |
---|---|---|---|
Polio vaccination rate—Number/total, percentage | 30/30, 100% | 21/38, 55.3% | 16/75, 21.3% |
Non-protective serum titers (<1:8) of poliovirus-neutralizing antibodies in the study groups (number/total, percentage) 1: | |||
PV1 NAb titer < 1:8 | 0/30, 0% | 1/38, 2.6% | 5/75, 6.7% |
PV2 NAb titer < 1:8 | 0/30, 0% | 1/38, 2.6% | 8/75, 10.7% |
PV3 NAb titer < 1:8 | 0/30, 0% | 0/38, 0% | 7/75, 9.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toniolo, A.; Chumakov, K.; Federico, G.; Maccari, G.; Genoni, A.; Saba, A.; Nauti, A.; Bono, G.; Molteni, F.; Monaco, S. Post-Polio Syndrome: Impact of Humoral Immune Deficiencies, Poliovirus Neutralizing Antibodies, Vitamin D Deficiency. Vaccines 2025, 13, 939. https://doi.org/10.3390/vaccines13090939
Toniolo A, Chumakov K, Federico G, Maccari G, Genoni A, Saba A, Nauti A, Bono G, Molteni F, Monaco S. Post-Polio Syndrome: Impact of Humoral Immune Deficiencies, Poliovirus Neutralizing Antibodies, Vitamin D Deficiency. Vaccines. 2025; 13(9):939. https://doi.org/10.3390/vaccines13090939
Chicago/Turabian StyleToniolo, Antonio, Konstantin Chumakov, Giovanni Federico, Giuseppe Maccari, Angelo Genoni, Alessandro Saba, Andrea Nauti, Giorgio Bono, Franco Molteni, and Salvatore Monaco. 2025. "Post-Polio Syndrome: Impact of Humoral Immune Deficiencies, Poliovirus Neutralizing Antibodies, Vitamin D Deficiency" Vaccines 13, no. 9: 939. https://doi.org/10.3390/vaccines13090939
APA StyleToniolo, A., Chumakov, K., Federico, G., Maccari, G., Genoni, A., Saba, A., Nauti, A., Bono, G., Molteni, F., & Monaco, S. (2025). Post-Polio Syndrome: Impact of Humoral Immune Deficiencies, Poliovirus Neutralizing Antibodies, Vitamin D Deficiency. Vaccines, 13(9), 939. https://doi.org/10.3390/vaccines13090939