Next Article in Journal
Public Health in the Headlines: A Study of Media Behavior on Discourses on Vaccination During COVID-19
Previous Article in Journal
Humoral Response to the Third Dose of SARS-CoV-2 Vaccine Among Dialysis Patients: A Breakthrough Infection Case–Control Study
Previous Article in Special Issue
Impact of Actively Offering Influenza Vaccination to Frail People during Hospitalisation: A Pilot Study in Italy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Chronic Diseases and Influenza Vaccines

1
Emergency Department of China-Japan Friendship Hospital, Beijing 100029, China
2
Department of Basic Research, Ab &B Bio-Tech Co., Ltd. JS, Taizhou 225300, China
3
Innovative Human Vaccine Technology and Engineering Research Center of Taizhou, Taizhou 225300, China
4
Innovative Antiviral Vaccines Engineering Technology Research Center of Taizhou, Taizhou 225300, China
*
Author to whom correspondence should be addressed.
Vaccines 2025, 13(9), 936; https://doi.org/10.3390/vaccines13090936 (registering DOI)
Submission received: 25 July 2025 / Revised: 27 August 2025 / Accepted: 29 August 2025 / Published: 1 September 2025
(This article belongs to the Special Issue The Effect of Influenza Vaccination on Chronic Disease)

Abstract

Background: Chronic illnesses pose a major global health challenge with an estimated 1.56 billion people affected worldwide in 2025, and 85% of these being older adults facing at least one chronic condition. These patients are particularly vulnerable to severe influenza complications and higher mortality rates due to weakened immune responses; in addition, vaccination rates in China remain significantly lower than those in developed nations. Methods: This review examines how chronic conditions exacerbate influenza-related effects through immune dysfunction and metabolic imbalances, and how influenza infection worsens chronic diseases by triggering inflammation, suppressing immunity, and causing secondary infections that lead to respiratory complications, cardiac complications, and blood sugar disturbances. Results: A bidirectional adverse interaction exists in which chronic illnesses increase influenza severity via poor immunity, while influenza accelerates chronic disease progression (e.g., cardiac events and diabetic ketoacidosis). Vaccination reduces hospitalization by 32–52% in patients with lung disease and mortality by 16–46% in diabetic patients, with good safety. Conclusions: The findings emphasize the urgent need for improved vaccination strategies in patients with chronic diseases. Such strategies are crucial to reducing disease burden, enhancing clinical outcomes, and improving quality of life, while also providing critical evidence for the development of public health policies.

1. Introduction

Chronic diseases, also known as chronic non-communicable diseases (NCDs), refer to a general term for diseases characterized by insidious onset, a prolonged course, and lack of definitive evidence of infectious biological causes [1]. Chronic diseases mainly include cardiovascular and cerebrovascular diseases, diabetes, cancer, and chronic respiratory diseases [2].
By 2025, the global prevalence of chronic diseases is expected to reach 1.56 billion [3,4]. A key contributor to this trend is the aging of the population, with the global proportion of people aged 65 and older expected to increase to 16% by 2050 [5]. Among this aging demographic, an estimated 85% will suffer from at least one chronic disease, and 60% will be diagnosed with two or more [6].
China is facing particularly challenging situation regarding chronic disease prevention and control, characterized by three key features: firstly, the overall prevalence rate continues to escalate, with an estimated 500–600 million individuals requiring health management; secondly, population aging exacerbates the problem, as over 50% of those aged 60 and above are afflicted, accounting for 130 million patients and approximately 21.7% of the total chronic disease burden; thirdly, chronic non-communicable diseases (NCDs) such as cardiovascular and cerebrovascular diseases and malignancies have emerged as major public health threats [7]. Patients with chronic diseases require long-term treatment, care, and rehabilitation, imposing huge pressure on families in terms of medical expenses [8]. Many families, especially those in rural areas, fall into poverty due to chronic diseases [9]. Nationally, chronic diseases account for 70% of total healthcare expenditures, creating a significant strain on the public healthcare system [10]. In addition, indirect economic losses such as labor loss and reduced ability to work caused by chronic diseases are also significant, affecting social and economic development [11].
Influenza is acute, highly contagious, and rapidly spreading, and it is one of the main causes of human death [12]. Among the three types of influenza viruses (A, B, and C), influenza A exhibits the broadest host range and poses the greatest public health threat [13]. This virus is responsible for seasonal epidemics and has the potential to trigger global pandemics. Since the 20th century, there have been five global influenza pandemics [14]. Notably, the 2009 H1N1 influenza A (H1N1) virus triggered the first influenza pandemic of the 21st century, affecting 214 countries and regions and causing at least 18,449 deaths [15,16]. Each influenza pandemic has brought catastrophic impacts to human life, property, and economic development [17,18]. Due to the high transmissibility and rapid mutation rate of influenza viruses, humans have not been able to effectively prevent influenza viruses thus far. Consequently, annual influenza vaccination remains the only effective measure to prevent seasonal influenza [19,20,21].
It is particularly noteworthy that patients with chronic diseases are prone to severe complications or even death after influenza virus infection due to compromised immune function [22,23,24]. According to statistics from the World Health Organization (WHO), approximately 60% of global influenza-related fatalities annually occur in patients with chronic diseases [25,26]. Influenza vaccination markedly reduces the risk of hospitalization and mortality connected to influenza and its related complications in patients with chronic conditions [27]. However, the influenza vaccination rate among patients with chronic disease in China is far lower than that in developed countries [28]. Among patients with chronic diseases, the influenza vaccination rate is approximately 11.5% in China, whereas it ranges from 50% to 60% in developed countries. Therefore, in-depth exploration of the necessity and optimized strategies for influenza vaccination in patients with chronic disease is of great importance for public health [29].

2. Global and China’s Current Chronic Disease Burden

By 2025, it is estimated that 1.56 billion people worldwide will have hypertension, and three-quarters of them will be in developing countries [30]. In Asia, the number of people with type 2 diabetes is increasing by 3.5% every year [31]. Cardiovascular and cerebrovascular diseases affect 15% to 20% of the population, and they are becoming more common among younger people [32,33,34]. In total, 18% of patients are under 40 years old. By 2030, the number of patients will reach 774 million, and the number of deaths will rise to 22.2 million, with more than half due to strokes and 45% due to coronary heart disease [35,36]. The number of new cancer cases worldwide is expected to increase from 18 million in 2018 to 27 million in 2040, reaching 35.281 million in 2050, which is an increase of 76.6% compared to 2022, with lung cancer and four other types accounting for 60.8% of new cases [37,38]. Chronic obstructive pulmonary disease affects 210 million people and is the third leading cause of death globally, causing more than 3 million deaths annually [39,40]; the incidence of hyperlipidemia in people over 60 is 39.5% [41]. The overall prevalence of osteoporosis is 18.3%, with 23.1% in women and 11.7% in men [42,43,44]. The prevalence of chronic kidney disease in people over 60 ranges from 10% to 16% [45,46].
In China, the prevalence of various chronic diseases remains high [7,47]. Specifically, hypertension affects over 240 million people, ranking first among chronic diseases. The prevalence rate of diabetes is 20.1%, with more than 230 million patients, and the incidence of diabetes among adolescents and young people has increased significantly [48]. Cardiovascular and cerebrovascular diseases claim 5.085 million lives annually, accounting for 47.8% of total chronic disease-related deaths [49]. Cancer produces over 4 million new cases and 2,818,000 deaths per year [50,51]. For chronic respiratory diseases, primarily chronic obstructive pulmonary disease (COPD), the prevalence rate among individuals aged over 40 has increased by 3.7 percentage points compared to 2015 [52]. Additionally, approximately 160 million people suffer from hyperlipidemia, osteoporosis affects 36% of those aged 60 and above, and the prevalence of chronic kidney disease is around 10.8% [53,54,55,56].

3. Influenza Virus Infection and Immune Dysfunction in Chronic Diseases

3.1. Immune Dysregulation Induced by Chronic Diseases

Patients with chronic disease frequently exhibit immune dysregulation affecting both humoral and cellular immune responses, typically characterized by elevated proinflammatory cytokine levels [57,58] (Figure 1). Cellular immune abnormalities manifest as T-cell subset dysregulation, particularly the imbalance between Th17 and Treg cells [59,60]. Th17 cells secrete proinflammatory cytokines to mediate chronic inflammatory responses, while the reduction in Treg cell count or functional impairment weakens immune tolerance, leading to persistent inflammation [59,61,62]. Additionally, natural killer (NK) cells show altered immunophenotypes and impaired cytotoxicity, compromising the body’s immune surveillance capacity [63,64,65,66,67,68]. In COPD, CD8+ T cells demonstrate reduced mitochondrial membrane potential and glycolytic activity, resulting in diminished cytotoxic capabilities [69,70]. Additionally, an elevated proportion of Th17 cells promotes neutrophil and monocyte infiltration into lung tissues [71]. In autoimmune diseases, the dysregulation of CD4+ T-cell subsets plays a critical role [72,73,74]. For example, in rheumatoid arthritis, Th17 cells secrete cytokines such as IL-17, promoting inflammatory responses and causing joint damage [75].
Humoral immune abnormalities primarily reflect changes in immunoglobulin levels, with decreased levels of IgG, IgA, and IgM indicating downregulated immune function [76,77,78,79,80,81]. This not only increases the risk of infection but also disrupts the balance of immune responses, exacerbating the progression of chronic diseases (Table 1).
Significant advances have been made in research on immunological abnormalities in chronic diseases (Figure 1). These abnormalities are particularly evident in immune cell dysfunction, characterized by aberrant T-cell and B-cell differentiation and impaired function. Cytokines serve as critical mediators of immune dysfunction in chronic diseases. Elevated levels of IL-17, IL-6, and TNF-α not only promote inflammatory reactions but also modulate immune cell activation and function, ultimately contributing to the chronicity of disease. Signaling pathway abnormalities further exacerbate these processes, with the aberrant activation of Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) playing a pivotal role in chronic inflammation and autoimmunity [100,101,104,105,106]. Uncontrolled activation of the TLR family triggers excessive inflammatory responses, driving the development of autoimmune diseases. For instance, TLRs activate the downstream NF-κB signaling pathway, inducing cytokine secretion and enhancing immune responses [107,108]. Sustained activation of the NF-κB pathway is a hallmark of chronic inflammatory and autoimmune diseases, leading to overexpression of proinflammatory cytokines and chemokines that exacerbate inflammatory processes [109,110,111]. In SLE, dysregulated NF-κB activity correlates with disease activity and influences B cell activation and autoantibody production [102,103,112] (Table 1) (Figure 1).
Epigenetic mechanisms also play a crucial role in immunological abnormalities of chronic diseases. Epigenetic alterations such as DNA methylation and histone modifications influence gene expression, leading to dysfunction of immune cells [127,128]. For example, in chronic fatigue syndrome, changes in histone modifications affect the expression of immunity-related genes, thereby impacting immune function [113,114]. Modulating epigenetic states has the potential to improve immunological abnormalities in chronic diseases [129,130]. Certain drugs regulate immune cell function and alleviate chronic inflammation and autoimmune responses by influencing epigenetic modifications [131,132]. Histone deacetylase inhibitors (HDACIs), for instance, regulate gene expression by altering histone acetylation status, thereby improving immune cell activation and function [133,134,135,136]. Additionally, microenvironmental changes in patients with chronic disease significantly impact immune cell activation and function [137,138]. Aberrant expression of cytokines, chemokines, and other signaling molecules in the microenvironment promotes chronic inflammation and autoimmune responses [139]. In COPD, persistent airway inflammation releases inflammatory mediators and chemokines, exacerbating airway remodeling and lung tissue destruction. Intervening in the microenvironment can regulate immune responses and ameliorate disease progression [140,141,142,143]. Anti-inflammatory drugs or immunomodulators can reduce levels of specific cytokines, improve immune cell activation and function, and mitigate disease symptoms and progression [144,145,146,147,148] (Table 1) (Figure 1).
Molecular biological research on immunological abnormalities in chronic diseases has unveiled aberrant changes in immune cells, cytokines, and signaling pathways. Recent advances highlighting the roles of epigenetic regulation and microenvironmental factors have not only deepened our mechanistic understanding but also established a robust theoretical framework for developing innovative therapeutic approaches targeting these pathological processes.

3.2. Direct Immunopathological Injury and Hypersensitive Reactions Induced by Influenza

3.2.1. Cytokine Storm

Upon infection with influenza viruses (such as H5N1, H7N9, and 2009 H1N1), excessive activation of the immune system triggers the massive release of proinflammatory cytokines, leading to alveolar epithelial and vascular endothelial injury, pulmonary edema, and respiratory failure [149,150,151,152,153,154]. These mechanisms underlie the primary causes of death in severe influenza cases.
Upon influenza virus infection, the initiation of immune responses begins with the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) [155,156,157]. PRRs identify conserved molecular structures of viral nucleic acids, such as single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA), triggering downstream signaling pathways. Iwasaki and Medzhitov and Herold et al. proposed the central role of PRRs in innate immunity, summarizing three key signaling pathways: the endosomal TLR pathway, cytoplasmic RIG-I pathway, and inflammasome pathway [158,159] (Figure 2). (1) Endosomal TLR3 and TLR7 Pathways: These pathways recognize viral RNA within endosomes, activating transcription factors to induce cytokine and interferon (IFN) production. TLR3 identifies viral dsRNA (e.g., influenza replication intermediates), promoting IFN-β gene expression [160]. TLR7 recognizes viral ssRNA, stimulating NF-κB and IRF7 to induce proinflammatory cytokines (e.g., IL-6) and type I interferons (e.g., IFN-α) [161]. (2) Cytoplasmic Retinoic Acid-Inducible Gene-I (RIG-I) Pathway: RIG-I recognizes viral ssRNA in the cytoplasm and initiates antiviral immune responses. The RIG-I protein specifically binds to viral ssRNA with a 5′-triphosphate group, activating IRF3/IRF7 and NF-κB to promote transcription of cytokines (e.g., IL-8), chemokines, and interferon-stimulated genes (ISGs). RIG-I functional deficiency is associated with severe infections [162,163] (Figure 2). (3) Inflammasome Pathway: This pathway recognizes viral components to activate maturation and the release of the proinflammatory cytokine IL-1β. The NLRP3 inflammasome, expressed in dendritic cells (DCs), neutrophils, macrophages, and monocytes, detects influenza viruses. Activated caspase-1 cleaves pro-IL-1β into mature IL-1β, triggering local inflammatory responses to recruit immune cells for infection clearance [164,165] (Figure 2).
In the early stage of influenza virus infection, all initial signaling pathways and immune cells involved in resisting influenza benefit the host by preventing viral replication and release [166,167]. However, in severe infections, excessive activation of the immune system leads to a major release of proinflammatory cytokines (e.g., IL-6, IL-1β, IFN-γ), shifting protective immune responses to harmful ones [168,169]. The determinants underlying this transition from protective to pathogenic immunity remain unclear. It is hypothesized that both pathogen characteristics and host factors may differentially contribute to the establishment of cytokine storms.
Influenza virus gene products (PB2, PB1, PB1-F2, PA, PA-x, HA, NP, NA, M1, M2, and NS1) contribute to viral infection and cytokine storms through multi-dimensional mechanisms (Figure 2) [170]:
PB2 (RNA polymerase subunit): Mutations like E627K enhance viral replication in mammalian cells, increasing the viral load to activate TLRs [171]. It inhibits interferon pathways by binding importin-α/β, activating NLRP3 inflammasome to induce proinflammatory cytokines, and recruiting immune cells via chemokines, forming positive feedback loops that disrupt T-cell function. PB2 mutations correlate with clinical severity and cytokine storm intensity, serving as key virulence genes for H7N9 infectivity [172,173,174].
PB1 generates PB1-F2 via +1 ribosomal frameshifting. Avian influenza-derived full-length PB1-F2 (90–110 amino acids) activates NF-κB through TLR pathways to upregulate proinflammatory factors, promotes macrophage polarization to proinflammatory phenotypes, induces Treg apoptosis, and triggers NLRP3 inflammasome-mediated pyroptosis. It forms inflammatory amplification loops with ROS and ATP, damages vascular endothelium, and impairs MAVS-mediated interferon induction. Virulence is modulated by full-length structure and mutations (e.g., E62D) [175,176,177].
PA produces PA-x via ribosomal frameshifting. PA-x’s C-terminal 61/41-amino acid domain inhibits host protein synthesis via endoribonuclease activity, regulating inflammation and viral replication [178]. Deletion in low-pathogenic viruses enhances pathogenicity, while deletion in highly pathogenic viruses promotes replication and stronger cytokine storms [179]. C-terminal integrity and R195K mutation influence inflammatory regulation [180].
HA (hemagglutinin) mediates viral binding to target cells: human influenza HA binds to α2,6-sialic acid and avian HA binds to α2,3-sialic acid to determine host tropism [181,182]. Endosomal acidification triggers HA conformational changes for membrane fusion, and pH stability affects tropism [183,184]. Newly synthesized HA requires proteolytic cleavage into HA1/HA2 for activation. Highly pathogenic avian influenza HA contains multi-basic cleavage sites recognized by widespread proteases [185,186].
NP (nucleoprotein) stimulates neighboring cells via TLR2/4 and NLRP3 inflammasome, inducing IL-1β/IL-6 to upregulate trypsin and enhance viral infectivity [187]. It binds ZBP-1 to activate the NLRP3 inflammasome, inducing lung epithelial cell death and serving as a key virulence gene for H7N9 [188,189].
NA (neuraminidase) enhances HA-mediated membrane fusion and infectivity by removing sialic acids from viral/host membranes to facilitate virion release [190,191,192,193,194]. It inactivates regulatory CD83 pathways via sialic acid cleavage, releasing excessive cytokines for lung injury. Infected dendritic cells show NA-upregulated proinflammatory factors (e.g., CD83) and downregulated anti-inflammatory factors, targetable via NA stalk length, activity, or vaccines [195,196].
M2 binds the autophagy regulator LC3 to inhibit autophagy and enhance viral stability, activating NLRP3 inflammasome to increase pathogenicity [197].
NS1 (key virulence factor) impairs host antiviral responses through multiple mechanisms, regulating cellular processes to suppress immune responses [198,199].
Host factors, including demographic, clinical, and genetic factors, are linked to susceptibility to severe influenza. Age is a major risk factor, with young adults potentially exhibiting hyperactive immune responses that trigger excessive inflammation and older adults experiencing immunosenescence, characterized by impaired viral clearance due to dysregulated immune responses [200,201,202]. Gender also influences influenza outcomes, particularly during pandemics; for example, the 2009 H1N1 pandemic saw a predominance of young women experiencing severe influenza hospitalizations. However, the mechanism by which sex hormones modulate immune responses remains unclear [203,204]. Obesity is associated with higher rates of influenza morbidity and mortality, as elevated leptin and free fatty acids in obese individuals activate Toll-like receptors (TLRs) on monocytes and lymphocytes, driving excessive production of proinflammatory cytokines (e.g., IL-6, TNF-α) and exacerbating inflammatory responses [205,206]. Genetic factors, such as single-nucleotide polymorphisms (SNPs) in genes encoding pattern recognition receptors (PRRs); signaling molecules; transcription factors; and cytokines/chemokines and their receptors, can disrupt immune regulation and predispose individuals to hyperinflammatory responses during influenza infection; these genetic variants interact with pathogen virulence, viral load, and demographic factors to trigger cytokine storms [207,208]. Influenza-induced cytokine storms commonly involve proinflammatory mediators (TNF-α, IFN-γ, IL-1β, IL-2, IL-6, CXCL8, CCL2, CCL3, CXCL10, G-CSF, FGF, VEGF) and anti-inflammatory factors (TGF-β, IL-10, IL-1RA) [168,209].

3.2.2. Immunosuppression

The innate immune system serves as the body’s first line of defense against pathogens, comprising essential immune cell populations such as macrophages, neutrophils, and dendritic cells. The influenza virus infection can directly impair these key effector cells, thereby compromising the host’s early antiviral defense mechanisms [210,211].
While the suppressive effects of influenza on innate immunity are well-documented, emerging research has uncovered a distinct mechanism by which the virus directly suppresses adaptive immune responses [212,213]. Influenza exhibits selective tropism for activated lymphocytes that respond to both influenza and other respiratory pathogens. This targeted infection is enabled by heightened sialic acid expression on activated lymphocytes, which acts as a molecular receptor for influenza virus entry [214,215]. This targeted infection leads to the functional impairment of these lymphocytes, preventing them from differentiating normally into pathogen-specific antibody-secreting cells (ASCs). Therefore, both in vaccinated populations and in animal models, the number of ASCs against influenza viruses and heterologous respiratory pathogens is significantly reduced due to the targeted infection and damage of these activated lymphocytes that should have differentiated into antibody-secreting cells.
These findings reveal that the influenza virus can directly target and impair activated immune cells, inducing a state of immunosuppression that persists even in previously vaccinated hosts. This immunological impairment not only increases susceptibility to severe disease but also provides a mechanistic explanation for vaccine breakthrough infections during influenza seasons by undermining the very immune cells essential for mediating protective humoral responses [216,217].
The influenza virus employs a sophisticated tripartite strategy to antagonize host immune defenses. First, it inhibits interferon (IFN) production through multiple mechanisms: the NS1 protein binds to RIG-I to prevent its ubiquitination and activation, while the Nsp1 protein blocks TBK1/IRF3 phosphorylation to suppress IFN signaling [218]. Second, it induces the shutdown of host gene expressions by disrupting mRNA processing and nuclear export via NS1; it directly inhibits translation and degrades host mRNAs through Nsp1′s ribosome-binding activity [219,220]. Third, it antagonizes interferon-stimulated genes (ISGs) by inhibiting antiviral effectors such as PKR and the OAS-RNase L pathway through NS1 and suppressing TYK2/STAT2 signaling via Nsp1 [221,222,223]. Additionally, the NS1 protein’s functional regulation is modulated by post-translational modifications, including phosphorylation at specific residues (e.g., S42, T49) and SUMOylation, collectively enabling the virus to comprehensively evade host immune responses [224,225].

3.2.3. Secondary Infection

Secondary infections represent a major complication of influenza, primarily resulting from compromised respiratory mucosal barriers and local immune dysfunction [226]. The influenza virus directly damages alveolar epithelial cells, impairing mucociliary clearance and disrupting mucosal integrity, creating favorable conditions for bacterial colonization and invasion [227,228]. This significantly increases susceptibility to secondary bacterial infections, particularly with pathogens such as Streptococcus pneumoniae and Staphylococcus aureus, which often progress to severe bacterial pneumonia and other complications [229,230].
Virus-induced immunosuppression further exacerbates this vulnerability. Influenza infections cause innate immune cell exhaustion, suppress type I interferon production, intensify oxidative stress and cytokine storm responses, and induce lung tissue damage, all of which act synergistically to enhance susceptibility to secondary pathogens [231]. Notably, co-infection with influenza virus and S. pneumoniae has been shown to deplete germinal center B cells, plasma cells, and T cells in lymphoid tissues, resulting in reduced antibody titers. Additionally, impaired antigen-presenting cell (APC) function diminishes bacterial antigen presentation efficiency, further delaying the activation of protective immune responses [232].

3.3. Influenza Infection Exacerbates Chronic Diseases: Pathological Mechanisms

A. Influenza infection significantly exacerbates chronic respiratory conditions, including asthma, COPD, and bronchiectasis [233,234,235,236,237]. Notably, pulmonary influenza infections often trigger acute exacerbations of COPD (AECOPD), leading to critical events that substantially diminish patients’ quality of life and reduce survival rates. A landmark Indian study demonstrated that influenza infection is a major contributor to AECOPD, with research revealing that exacerbations are associated with accelerated declines in lung function and up to 23% annual mortality [238] (Table 2).
Historically, viral infections are considered responsible for only a small proportion of COPD exacerbations. However, contemporary research indicates that viruses may actually account for nearly 50% of AECOPD cases, with the influenza virus detected in 28% of exacerbated COPD patients. Influenza has emerged as a particularly important pathogen in severe COPD exacerbations requiring hospitalization, establishing itself as a major determinant of COPD morbidity and mortality [264,265,266,267] (Table 2).
B. Influenza virus infection imposes multifaceted impacts on the cardiovascular system [195,268,269,270,271,272,273,274,275]. This particularly accelerates pathological progression in patients with chronic heart diseases, imposing additional stress on the cardiovascular system—this is manifested as an increased heart rate, elevated blood pressure, and exacerbation of chronic cardiac conditions such as heart failure and coronary artery disease. The core mechanisms involve (1) direct myocardial injury, in which the influenza virus (especially type A) infects cardiomyocytes, leading to viral replication, cell apoptosis/necrosis, and mitochondrial damage that worsens heart failure symptoms [269,276,277]; (2) uncontrolled systemic inflammation damage to vascular endothelium, which increases permeability, and promotes thrombus formation, thereby elevating risks of myocardial infarction and stroke [278,279,280]; and (3) excessive neuroendocrine activation, where infection-induced fever and hypoxia stimulate sympathetic nerves to release catecholamines, causing tachycardia, increased myocardial oxygen consumption, and hypertension that may precipitate acute heart failure or myocardial ischemia in coronary patients [281,282] (Table 2).
C. Influenza infection induces significant metabolic stress, leading to glycemic dysregulation and insulin resistance that exacerbate chronic metabolic conditions such as diabetes and metabolic syndrome [283,284,285,286]. This metabolic dysfunction stems from infection-induced inflammatory responses, stress hormone secretion, and tissue/organ impairment, which operate through four interconnected mechanisms: (1) proinflammatory cytokine release, where the virus triggers immune activation and massive cytokine secretion that disrupt insulin signaling and glucose uptake; (2) elevated stress hormone secretion, as infection-induced stress promotes adrenaline and cortisol release, which antagonizes insulin action while stimulating hepatic gluconeogenesis and glycogenolysis; (3) tissue–organ metabolic dysfunction, including enhanced hepatic gluconeogenesis, reduced muscular glucose utilization, and increased adipose lipolysis, which release free fatty acids and exacerbate insulin resistance; and (4) immune–metabolic axis dysregulation, characterized by the abnormal crosstalk between immune cells and metabolic cells, which creates a self-reinforcing cycle of inflammation and metabolic imbalance, further disrupting glucose homeostasis. These combined effects demonstrate how influenza infection can significantly worsen metabolic disorders through multiple concurrent pathways (Table 2).
D. Influenza virus infection induces significant immune dysregulation that exacerbates chronic inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease through a complex inflammatory cascade involving innate immune hyperactivation, adaptive immune dysfunction, cytokine network imbalances, and gut–immune axis interactions [23,287,288,289,290]. Systemic inflammation is further amplified by intestinal barrier disruption and dysbiosis via the gut–joint axis, along with oxidative stress and mitochondrial damage driving tissue fibrosis [291,292]. Clinical evidence confirms that influenza significantly increases disease activity in chronic inflammatory patients, demonstrating the clinical importance of these immunological interactions (Table 2).
Immune dysregulation associated with chronic diseases and immunopathological injuries caused by influenza interacts dynamically, forming a vicious cycle. Chronic diseases (see Section 3.1) create a “primed” inflammatory microenvironment characterized by elevated proinflammatory cytokines and impaired mucosal barriers, which amplifies the immunopathological effects of influenza. This pre-existing state hypersensitizes the immune system to viral triggers, exacerbating cytokine storms and tissue damage during influenza infection.
Conversely, influenza disrupts immune homeostasis in these patients (see Section 3.2): the virus’s suppression of adaptive immunity (such as targeted infection of activated lymphocytes) exacerbates pre-existing humoral immune deficiencies, weakening antiviral defense capabilities and the control of underlying diseases. Additionally, influenza-induced epithelial barrier disruption and secondary infections exploit compromised mucosal immunity in chronic respiratory diseases like COPD, accelerating airway remodeling and fibrosis.
This reciprocal interaction increases the risk of severe influenza complications and exacerbation of underlying chronic diseases in patients with chronic illnesses, highlighting the necessity of optimizing influenza vaccination strategies to break this cycle.

4. Epidemiology

Influenza poses a disproportionately high risk to vulnerable populations, necessitating targeted public health strategies and clinical interventions. Patients with chronic disease—including those with cardiovascular diseases, diabetes, chronic obstructive pulmonary disease (COPD), and chronic kidney diseases—experience significantly elevated risks of severe influenza complications, with markedly higher hospitalization and mortality rates compared to the general population [293,294,295]. This vulnerability is particularly pronounced among older adults, who exhibit immunosenescence and experience hospitalization and mortality rates that far exceed other age groups, especially when comorbidities are present [296,297]. Notably, nearly 50% of elderly influenza patients have concurrent cardiovascular diseases and COPD, with in-hospital case fatality rates reaching 2.1% [233,298] (Table 3).
Young children also represent a high-risk group due to their immature immune systems, with influenza hospitalization rates as high as 69%—boys face a 1.6-fold greater hospitalization risk than girls [320,321]. Advanced research has identified several key prognostic factors in severe influenza A cases: age, respiratory failure, aspartate aminotransferase levels, and lymphocyte counts. These all serve as predictors of 28-day mortality, particularly concerning outcomes that occur when lymphocyte counts fall below normal thresholds. Multivariate analysis further reveals that D-dimer levels, the PaO2/FiO2 ratio, and platelet-to-lymphocyte ratio (PLR) independently predict influenza-induced sepsis, with PLR demonstrating the highest diagnostic sensitivity [322].
In summary, hospitalized influenza patients with chronic conditions, especially older adults and young children, exhibit significantly higher mortality rates than the general population. These findings underscore the critical importance of (1) increasing the coverage of influenza vaccinations in patients with chronic diseases (a key high-risk group) to reduce influenza-related hospitalization, disease severity, and mortality compared to their unvaccinated counterparts and (2) strengthening influenza surveillance systems and implementing early intervention strategies to further improve clinical outcomes in this vulnerable population.

5. Application of Influenza Vaccines

Vaccination remains the cornerstone of influenza prevention, with the current global landscape featuring three primary vaccine platforms: egg-based inactivated whole-virus vaccines, split vaccines, and subunit vaccines [323,324]. These are typically formulated as trivalent or quadrivalent preparations combining monovalent antigen stocks from circulating influenza A (H1N1, H3N2) and B strains. The history of influenza vaccination dates back to the 1940s. In 1941, the first formalin-inactivated whole-virus influenza vaccine produced in chicken embryos was approved in the United States, followed by its market launch in 1945. However, due to immature purification techniques at the time, this whole-virus vaccine caused severe adverse reactions. It was not until the 1960s that zonal centrifugation, which is a purification method still in use today, significantly improved the quality of inactivated influenza vaccines by enhancing viral antigen purity. In 1968, Pasteur (now Sanofi) pioneered the development of influenza split vaccines globally. Prepared by disrupting inactivated whole viruses with detergents, split vaccines retain only immunogenic components (HA, NA, partial NP, and M) while removing viral macromolecules and nucleic acids. This higher-purity formulation reduces adverse reactions, demonstrating superior safety and immunogenicity compared to early whole-virus vaccines [325,326,327].
Third-generation subunit vaccines were developed in 1976, further refining split vaccines by excluding internal viral proteins to contain highly purified HA and NA. Clinical studies confirmed their enhanced safety profile relative to previous vaccine types [328]. Novel adjuvants have since been applied to augment vaccine immunogenicity, with MF59 (an oil-in-water emulsion adjuvant) approved in over 20 countries worldwide [329]. Additionally, cell-culture-based vaccines, live attenuated influenza vaccines (LAIVs), and mRNA vaccines have entered the developmental pipeline [330,331,332,333,334,335].

6. Efficacy of Influenza Vaccines in Patients with Chronic Diseases

Multiple studies have demonstrated that influenza vaccination significantly reduces hospitalization and mortality risks associated with influenza and related complications in patients with chronic diseases compared to unvaccinated patients with the same chronic diseases [27]. A meta-analysis showed that influenza vaccination reduces all-cause mortality by 46% and influenza/pneumonia-related hospitalization by 45% in elderly patients with diabetes compared to unvaccinated elderly patients with diabetes [336]. For individuals with cardiovascular diseases, influenza vaccines exert protective effects by lowering the risk of adverse cardiovascular events, with a 34% reduction in cardiovascular event risks observed among vaccinated patients compared to unvaccinated individuals with cardiovascular diseases. Additionally, the increased incidence of acute myocardial infarction and mortality during influenza seasons highlights the strong association between cardiovascular diseases and influenza infection [337] (Table 4).
In patients with COPD, influenza vaccination significantly decreases the risk of acute exacerbations [345,383]. One year post-vaccination, COPD patients exhibit notable reductions in COPD Assessment Test (CAT) scores, with improved symptoms including coughing, chest tightness, and dyspnea. Importantly, while influenza vaccines show no significant impact on lung function parameters in stable elderly COPD patients, they effectively reduce exacerbation incidence and hospitalization frequency [384] (Table 4).
For patients with heart failure, influenza vaccination lowers both hospitalization and mortality risks. A meta-analysis incorporating six observational cohort studies linked influenza vaccination to reduced mortality during 1-year and long-term follow-ups [385]. Another study indicated that vaccination significantly decreases readmission rates in patients with cardiovascular disease aged ≥65 years [341]. Diabetes mellitus increases influenza infection risk by 3.63-fold compared to non-diabetic populations, making influenza vaccination a key strategy to reduce all-cause mortality and infection-related hospitalizations [302,386,387]. Vaccinated diabetic patients show a 23% reduction in all-cause hospitalization risk and a 45% reduction in influenza/pneumonia-related hospitalization risk [353,385,388] (Table 4).
Influenza vaccines reduce hospitalization and mortality in patients with chronic disease by targeting their unique vulnerabilities, countering immune dysregulation, metabolic imbalances, and organ-specific weaknesses to mitigate influenza-induced exacerbations. Vaccines address inherent immune deficits as follows: in patients with diabetes or cardiac problems with impaired CD8+ T-cell activity and excess proinflammatory cytokines (see Section 3.1), they restore CD8+ T-cell-mediated clearance and induce virus-specific IgG/IgA, limiting viral replication and immune decline and breaking the influenza–chronic disease cycle. They interrupt inflammatory amplification loops: preventing severe influenza curbs cytokine storms that worsen pathology (e.g., atherosclerotic instability and insulin resistance; see Section 3.3), maintaining metabolic balance, and reducing organ stress. Vaccines preserve mucosal barriers, lowering secondary infection risk. In COPD or patients with chronic kidney disease who are vulnerable to bacterial infections due to influenza-induced mucosal damage (see Section 3.2), they reduce respiratory epithelial injury, preserve mucociliary function, and limit colonization, cutting pneumonia/sepsis risk. In immunocompromised subgroups (e.g., chemotherapy recipients), high-dose/adjuvanted vaccines enhance antigen presentation and B-cell activation, overcoming immunosuppression to generate protective antibodies.
In summary, vaccines protect by preventing influenza and addressing interconnected vulnerabilities, restoring antiviral immunity, reducing inflammation, maintaining organ function, and blocking secondary complications, which explains their clinical benefits across chronic diseases.

7. Influenza Vaccination Safety and Efficacy in Immunocompromised Populations

The influenza vaccination is generally considered safe for cancer patients undergoing immunosuppressive therapies, including chemotherapy and immune checkpoint inhibitors [389]. Studies show no significant increase in adverse reaction rates among cancer patients compared to the general population [390,391,392]. Organ transplant recipients, due to immunosuppression, face elevated infection risks [393,394,395]. Influenza vaccination effectively reduces infection rates and intensive care unit (ICU) admission rates. The American Society of Organ Transplantation recommends annual influenza vaccination with priority for high-dose inactivated vaccines, which is supported by evidence of excellent tolerability in transplant patients [396,397]. Adverse reactions are typically mild, manifesting as local pain or fever (Table 5).
Inactivated vaccines are preferred for immunosuppressed individuals as they lack live viral components, eliminating the risk of viral replication. Research indicates that inactivated influenza vaccines, particularly subunit formulations, are safe for all immunosuppressed patients, regardless of their immunosuppressive therapy regimen. This includes oncology patients undergoing chemotherapy, solid organ transplant recipients on maintenance immunosuppression, and HIV-infected individuals [363,364,365].

8. Conclusions

Annual influenza vaccination is essential for individuals with chronic medical conditions, as it substantially reduces the risk of severe influenza-related complications, including pneumonia, myocardial infarction, and other life-threatening outcomes, while concurrently decreasing hospitalization rates and mortality. Vaccination provides significant clinical and economic benefits for patients with chronic disease by maintaining disease stability, reducing acute exacerbations, and improving quality of life. Furthermore, it decreases the incidence of influenza and its related complications, resulting in substantial healthcare cost savings.
Despite proven benefits of influenza vaccination in patients with chronic disease, critical gaps remain. Disease-specific pathophysiologies (e.g., immune dysregulation in diabetes and airway inflammation in COPD) and their impact on vaccine responses are poorly understood, limiting tailored approaches. Efficacy data are sparse for advanced heart or kidney disease, and long-term effects on chronic disease progression (e.g., atherosclerosis, COPD remodeling) are unclear. Antibody titers may not fully reflect protection, as cellular immunity or inflammation reduction may play larger roles.
Future work should (1) clarify disease-specific vaccine response barriers; (2) develop adjuvanted/high-dose subunit vaccine for immunocompromised patients; (3) study the role of vaccinations in modifying chronic disease trajectories; (4) identify novel correlates (e.g., cytokine shifts and T-cell dynamics); and (5) achieve broader or more durable protection, overcoming vaccine effectiveness variability, and improving responses in severely immunocompromised individuals. These steps will optimize benefits in this high-risk group.

Author Contributions

Conceptualization, Z.C. and Y.A.; methodology, Z.C.; validation, R.L. and H.Z.; formal analysis, R.L. and H.Z.; investigation, Z.C. and Y.A.; resources, Y.A.; data curation, R.L.; writing—original draft preparation, R.L. and H.Z.; writing—review and editing, R.L. and Z.C.; supervision, Z.C. and Y.A.; project administration, Y.A.; funding acquisition, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the “Fengcheng Tal-ents Plan” 113 biomedical special grant of Taizhou, China, which is established by the Taizhou Municipal Party Committee and the Taizhou Municipal Government, grant number [JSTZ-20231231-008].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data are contained within the article. The raw data supporting the conclusions of this article will be made available by the authors on request.

Conflicts of Interest

Authors Hongbo Zhang, Youcai An and Ze Chen were employed by the company Ab&B Bio-Tech Co., Ltd. JS. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Piovani, D.; Nikolopoulos, G.K.; Bonovas, S. Non-Communicable Diseases: The Invisible Epidemic. J. Clin. Med. 2022, 11, 5939. [Google Scholar] [CrossRef] [PubMed]
  2. Ngaruiya, C.; Bernstein, R.; Leff, R.; Wallace, L.; Agrawal, P.; Selvam, A.; Hersey, D.; Hayward, A. Systematic review on chronic non-communicable disease in disaster settings. BMC Public Health 2022, 22, 1234. [Google Scholar] [CrossRef] [PubMed]
  3. Ma, H.; Wang, M.; Qin, C.; Shi, Y.; Mandizadza, O.O.; Ni, H.; Ji, C. Trends in the burden of chronic diseases attributable to diet-related risk factors from 1990 to 2021 and the global projections through 2030: A population-based study. Front. Nutr. 2025, 12, 1570321. [Google Scholar] [CrossRef] [PubMed]
  4. Zhu, M.; Zhang, J.; Liang, D.; Qiu, J.; Fu, Y.; Zeng, Z.; Han, J.; Zheng, J.; Lin, L. Global and regional trends and projections of chronic pain from 1990 to 2035: Analyses based on global burden of diseases study 2019. Br. J. Pain. 2024, 19, 20494637241310697. [Google Scholar] [CrossRef]
  5. Mitchell, E.; Walker, R. Global ageing: Successes, challenges and opportunities. Br. J. Hosp. Med. 2020, 81, 1–9. [Google Scholar] [CrossRef]
  6. Fong, J.H. Disability incidence and functional decline among older adults with major chronic diseases. BMC Geriatr. 2019, 19, 323. [Google Scholar] [CrossRef]
  7. Xue, L.; Cai, M.; Liu, Q.; Ying, X.; Wu, S. Trends and regional variations in chronic diseases and their risk factors in China: An observational study based on National Health Service Surveys. Int. J. Equity Health 2023, 22, 120. [Google Scholar] [CrossRef]
  8. Fernandes, J.B.; Teixeira, F.; Godinho, C. Personalized Care and Treatment Compliance in Chronic Conditions. J. Pers. Med. 2022, 12, 737. [Google Scholar] [CrossRef]
  9. Jayathilaka, R.; Joachim, S.; Mallikarachchi, V.; Perera, N.; Ranawaka, D. Do chronic illnesses and poverty go hand in hand? PLoS ONE 2020, 15, e0241232. [Google Scholar] [CrossRef]
  10. Holman, H.R. The Relation of the Chronic Disease Epidemic to the Health Care Crisis. ACR Open Rheumatol. 2020, 2, 167–173. [Google Scholar] [CrossRef]
  11. Tu, W.J.; Zhang, X.; Wang, H.Q.; Fan, Y.Y.; Cao, J.L.; Ren, Y.L.; Bu, S.; Bian, H.T.; Yue, W.; Li, J.L.; et al. Establishing integrated chronic non-communicable disease management clinics to address China’s looming health burden. Mil. Med. Res. 2025, 12, 25. [Google Scholar] [CrossRef]
  12. Peteranderl, C.; Herold, S.; Schmoldt, C. Human Influenza Virus Infections. Semin. Respir. Crit. Care Med. 2016, 37, 487–500. [Google Scholar] [CrossRef]
  13. Pleschka, S. Overview of influenza viruses. Curr. Top. Microbiol. Immunol. 2013, 370, 1–20. [Google Scholar] [CrossRef]
  14. Harrington, W.N.; Kackos, C.M.; Webby, R.J. The evolution and future of influenza pandemic preparedness. Exp. Mol. Med. 2021, 53, 737–749. [Google Scholar] [CrossRef]
  15. Pascual Hernandez, A.; Pachon, J. The first influenza pandemic of the 21st century. The REIPI/SEIMC experience. Enferm. Infecc. Microbiol. Clin. 2012, 30 (Suppl. S4), 1. [Google Scholar] [CrossRef]
  16. Scalera, N.M.; Mossad, S.B. The first pandemic of the 21st century: A review of the 2009 pandemic variant influenza A (H1N1) virus. Postgrad. Med. 2009, 121, 43–47. [Google Scholar] [CrossRef] [PubMed]
  17. Saunders-Hastings, P.R.; Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens 2016, 5, 66. [Google Scholar] [CrossRef] [PubMed]
  18. Monto, A.S.; Fukuda, K. Lessons From Influenza Pandemics of the Last 100 Years. Clin. Infect. Dis. 2020, 70, 951–957. [Google Scholar] [CrossRef]
  19. Kumar, B.; Asha, K.; Khanna, M.; Ronsard, L.; Meseko, C.A.; Sanicas, M. The emerging influenza virus threat: Status and new prospects for its therapy and control. Arch. Virol. 2018, 163, 831–844. [Google Scholar] [CrossRef] [PubMed]
  20. Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.L. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int. J. Mol. Sci. 2017, 18, 1650. [Google Scholar] [CrossRef]
  21. Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 60. [Google Scholar] [CrossRef] [PubMed]
  22. Keilich, S.R.; Bartley, J.M.; Haynes, L. Diminished immune responses with aging predispose older adults to common and uncommon influenza complications. Cell Immunol. 2019, 345, 103992. [Google Scholar] [CrossRef] [PubMed]
  23. Macias, A.E.; McElhaney, J.E.; Chaves, S.S.; Nealon, J.; Nunes, M.C.; Samson, S.I.; Seet, B.T.; Weinke, T.; Yu, H. The disease burden of influenza beyond respiratory illness. Vaccine 2021, 39 (Suppl. S1), A6–A14. [Google Scholar] [CrossRef]
  24. Kalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 258. [Google Scholar] [CrossRef]
  25. Boutayeb, A. The double burden of communicable and non-communicable diseases in developing countries. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 191–199. [Google Scholar] [CrossRef]
  26. Boutayeb, A.; Boutayeb, S. The burden of non communicable diseases in developing countries. Int. J. Equity Health 2005, 4, 2. [Google Scholar] [CrossRef]
  27. Peng, Z.Y.; Hua, Y.T.; Huang, W.T.; Wu, J.S.; Ou, H.T. Reduced risks of influenza-associated hospitalization and complications following vaccination among over 2 million older individuals: A nationwide study using target trial emulation framework. BMC Med. 2025, 23, 157. [Google Scholar] [CrossRef]
  28. Fan, J.; Cong, S.; Wang, N.; Bao, H.; Wang, B.; Feng, Y.; Lv, X.; Zhang, Y.; Zha, Z.; Yu, L.; et al. Influenza vaccination rate and its association with chronic diseases in China: Results of a national cross-sectional study. Vaccine 2020, 38, 2503–2511. [Google Scholar] [CrossRef]
  29. Calabro, G.E.; D’Ambrosio, F.; Fallani, E.; Ricciardi, W. Influenza Vaccination Assessment according to a Value-Based Health Care Approach. Vaccines 2022, 10, 1675. [Google Scholar] [CrossRef]
  30. Chockalingam, A.; Campbell, N.R.; Fodor, J.G. Worldwide epidemic of hypertension. Can. J. Cardiol. 2006, 22, 553–555. [Google Scholar] [CrossRef]
  31. Luk, A.O. Changing landscape of diabetes in Asia—What are the unmet needs? J. Diabetes Investig. 2024, 15, 402–409. [Google Scholar] [CrossRef]
  32. Joynt Maddox, K.E.; Elkind, M.S.V.; Aparicio, H.J.; Commodore-Mensah, Y.; de Ferranti, S.D.; Dowd, W.N.; Hernandez, A.F.; Khavjou, O.; Michos, E.D.; Palaniappan, L.; et al. Forecasting the Burden of Cardiovascular Disease and Stroke in the United States Through 2050-Prevalence of Risk Factors and Disease: A Presidential Advisory From the American Heart Association. Circulation 2024, 150, e65–e88. [Google Scholar] [CrossRef]
  33. Kazi, D.S.; Elkind, M.S.V.; Deutsch, A.; Dowd, W.N.; Heidenreich, P.; Khavjou, O.; Mark, D.; Mussolino, M.E.; Ovbiagele, B.; Patel, S.S.; et al. Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States Through 2050: A Presidential Advisory From the American Heart Association. Circulation 2024, 150, e89–e101. [Google Scholar] [CrossRef] [PubMed]
  34. Nedkoff, L.; Briffa, T.; Zemedikun, D.; Herrington, S.; Wright, F.L. Global Trends in Atherosclerotic Cardiovascular Disease. Clin. Ther. 2023, 45, 1087–1091. [Google Scholar] [CrossRef]
  35. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
  36. Yahya, T.; Jilani, M.H.; Khan, S.U.; Mszar, R.; Hassan, S.Z.; Blaha, M.J.; Blankstein, R.; Virani, S.S.; Johansen, M.C.; Vahidy, F.; et al. Stroke in young adults: Current trends, opportunities for prevention and pathways forward. Am. J. Prev. Cardiol. 2020, 3, 100085. [Google Scholar] [CrossRef]
  37. Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef] [PubMed]
  38. Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672. [Google Scholar] [CrossRef]
  39. Li, H.Y.; Gao, T.Y.; Fang, W.; Xian-Yu, C.Y.; Deng, N.J.; Zhang, C.; Niu, Y.M. Global, regional and national burden of chronic obstructive pulmonary disease over a 30-year period: Estimates from the 1990 to 2019 Global Burden of Disease Study. Respirology 2023, 28, 29–36. [Google Scholar] [CrossRef]
  40. Boers, E.; Barrett, M.; Su, J.G.; Benjafield, A.V.; Sinha, S.; Kaye, L.; Zar, H.J.; Vuong, V.; Tellez, D.; Gondalia, R.; et al. Global Burden of Chronic Obstructive Pulmonary Disease Through 2050. JAMA Netw. Open 2023, 6, e2346598. [Google Scholar] [CrossRef]
  41. Pirillo, A.; Norata, G.D. The burden of hypercholesterolemia and ischemic heart disease in an ageing world. Pharmacol. Res. 2023, 193, 106814. [Google Scholar] [CrossRef]
  42. Salari, N.; Darvishi, N.; Bartina, Y.; Larti, M.; Kiaei, A.; Hemmati, M.; Shohaimi, S.; Mohammadi, M. Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 16, 669. [Google Scholar] [CrossRef]
  43. Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.H.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 16, 609. [Google Scholar] [CrossRef] [PubMed]
  44. Xiao, P.L.; Cui, A.Y.; Hsu, C.J.; Peng, R.; Jiang, N.; Xu, X.H.; Ma, Y.G.; Liu, D.; Lu, H.D. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and meta-analysis. Osteoporos. Int. 2022, 33, 2137–2153. [Google Scholar] [CrossRef]
  45. Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. (2011) 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
  46. Deng, L.; Guo, S.; Liu, Y.; Zhou, Y.; Liu, Y.; Zheng, X.; Yu, X.; Shuai, P. Global, regional, and national burden of chronic kidney disease and its underlying etiologies from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. BMC Public Health 2025, 25, 636. [Google Scholar] [CrossRef] [PubMed]
  47. Shilian, H.; Jing, W.; Cui, C.; Xinchun, W. Analysis of epidemiological trends in chronic diseases of Chinese residents. Aging Med. 2020, 3, 226–233. [Google Scholar] [CrossRef]
  48. Jia, W.; Chan, J.C.; Wong, T.Y.; Fisher, E.B. Diabetes in China: Epidemiology, pathophysiology and multi-omics. Nat. Metab. 2025, 7, 16–34. [Google Scholar] [CrossRef]
  49. National Center For Cardiovascular Diseases The Writing Committee Of The Report On Cardiovascular Health And Diseases In China. Report on Cardiovascular Health and Diseases in China 2023: An Updated Summary. Biomed. Environ. Sci. 2024, 37, 949–992. [Google Scholar] [CrossRef]
  50. Han, B.; Zheng, R.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024, 4, 47–53. [Google Scholar] [CrossRef]
  51. Sun, K.; Zhang, B.; Lei, S.; Zheng, R.; Liang, X.; Li, L.; Feng, X.; Zhang, S.; Zeng, H.; Yao, Y.; et al. Incidence, mortality, and disability-adjusted life years of female breast cancer in China, 2022. Chin Med. J. 2024, 137, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
  52. Fang, L.; Gao, P.; Bao, H.; Tang, X.; Wang, B.; Feng, Y.; Cong, S.; Juan, J.; Fan, J.; Lu, K.; et al. Chronic obstructive pulmonary disease in China: A nationwide prevalence study. Lancet Respir. Med. 2018, 6, 421–430. [Google Scholar] [CrossRef] [PubMed]
  53. Li, J.; Liu, M.; Liu, F.; Chen, S.; Huang, K.; Cao, J.; Shen, C.; Liu, X.; Yu, L.; Zhao, Y.; et al. Age and Genetic Risk Score and Rates of Blood Lipid Changes in China. JAMA Netw. Open 2023, 6, e235565. [Google Scholar] [CrossRef] [PubMed]
  54. Huang, Y.; Gao, L.; Xie, X.; Tan, S.C. Epidemiology of dyslipidemia in Chinese adults: Meta-analysis of prevalence, awareness, treatment, and control. Popul. Health Metr. 2014, 12, 28. [Google Scholar] [CrossRef]
  55. Wang, J.; Shu, B.; Tang, D.Z.; Li, C.G.; Xie, X.W.; Jiang, L.J.; Jiang, X.B.; Chen, B.L.; Lin, X.C.; Wei, X.; et al. The prevalence of osteoporosis in China, a community based cohort study of osteoporosis. Front. Public Health 2023, 11, 1084005. [Google Scholar] [CrossRef]
  56. Wang, L.; Yu, W.; Yin, X.; Cui, L.; Tang, S.; Jiang, N.; Cui, L.; Zhao, N.; Lin, Q.; Chen, L.; et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Netw. Open 2021, 4, e2121106. [Google Scholar] [CrossRef]
  57. Bagatini, M.D.; Cardoso, A.M.; Dos Santos, A.A.; Carvalho, F.B. Immune System and Chronic Diseases. J. Immunol. Res. 2017, 2017, 4284327. [Google Scholar] [CrossRef]
  58. Bagatini, M.D.; Cardoso, A.M.; Reschke, C.R.; Carvalho, F.B. Immune System and Chronic Diseases 2018. J. Immunol. Res. 2018, 2018, 8653572. [Google Scholar] [CrossRef]
  59. Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
  60. Hu, M.; Zhou, Y.; Yao, Z.; Tang, Y.; Zhang, Y.; Liao, J.; Cai, X.; Liu, L. T cell dysregulation in rheumatoid arthritis: Recent advances and natural product interventions. Int. Immunopharmacol. 2025, 153, 114499. [Google Scholar] [CrossRef]
  61. Ouyang, W.; Kolls, J.K.; Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008, 28, 454–467. [Google Scholar] [CrossRef]
  62. Talaat, R.M.; Mohamed, S.F.; Bassyouni, I.H.; Raouf, A.A. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 2015, 72, 146–153. [Google Scholar] [CrossRef] [PubMed]
  63. Orange, J.S.; Ballas, Z.K. Natural killer cells in human health and disease. Clin. Immunol. 2006, 118, 1–10. [Google Scholar] [CrossRef]
  64. Whiteside, T.L.; Herberman, R.B. Role of human natural killer cells in health and disease. Clin. Diagn. Lab. Immunol. 1994, 1, 125–133. [Google Scholar] [CrossRef] [PubMed]
  65. Wu, L.; Van Kaer, L. Natural killer T cells in health and disease. Front. Biosci. (Schol. Ed.) 2011, 3, 236–251. [Google Scholar] [CrossRef]
  66. Rao, Y.; Le, Y.; Xiong, J.; Pei, Y.; Sun, Y. NK Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front. Immunol. 2021, 12, 666045. [Google Scholar] [CrossRef]
  67. Fathollahi, A.; Samimi, L.N.; Akhlaghi, M.; Jamshidi, A.; Mahmoudi, M.; Farhadi, E. The role of NK cells in rheumatoid arthritis. Inflamm. Res. 2021, 70, 1063–1073. [Google Scholar] [CrossRef]
  68. Thangjam, N.; Dey, B.; Khonglah, Y.; Tiewsoh, I.; Ksoo, R. Natural Killer Cell Count in Systemic Lupus Erythematosus Patients: A Flow Cytometry-Based Study. Cureus 2023, 15, e46885. [Google Scholar] [CrossRef]
  69. Villasenor-Altamirano, A.B.; Jain, D.; Jeong, Y.; Menon, J.A.; Kamiya, M.; Haider, H.; Manandhar, R.; Sheikh, M.D.A.; Athar, H.; Merriam, L.T.; et al. Activation of CD8(+) T Cells in Chronic Obstructive Pulmonary Disease Lung. Am. J. Respir. Crit. Care Med. 2023, 208, 1177–1195. [Google Scholar] [CrossRef]
  70. Kemeny, D.M.; Vyas, B.; Vukmanovic-Stejic, M.; Thomas, M.J.; Noble, A.; Loh, L.C.; O’Connor, B.J. CD8(+) T cell subsets and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 160, S33–S37. [Google Scholar] [CrossRef]
  71. Lourenco, J.D.; Ito, J.T.; Martins, M.A.; Tiberio, I.; Lopes, F. Th17/Treg Imbalance in Chronic Obstructive Pulmonary Disease: Clinical and Experimental Evidence. Front. Immunol. 2021, 12, 804919. [Google Scholar] [CrossRef]
  72. Peng, H.Y.; Wang, L.; Das, J.K.; Kumar, A.; Ballard, D.J.; Ren, Y.; Xiong, X.; de Figueiredo, P.; Yang, J.M.; Song, J. Control of CD4(+) T cells to restrain inflammatory diseases via eukaryotic elongation factor 2 kinase. Signal Transduct. Target. Ther. 2023, 8, 415. [Google Scholar] [CrossRef] [PubMed]
  73. Lai, Y.; Zhong, Z.; Li, R.; Liang, T.; He, X.; Liu, Y.; Yu, H.; Zhang, C.; Xiao, Y.; Liu, L.; et al. Unveiling the crucial role of CD8(+) T cell and endothelial cell interaction in rheumatoid arthritis through the integrated analysis of spatial transcriptomics and bulk/single-cell RNA-seq. J. Transl. Autoimmun. 2025, 10, 100285. [Google Scholar] [CrossRef] [PubMed]
  74. Chen, P.M.; Tsokos, G.C. The role of CD8(+) T-cell systemic lupus erythematosus pathogenesis: An update. Curr. Opin. Rheumatol. 2021, 33, 586–591. [Google Scholar] [CrossRef] [PubMed]
  75. Azizi, G.; Jadidi-Niaragh, F.; Mirshafiey, A. Th17 Cells in Immunopathogenesis and treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 2013, 16, 243–253. [Google Scholar] [CrossRef]
  76. Khan, S.R.; van der Burgh, A.C.; Peeters, R.P.; van Hagen, P.M.; Dalm, V.; Chaker, L. Determinants of Serum Immunoglobulin Levels: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 664526. [Google Scholar] [CrossRef]
  77. Megha, K.B.; Mohanan, P.V. Role of immunoglobulin and antibodies in disease management. Int. J. Biol. Macromol. 2021, 169, 28–38. [Google Scholar] [CrossRef]
  78. Schussler, E.; Beasley, M.B.; Maglione, P.J. Lung Disease in Primary Antibody Deficiencies. J. Allergy Clin. Immunol. Pract. 2016, 4, 1039–1052. [Google Scholar] [CrossRef]
  79. Furst, D.E. Serum immunoglobulins and risk of infection: How low can you go? Semin. Arthritis Rheum. 2009, 39, 18–29. [Google Scholar] [CrossRef]
  80. Zhang, H.; Li, P.; Wu, D.; Xu, D.; Hou, Y.; Wang, Q.; Li, M.; Li, Y.; Zeng, X.; Zhang, F.; et al. Serum IgG subclasses in autoimmune diseases. Medicine 2015, 94, e387. [Google Scholar] [CrossRef]
  81. Johnson, D.; Jiang, W. Infectious diseases, autoantibodies, and autoimmunity. J. Autoimmun. 2023, 137, 102962. [Google Scholar] [CrossRef]
  82. Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; Miller, J.N.; Johnson, R.E.; O’Banion, M.K. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Investig. 2007, 117, 1595–1604. [Google Scholar] [CrossRef]
  83. Velikova, T.V.; Kabakchieva, P.P.; Assyov, Y.S.; Georgiev Tcapital, A.C. Targeting Inflammatory Cytokines to Improve Type 2 Diabetes Control. Biomed. Res. Int. 2021, 2021, 7297419. [Google Scholar] [CrossRef]
  84. Tylutka, A.; Walas, L.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1beta and age-related diseases: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef] [PubMed]
  85. Pirola, L.; Ferraz, J.C. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J. Biol. Chem. 2017, 8, 120–128. [Google Scholar] [CrossRef] [PubMed]
  86. Zhang, X.J.; Han, X.W.; Jiang, Y.H.; Wang, Y.L.; He, X.L.; Liu, D.H.; Huang, J.; Liu, H.H.; Ye, T.C.; Li, S.J.; et al. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int. Immunopharmacol. 2023, 123, 110747. [Google Scholar] [CrossRef] [PubMed]
  87. Lorenzo-Vizcaya, A.; Isenberg, D.A. The use of anti-TNF-alpha therapies for patients with systemic lupus erythematosus. Where are we now? Expert. Opin. Biol. Ther. 2021, 21, 639–647. [Google Scholar] [CrossRef]
  88. Zhu, L.J.; Yang, X.; Yu, X.Q. Anti-TNF-alpha therapies in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 2010, 465898. [Google Scholar] [CrossRef]
  89. Ogata, A.; Kato, Y.; Higa, S.; Yoshizaki, K. IL-6 inhibitor for the treatment of rheumatoid arthritis: A comprehensive review. Mod. Rheumatol. 2019, 29, 258–267. [Google Scholar] [CrossRef]
  90. Tanaka, Y.; Martin Mola, E. IL-6 targeting compared to TNF targeting in rheumatoid arthritis: Studies of olokizumab, sarilumab and sirukumab. Ann. Rheum. Dis. 2014, 73, 1595–1597. [Google Scholar] [CrossRef]
  91. Steiner, G.; Toes, R.E.M. Autoantibodies in rheumatoid arthritis-rheumatoid factor, anticitrullinated protein antibodies and beyond. Curr. Opin. Rheumatol. 2024, 36, 217–224. [Google Scholar] [CrossRef]
  92. Molina, J.M.; Medina, P.G.; Gomez, R.A.; Herrera, J.R.; Martinez, N.L.; Hernandez, B.; Garcia, Y. Autoantibodies against beta cells to predict early insulin requirements in pediatric patients with clinically diagnosed type 2 diabetes. World J. Diabetes 2024, 15, 1717–1725. [Google Scholar] [CrossRef]
  93. Pihoker, C.; Gilliam, L.K.; Hampe, C.S.; Lernmark, A. Autoantibodies in diabetes. Diabetes 2005, 54 (Suppl. S2), S52–S61. [Google Scholar] [CrossRef]
  94. Pugliese, A. Autoreactive T cells in type 1 diabetes. J. Clin. Investig. 2017, 127, 2881–2891. [Google Scholar] [CrossRef]
  95. Zhao, Y.; Scott, N.A.; Fynch, S.; Elkerbout, L.; Wong, W.W.; Mason, K.D.; Strasser, A.; Huang, D.C.; Kay, T.W.; Thomas, H.E. Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia 2015, 58, 140–148. [Google Scholar] [CrossRef]
  96. Smith, M.J.; Simmons, K.M.; Cambier, J.C. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat. Rev. Nephrol. 2017, 13, 712–720. [Google Scholar] [CrossRef] [PubMed]
  97. Neppelenbroek, S.; Blomberg, N.J.; Kampstra, A.S.B.; van der Hem, J.G.K.; Huizinga, T.W.J.; Toes, R.E.M.; Scherer, H.U. Autoreactive B cells remain active despite clinical disease control in rheumatoid arthritis. J. Autoimmun. 2024, 149, 103320. [Google Scholar] [CrossRef] [PubMed]
  98. Song, Y.; Li, J.; Wu, Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct. Target. Ther. 2024, 9, 263. [Google Scholar] [CrossRef] [PubMed]
  99. Wang, L.; Wang, F.S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med. 2015, 278, 369–395. [Google Scholar] [CrossRef]
  100. Farrugia, M.; Baron, B. The Role of Toll-Like Receptors in Autoimmune Diseases through Failure of the Self-Recognition Mechanism. Int. J. Inflam. 2017, 2017, 8391230. [Google Scholar] [CrossRef]
  101. Freigeh, G.E.; Michniacki, T.F. NF-kappaB and Related Autoimmune and Autoinflammatory Diseases. Rheum. Dis. Clin. N. Am. 2023, 49, 805–823. [Google Scholar] [CrossRef]
  102. Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-kappaB: At the Borders of Autoimmunity and Inflammation. Front. Immunol. 2021, 12, 716469. [Google Scholar] [CrossRef]
  103. Sarapultsev, A.; Gusev, E.; Komelkova, M.; Utepova, I.; Luo, S.; Hu, D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol. Biomed. 2023, 4, 40. [Google Scholar] [CrossRef]
  104. Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
  105. Kumar, V.; Barrett, J.E. Toll-Like Receptors (TLRs) in Health and Disease: An Overview. Handb. Exp. Pharmacol. 2022, 276, 1–21. [Google Scholar] [CrossRef] [PubMed]
  106. Wang, K.; Huang, H.; Zhan, Q.; Ding, H.; Li, Y. Toll-like receptors in health and disease. MedComm (2020) 2024, 5, e549. [Google Scholar] [CrossRef] [PubMed]
  107. Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef]
  108. Ntoufa, S.; Vilia, M.G.; Stamatopoulos, K.; Ghia, P.; Muzio, M. Toll-like receptors signaling: A complex network for NF-kappaB activation in B-cell lymphoid malignancies. Semin. Cancer Biol. 2016, 39, 15–25. [Google Scholar] [CrossRef]
  109. Makarov, S.S. NF-kappaB as a therapeutic target in chronic inflammation: Recent advances. Mol. Med. Today 2000, 6, 441–448. [Google Scholar] [CrossRef]
  110. Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef]
  111. Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-kappaB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef]
  112. Yap, D.Y.H.; Chan, T.M. B Cell Abnormalities in Systemic Lupus Erythematosus and Lupus Nephritis-Role in Pathogenesis and Effect of Immunosuppressive Treatments. Int. J. Mol. Sci. 2019, 20, 6231. [Google Scholar] [CrossRef]
  113. de Vega, W.C.; Vernon, S.D.; McGowan, P.O. DNA methylation modifications associated with chronic fatigue syndrome. PLoS ONE 2014, 9, e104757. [Google Scholar] [CrossRef]
  114. Helliwell, A.M.; Sweetman, E.C.; Stockwell, P.A.; Edgar, C.D.; Chatterjee, A.; Tate, W.P. Changes in DNA methylation profiles of myalgic encephalomyelitis/chronic fatigue syndrome patients reflect systemic dysfunctions. Clin. Epigenetics 2020, 12, 167. [Google Scholar] [CrossRef]
  115. Chen, Y.; Su, J.; Li, S.; Chen, F.; Zhang, Y.; Wang, X.; Zhang, Y.; Wang, X.; Yuan, Z.; Ren, S.; et al. Structural Modifications and Prospects of Histone Deacetylase (HDAC) Inhibitors in Cancer. Curr. Med. Chem. 2025, 32, 8530–8555. [Google Scholar] [CrossRef] [PubMed]
  116. Yang, Y.; Zhang, M.; Wang, Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J. Natl. Cancer Cent. 2022, 2, 277–290. [Google Scholar] [CrossRef] [PubMed]
  117. Zhang, G.; Wang, Z.; Song, P.; Zhan, X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J. 2022, 13, 649–669. [Google Scholar] [CrossRef] [PubMed]
  118. Berglund, A.; Putney, R.M.; Hamaidi, I.; Kim, S. Epigenetic dysregulation of immune-related pathways in cancer: Bioinformatics tools and visualization. Exp. Mol. Med. 2021, 53, 761–771. [Google Scholar] [CrossRef]
  119. Van Booven, D.J.; Gamer, J.; Joseph, A.; Perez, M.; Zarnowski, O.; Pandya, M.; Collado, F.; Klimas, N.; Oltra, E.; Nathanson, L. Stress-Induced Transcriptomic Changes in Females with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Reveal Disrupted Immune Signatures. Int. J. Mol. Sci. 2023, 24, 2698. [Google Scholar] [CrossRef]
  120. Henrot, P.; Prevel, R.; Berger, P.; Dupin, I. Chemokines in COPD: From Implication to Therapeutic Use. Int. J. Mol. Sci. 2019, 20, 2785. [Google Scholar] [CrossRef]
  121. Xue, Q.; Xie, Y.; He, Y.; Yu, Y.; Fang, G.; Yu, W.; Wu, J.; Li, J.; Zhao, L.; Deng, X.; et al. Lung microbiome and cytokine profiles in different disease states of COPD: A cohort study. Sci. Rep. 2023, 13, 5715. [Google Scholar] [CrossRef]
  122. Nielepkowicz-Gozdzinska, A.; Fendler, W.; Robak, E.; Kulczycka-Siennicka, L.; Gorski, P.; Pietras, T.; Brzezianska, E.; Pietrusinska, M.; Antczak, A. The Role of CXC Chemokines in Pulmonary Fibrosis of Systemic Lupus Erythematosus Patients. Arch. Immunol. Ther. Exp. 2015, 63, 465–473. [Google Scholar] [CrossRef] [PubMed]
  123. Strieter, R.M.; Gomperts, B.N.; Keane, M.P. The role of CXC chemokines in pulmonary fibrosis. J. Clin. Investig. 2007, 117, 549–556. [Google Scholar] [CrossRef] [PubMed]
  124. Knudsen, L.; Ruppert, C.; Ochs, M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res. 2017, 367, 607–626. [Google Scholar] [CrossRef] [PubMed]
  125. Jeffery, P.K. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 2001, 164, S28–S38. [Google Scholar] [CrossRef]
  126. Grzela, K.; Litwiniuk, M.; Zagorska, W.; Grzela, T. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: The Role of Matrix Metalloproteinase-9. Arch. Immunol. Ther. Exp. 2016, 64, 47–55. [Google Scholar] [CrossRef]
  127. Greer, J.M.; McCombe, P.A. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 2012, 6, 307–327. [Google Scholar] [CrossRef]
  128. Mazzone, R.; Zwergel, C.; Artico, M.; Taurone, S.; Ralli, M.; Greco, A.; Mai, A. The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics 2019, 11, 34. [Google Scholar] [CrossRef]
  129. Xu, Y.; He, Z.; Du, J.; Chen, Z.; Creemers, J.W.M.; Wang, B.; Li, F.; Wang, Y. Epigenetic modulations of immune cells: From normal development to tumor progression. Int. J. Biol. Sci. 2023, 19, 5120–5144. [Google Scholar] [CrossRef]
  130. Shanmugam, M.K.; Sethi, G. Role of epigenetics in inflammation-associated diseases. Subcell. Biochem. 2013, 61, 627–657. [Google Scholar] [CrossRef]
  131. Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-targeted drugs: Current paradigms and future challenges. Signal Transduct. Target. Ther. 2024, 9, 332. [Google Scholar] [CrossRef]
  132. Heerboth, S.; Lapinska, K.; Snyder, N.; Leary, M.; Rollinson, S.; Sarkar, S. Use of epigenetic drugs in disease: An overview. Genet. Epigenet 2014, 6, 9–19. [Google Scholar] [CrossRef]
  133. Abdel-Magid, A.F. Potential of Histone Deacetylase 6 Inhibitors as a Treatment of Neurodegenerative Diseases. ACS Med. Chem. Lett. 2025, 16, 210–212. [Google Scholar] [CrossRef] [PubMed]
  134. Hedayat, F.; Faghfuri, E. Harnessing histone deacetylase inhibitors for enhanced cancer immunotherapy. Eur. J. Pharmacol. 2025, 997, 177620. [Google Scholar] [CrossRef] [PubMed]
  135. Hosseini, M.S.; Sanaat, Z.; Akbarzadeh, M.A.; Vaez-Gharamaleki, Y.; Akbarzadeh, M. Histone deacetylase inhibitors for leukemia treatment: Current status and future directions. Eur. J. Med. Res. 2024, 29, 514. [Google Scholar] [CrossRef] [PubMed]
  136. Theodoropoulou, M.A.; Mantzourani, C.; Kokotos, G. Histone Deacetylase (HDAC) Inhibitors as a Novel Therapeutic Option Against Fibrotic and Inflammatory Diseases. Biomolecules 2024, 14, 1605. [Google Scholar] [CrossRef]
  137. Mata, R.; Yao, Y.; Cao, W.; Ding, J.; Zhou, T.; Zhai, Z.; Gao, C. The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research 2021, 2021, 4189516. [Google Scholar] [CrossRef]
  138. Zhu, B.; Liu, C.; Luo, M.; Chen, J.; Tian, S.; Zhan, T.; Liu, Y.; Zhang, H.; Wang, Z.; Zhang, J.; et al. Spatiotemporal dynamic changes of meningeal microenvironment influence meningeal lymphatic function following subarachnoid hemorrhage: From inflammatory response to tissue remodeling. J. Neuroinflammation 2025, 22, 131. [Google Scholar] [CrossRef]
  139. Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef]
  140. Dong, L.; Xia, J.W.; Gong, Y.; Chen, Z.; Yang, H.H.; Zhang, J.; He, J.; Chen, X.D. Effect of lianhuaqingwen capsules on airway inflammation in patients with acute exacerbation of chronic obstructive pulmonary disease. Evid. Based Complement. Alternat Med. 2014, 2014, 637969. [Google Scholar] [CrossRef]
  141. Hurst, J.R.; Perera, W.R.; Wilkinson, T.M.; Donaldson, G.C.; Wedzicha, J.A. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006, 173, 71–78. [Google Scholar] [CrossRef] [PubMed]
  142. Perng, D.W.; Chen, P.K. The Relationship between Airway Inflammation and Exacerbation in Chronic Obstructive Pulmonary Disease. Tuberc. Respir. Dis. 2017, 80, 325–335. [Google Scholar] [CrossRef] [PubMed]
  143. Yu, Y.; Miao, T.W.; Xiao, W.; Mao, B.; Du, L.Y.; Wang, Y.; Fu, J.J. Andrographolide Attenuates NLRP3 Inflammasome Activation and Airway Inflammation in Exacerbation of Chronic Obstructive Pulmonary Disease. Drug Des. Devel. Ther. 2024, 18, 1755–1770. [Google Scholar] [CrossRef] [PubMed]
  144. Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocinska, M.K.; Majka, M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef]
  145. Moudgil, K.D.; Venkatesha, S.H. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int. J. Mol. Sci. 2022, 24, 95. [Google Scholar] [CrossRef]
  146. Baer, A.; Colon-Moran, W.; Bhattarai, N. Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Sci. Rep. 2018, 8, 10910. [Google Scholar] [CrossRef]
  147. Bedoui, Y.; Giry, C.; Jaffar-Bandjee, M.C.; Selambarom, J.; Guiraud, P.; Gasque, P. Immunomodulatory drug methotrexate used to treat patients with chronic inflammatory rheumatisms post-chikungunya does not impair the synovial antiviral and bone repair responses. PLoS Negl. Trop. Dis. 2018, 12, e0006634. [Google Scholar] [CrossRef]
  148. Kristiansen, P.S.; Nielsen, L.N. Immunomodulatory and immunosuppressive drug protocols in the treatment of canine primary immune thrombocytopenia, a scoping review. Acta Vet. Scand. 2021, 63, 54. [Google Scholar] [CrossRef]
  149. Julkunen, I.; Sareneva, T.; Pirhonen, J.; Ronni, T.; Melen, K.; Matikainen, S. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev. 2001, 12, 171–180. [Google Scholar] [CrossRef]
  150. Marquez-Bandala, A.H.; Gutierrez-Xicotencatl, L.; Esquivel-Guadarrama, F. Pathogenesis Induced by Influenza Virus Infection: Role of the Early Events of the Infection and the Innate Immune Response. Viruses 2025, 17, 694. [Google Scholar] [CrossRef]
  151. Ladman, B.S.; Rosenberger, S.C.; Rosenberger, J.K.; Pope, C.R.; Gelb, J., Jr. Virulence of low pathogenicity H7N2 avian influenza viruses from the Delmarva peninsula for broiler and leghorn chickens and turkeys. Avian Dis. 2008, 52, 623–631. [Google Scholar] [CrossRef]
  152. Liang, Y. Pathogenicity and virulence of influenza. Virulence 2023, 14, 2223057. [Google Scholar] [CrossRef]
  153. Neumann, G. H5N1 influenza virulence, pathogenicity and transmissibility: What do we know? Future Virol. 2015, 10, 971–980. [Google Scholar] [CrossRef] [PubMed]
  154. Zhang, Y.; Zhu, J.; Li, Y.; Bradley, K.C.; Cao, J.; Chen, H.; Jin, M.; Zhou, H. Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza A virus in mice. PLoS ONE 2013, 8, e61397. [Google Scholar] [CrossRef] [PubMed]
  155. Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef]
  156. Suresh, R.; Mosser, D.M. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ. 2013, 37, 284–291. [Google Scholar] [CrossRef]
  157. Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef]
  158. Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015, 16, 343–353. [Google Scholar] [CrossRef]
  159. Herold, K.; Mrowka, R. Inflammation—Dysregulated inflammatory response and strategies for treatment. Acta Physiol. 2019, 226, e13284. [Google Scholar] [CrossRef]
  160. Chen, Y.; Lin, J.; Zhao, Y.; Ma, X.; Yi, H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J. Zhejiang Univ. Sci. B 2021, 22, 609–632. [Google Scholar] [CrossRef]
  161. Xagorari, A.; Chlichlia, K. Toll-like receptors and viruses: Induction of innate antiviral immune responses. Open Microbiol. J. 2008, 2, 49–59. [Google Scholar] [CrossRef]
  162. Kell, A.M.; Gale, M., Jr. RIG-I in RNA virus recognition. Virology 2015, 479–480, 110–121. [Google Scholar] [CrossRef] [PubMed]
  163. Schlee, M.; Roth, A.; Hornung, V.; Hagmann, C.A.; Wimmenauer, V.; Barchet, W.; Coch, C.; Janke, M.; Mihailovic, A.; Wardle, G.; et al. Recognition of 5’ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31, 25–34. [Google Scholar] [CrossRef] [PubMed]
  164. Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed]
  165. Ramachandran, R.; Manan, A.; Kim, J.; Choi, S. NLRP3 inflammasome: A key player in the pathogenesis of life-style disorders. Exp. Mol. Med. 2024, 56, 1488–1500. [Google Scholar] [CrossRef]
  166. Zhang, Y.; Xu, Z.; Cao, Y. Host-Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses 2020, 12, 376. [Google Scholar] [CrossRef]
  167. Chen, X.; Liu, S.; Goraya, M.U.; Maarouf, M.; Huang, S.; Chen, J.L. Host Immune Response to Influenza A Virus Infection. Front. Immunol. 2018, 9, 320. [Google Scholar] [CrossRef]
  168. Gu, Y.; Zuo, X.; Zhang, S.; Ouyang, Z.; Jiang, S.; Wang, F.; Wang, G. The Mechanism behind Influenza Virus Cytokine Storm. Viruses 2021, 13, 1362. [Google Scholar] [CrossRef]
  169. Liu, Q.; Zhou, Y.H.; Yang, Z.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol. Immunol. 2016, 13, 3–10. [Google Scholar] [CrossRef]
  170. Chauhan, R.P.; Gordon, M.L. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022, 58, 255–269. [Google Scholar] [CrossRef]
  171. Long, J.S.; Howard, W.A.; Nunez, A.; Moncorge, O.; Lycett, S.; Banks, J.; Barclay, W.S. The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on the virus lineage. J. Virol. 2013, 87, 9983–9996. [Google Scholar] [CrossRef]
  172. Yang, H.; Dong, Y.; Bian, Y.; Xu, N.; Wu, Y.; Yang, F.; Du, Y.; Qin, T.; Chen, S.; Peng, D.; et al. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling. Nat. Commun. 2022, 13, 6288. [Google Scholar] [CrossRef]
  173. Graef, K.M.; Vreede, F.T.; Lau, Y.F.; McCall, A.W.; Carr, S.M.; Subbarao, K.; Fodor, E. The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. J. Virol. 2010, 84, 8433–8445. [Google Scholar] [CrossRef]
  174. Long, J.C.; Fodor, E. The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix. J. Virol. 2016, 90, 8729–8738. [Google Scholar] [CrossRef]
  175. Wang, R.; Zhu, Y.; Ren, C.; Yang, S.; Tian, S.; Chen, H.; Jin, M.; Zhou, H. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy 2021, 17, 496–511. [Google Scholar] [CrossRef] [PubMed]
  176. Cheung, P.H.; Lee, T.T.; Chan, C.P.; Jin, D.Y. Influenza A virus PB1-F2 protein: An ambivalent innate immune modulator and virulence factor. J. Leukoc. Biol. 2020, 107, 763–771. [Google Scholar] [CrossRef] [PubMed]
  177. Reis, A.L.; McCauley, J.W. The influenza virus protein PB1-F2 interacts with IKKbeta and modulates NF-kappaB signalling. PLoS ONE 2013, 8, e63852. [Google Scholar] [CrossRef]
  178. Hu, J.; Ma, C.; Liu, X. PA-X: A key regulator of influenza A virus pathogenicity and host immune responses. Med. Microbiol. Immunol. 2018, 207, 255–269. [Google Scholar] [CrossRef] [PubMed]
  179. Bavagnoli, L.; Cucuzza, S.; Campanini, G.; Rovida, F.; Paolucci, S.; Baldanti, F.; Maga, G. The novel influenza A virus protein PA-X and its naturally deleted variant show different enzymatic properties in comparison to the viral endonuclease PA. Nucleic Acids Res. 2015, 43, 9405–9417. [Google Scholar] [CrossRef]
  180. Sun, Y.; Hu, Z.; Zhang, X.; Chen, M.; Wang, Z.; Xu, G.; Bi, Y.; Tong, Q.; Wang, M.; Sun, H.; et al. An R195K Mutation in the PA-X Protein Increases the Virulence and Transmission of Influenza A Virus in Mammalian Hosts. J. Virol. 2020, 94, 1220–1229. [Google Scholar] [CrossRef]
  181. Liu, M.; van Kuppeveld, F.J.; de Haan, C.A.; de Vries, E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr. Opin. Virol. 2023, 60, 101314. [Google Scholar] [CrossRef]
  182. Thompson, A.J.; Paulson, J.C. Adaptation of influenza viruses to human airway receptors. J. Biol. Chem. 2021, 296, 100017. [Google Scholar] [CrossRef]
  183. Mair, C.M.; Ludwig, K.; Herrmann, A.; Sieben, C. Receptor binding and pH stability—How influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta 2014, 1838, 1153–1168. [Google Scholar] [CrossRef]
  184. Shelton, H.; Roberts, K.L.; Molesti, E.; Temperton, N.; Barclay, W.S. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J. Gen. Virol. 2013, 94, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
  185. Suguitan, A.L., Jr.; Matsuoka, Y.; Lau, Y.F.; Santos, C.P.; Vogel, L.; Cheng, L.I.; Orandle, M.; Subbarao, K. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J. Virol. 2012, 86, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
  186. Yamamoto, Y.; Tamiya, S.; Shibuya, M.; Nakase, I.; Yoshioka, Y. Peptides with the multibasic cleavage site of the hemagglutinin from highly pathogenic influenza viruses act as cell-penetrating via binding to heparan sulfate and neuropilins. Biochem. Biophys. Res. Commun. 2019, 512, 453–459. [Google Scholar] [CrossRef] [PubMed]
  187. Kim, C.U.; Jeong, Y.J.; Lee, P.; Lee, M.S.; Park, J.H.; Kim, Y.S.; Kim, D.J. Extracellular nucleoprotein exacerbates influenza virus pathogenesis by activating Toll-like receptor 4 and the NLRP3 inflammasome. Cell Mol. Immunol. 2022, 19, 715–725. [Google Scholar] [CrossRef]
  188. Wei, Y.; Zeng, Y.; Zhang, X.; Xu, S.; Wang, Z.; Du, Y.; Zhang, B.; Lei, C.Q.; Zhu, Q. The Nucleoprotein of H7N9 Influenza Virus Positively Regulates TRAF3-Mediated Innate Signaling and Attenuates Viral Virulence in Mice. J. Virol. 2020, 94, e01640-20. [Google Scholar] [CrossRef]
  189. Yue, Z.; Zhang, X.; Gu, Y.; Liu, Y.; Lan, L.M.; Liu, Y.; Li, Y.; Yang, G.; Wan, P.; Chen, X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front. Cell Infect. Microbiol. 2023, 13, 1309128. [Google Scholar] [CrossRef]
  190. Su, B.; Wurtzer, S.; Rameix-Welti, M.A.; Dwyer, D.; van der Werf, S.; Naffakh, N.; Clavel, F.; Labrosse, B. Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS ONE 2009, 4, e8495. [Google Scholar] [CrossRef]
  191. Lai, J.C.C.; Karunarathna, H.; Wong, H.H.; Peiris, J.S.M.; Nicholls, J.M. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerg. Microbes Infect. 2019, 8, 327–338. [Google Scholar] [CrossRef]
  192. Gaymard, A.; Le Briand, N.; Frobert, E.; Lina, B.; Escuret, V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin. Microbiol. Infect. 2016, 22, 975–983. [Google Scholar] [CrossRef]
  193. Qin, T.; Zhu, J.; Ma, R.; Yin, Y.; Chen, S.; Peng, D.; Liu, X. Compatibility between haemagglutinin and neuraminidase drives the recent emergence of novel clade 2.3.4.4 H5Nx avian influenza viruses in China. Transbound. Emerg. Dis. 2018, 65, 1757–1769. [Google Scholar] [CrossRef] [PubMed]
  194. Yen, H.L.; Peiris, J.S. The role of balanced haemagglutinin-neuraminidase activity in the genesis of transmissible neuraminidase inhibitor-resistant variants in seasonal and novel pandemic influenza A H1N1 viruses. Hong Kong Med. J. 2016, 22 (Suppl. S7), 6–9. [Google Scholar] [PubMed]
  195. Jiang, H.; Zhang, Z. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virol. J. 2023, 20, 193. [Google Scholar] [CrossRef] [PubMed]
  196. Ma, N.; Li, X.; Jiang, H.; Dai, Y.; Xu, G.; Zhang, Z. Influenza Virus Neuraminidase Engages CD83 and Promotes Pulmonary Injury. J. Virol. 2021, 95, e01753-20. [Google Scholar] [CrossRef]
  197. Beale, R.; Wise, H.; Stuart, A.; Ravenhill, B.J.; Digard, P.; Randow, F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe 2014, 15, 239–247. [Google Scholar] [CrossRef]
  198. Zhang, H.; Wang, L.; An, Y.; Chen, Z. The applications of live attenuated influenza a virus with modified NS1 gene. Mol. Ther. Nucleic Acids 2025, 36, 102471. [Google Scholar] [CrossRef]
  199. Klemm, C.; Boergeling, Y.; Ludwig, S.; Ehrhardt, C. Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends Microbiol. 2018, 26, 624–636. [Google Scholar] [CrossRef]
  200. Haynes, L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Front. Aging 2020, 1, 602108. [Google Scholar] [CrossRef]
  201. Samy, R.P.; Lim, L.H. DAMPs and influenza virus infection in ageing. Ageing Res. Rev. 2015, 24, 83–97. [Google Scholar] [CrossRef]
  202. Quiros-Roldan, E.; Sottini, A.; Natali, P.G.; Imberti, L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024, 12, 775. [Google Scholar] [CrossRef]
  203. Morgan, R.; Klein, S.L. The intersection of sex and gender in the treatment of influenza. Curr. Opin. Virol. 2019, 35, 35–41. [Google Scholar] [CrossRef] [PubMed]
  204. Ogasawara, K. Pandemic influenza and gender imbalance: Mortality selection before births. Soc. Sci. Med. 2022, 311, 115299. [Google Scholar] [CrossRef] [PubMed]
  205. Shaikh, S.R.; MacIver, N.J.; Beck, M.A. Obesity Dysregulates the Immune Response to Influenza Infection and Vaccination Through Metabolic and Inflammatory Mechanisms. Annu. Rev. Nutr. 2022, 42, 67–89. [Google Scholar] [CrossRef] [PubMed]
  206. Green, W.D.; Beck, M.A. Obesity Impairs the Adaptive Immune Response to Influenza Virus. Ann. Am. Thorac. Soc. 2017, 14, S406–S409. [Google Scholar] [CrossRef]
  207. Zhu, W.; Wang, S.; Guan, C.; Liu, S.; Zhang, H. Type III interferon, age and IFNL gene single nucleotide polymorphisms determine the characteristics of H1N1 influenza infection. Front. Immunol. 2025, 16, 1592841. [Google Scholar] [CrossRef]
  208. Nogales, A.; DeDiego, M.L. Host Single Nucleotide Polymorphisms Modulating Influenza A Virus Disease in Humans. Pathogens 2019, 8, 168. [Google Scholar] [CrossRef]
  209. Gu, Y.; Hsu, A.C.; Pang, Z.; Pan, H.; Zuo, X.; Wang, G.; Zheng, J.; Wang, F. Role of the Innate Cytokine Storm Induced by the Influenza A Virus. Viral Immunol. 2019, 32, 244–251. [Google Scholar] [CrossRef]
  210. Hufford, M.M.; Kim, T.S.; Sun, J.; Braciale, T.J. The effector T cell response to influenza infection. Curr. Top. Microbiol. Immunol. 2015, 386, 423–455. [Google Scholar] [CrossRef]
  211. Sun, J.; Madan, R.; Karp, C.L.; Braciale, T.J. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat. Med. 2009, 15, 277–284. [Google Scholar] [CrossRef]
  212. Summerfield, A.; McCullough, K.C. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus. Viruses 2009, 1, 1022–1034. [Google Scholar] [CrossRef]
  213. Varghese, P.M.; Kishore, U.; Rajkumari, R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022, 227, 152279. [Google Scholar] [CrossRef] [PubMed]
  214. Cho, J.; Miyake, Y.; Honda, A.; Kushiro, K.; Takai, M. Analysis of the Changes in Expression Levels of Sialic Acid on Influenza-Virus-Infected Cells Using Lectin-Tagged Polymeric Nanoparticles. Front. Microbiol. 2016, 7, 1147. [Google Scholar] [CrossRef] [PubMed]
  215. Kongsomros, S.; Thanunchai, M.; Manopwisedjaroen, S.; Na-Ek, P.; Wang, S.F.; Taechalertpaisarn, T.; Thitithanyanont, A. Trogocytosis with monocytes associated with increased alpha2,3 sialic acid expression on B cells during H5N1 influenza virus infection. PLoS ONE 2020, 15, e0239488. [Google Scholar] [CrossRef] [PubMed]
  216. Bohannon, C.D.; Ende, Z.; Cao, W.; Mboko, W.P.; Ranjan, P.; Kumar, A.; Mishina, M.; Amoah, S.; Gangappa, S.; Mittal, S.K.; et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv. Sci. 2021, 8, e2100693. [Google Scholar] [CrossRef]
  217. Frank, K.; Paust, S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front. Cell Infect. Microbiol. 2020, 10, 425. [Google Scholar] [CrossRef]
  218. Jureka, A.S.; Kleinpeter, A.B.; Tipper, J.L.; Harrod, K.S.; Petit, C.M. The influenza NS1 protein modulates RIG-I activation via a strain-specific direct interaction with the second CARD of RIG-I. J. Biol. Chem. 2020, 295, 1153–1164. [Google Scholar] [CrossRef]
  219. Zhang, K.; Xie, Y.; Munoz-Moreno, R.; Wang, J.; Zhang, L.; Esparza, M.; Garcia-Sastre, A.; Fontoura, B.M.A.; Ren, Y. Structural basis for influenza virus NS1 protein block of mRNA nuclear export. Nat. Microbiol. 2019, 4, 1671–1679. [Google Scholar] [CrossRef]
  220. Nacken, W.; Mayr, J.; Schreiber, A.; Ludwig, S. Influenza A virus NS1 suppresses nuclear speckles promoted gene expression by inhibition of transcription. Npj Viruses 2025, 3, 46. [Google Scholar] [CrossRef]
  221. Drappier, M.; Michiels, T. Inhibition of the OAS/RNase L pathway by viruses. Curr. Opin. Virol. 2015, 15, 19–26. [Google Scholar] [CrossRef] [PubMed]
  222. Min, J.Y.; Krug, R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’-5’ oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA 2006, 103, 7100–7105. [Google Scholar] [CrossRef] [PubMed]
  223. Jia, D.; Rahbar, R.; Chan, R.W.; Lee, S.M.; Chan, M.C.; Wang, B.X.; Baker, D.P.; Sun, B.; Peiris, J.S.; Nicholls, J.M.; et al. Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS ONE 2010, 5, e13927. [Google Scholar] [CrossRef] [PubMed]
  224. Hsiang, T.Y.; Zhou, L.; Krug, R.M. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses. J. Virol. 2012, 86, 10370–10376. [Google Scholar] [CrossRef]
  225. Santos, A.; Pal, S.; Chacon, J.; Meraz, K.; Gonzalez, J.; Prieto, K.; Rosas-Acosta, G. SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization. J. Virol. 2013, 87, 5602–5620. [Google Scholar] [CrossRef]
  226. Smith, A.M.; McCullers, J.A. Secondary bacterial infections in influenza virus infection pathogenesis. Curr. Top. Microbiol. Immunol. 2014, 385, 327–356. [Google Scholar] [CrossRef]
  227. Short, K.R.; Kasper, J.; van der Aa, S.; Andeweg, A.C.; Zaaraoui-Boutahar, F.; Goeijenbier, M.; Richard, M.; Herold, S.; Becker, C.; Scott, D.P.; et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 2016, 47, 954–966. [Google Scholar] [CrossRef]
  228. Onufer, A.P.; Mell, J.C.; Cort, L.; Rao, A.; Mdluli, N.V.; Carey, A.J. Influenza virus-induced type I interferons disrupt alveolar epithelial repair and tight junction integrity in the developing lung. Mucosal Immunol. 2025, 18, 607–619. [Google Scholar] [CrossRef]
  229. Rowe, H.M.; Meliopoulos, V.A.; Iverson, A.; Bomme, P.; Schultz-Cherry, S.; Rosch, J.W. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat. Microbiol. 2019, 4, 1328–1336. [Google Scholar] [CrossRef]
  230. Campigotto, A.; Simor, A.E.; McGeer, A.; Kiss, A.; Mubareka, S. Nasal colonization with Streptococcus pneumoniae and Staphylococcus aureus among hospitalized patients with laboratory-confirmed influenza. Diagn. Microbiol. Infect. Dis. 2018, 92, 133–135. [Google Scholar] [CrossRef]
  231. Kahan, S.M.; Wherry, E.J.; Zajac, A.J. T cell exhaustion during persistent viral infections. Virology 2015, 479–480, 180–193. [Google Scholar] [CrossRef]
  232. Xiang, L.; Zhou, T.J.; Zhou, L.L.; Luo, J.; Qin, Z.; You, J.Z.; Jian, J.; Zhao, Z.Y.; Zhou, Y.S.; Ye, Y.C.; et al. Influenza a virus and Streptococcus pneumonia coinfection potentially promotes bacterial colonization and enhances B lymphocyte depression and reduction. J. Biol. Regul. Homeost. Agents 2019, 33, 1437–1449. [Google Scholar] [CrossRef]
  233. Liao, K.M.; Chen, Y.J.; Shen, C.W.; Ou, S.K.; Chen, C.Y. The Influence of Influenza Virus Infections in Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct Pulmon Dis. 2022, 17, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
  234. Mallia, P.; Johnston, S.L. Influenza infection and COPD. Int. J. Chron. Obstruct Pulmon Dis. 2007, 2, 55–64. [Google Scholar] [CrossRef] [PubMed]
  235. Plusa, T. Influence of influenza virus infection on asthma and COPD. Pol. Merkur. Lekarski 2003, 14, 569–571. [Google Scholar] [PubMed]
  236. Mitchell, A.B.; Mourad, B.; Buddle, L.; Peters, M.J.; Oliver, B.G.G.; Morgan, L.C. Viruses in bronchiectasis: A pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations. BMC Pulm. Med. 2018, 18, 84. [Google Scholar] [CrossRef]
  237. Park, Y.E.; Sung, H.; Oh, Y.M. Respiratory Viruses in Acute Exacerbations of Bronchiectasis. J. Korean Med. Sci. 2021, 36, e217. [Google Scholar] [CrossRef]
  238. Koul, P.A.; Mir, H.; Akram, S.; Potdar, V.; Chadha, M.S. Respiratory viruses in acute exacerbations of chronic obstructive pulmonary disease. Lung India 2017, 34, 29–33. [Google Scholar] [CrossRef]
  239. Guo, X.J.; Thomas, P.G. New fronts emerge in the influenza cytokine storm. Semin. Immunopathol. 2017, 39, 541–550. [Google Scholar] [CrossRef]
  240. Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm—The common denominator and the lessons to be learned. Clin. Immunol. 2021, 223, 108652. [Google Scholar] [CrossRef]
  241. Crouse, J.; Kalinke, U.; Oxenius, A. Regulation of antiviral T cell responses by type I interferons. Nat. Rev. Immunol. 2015, 15, 231–242. [Google Scholar] [CrossRef]
  242. Prabhu, N.; Ho, A.W.; Wong, K.H.; Hutchinson, P.E.; Chua, Y.L.; Kandasamy, M.; Lee, D.C.; Sivasankar, B.; Kemeny, D.M. Gamma interferon regulates contraction of the influenza virus-specific CD8 T cell response and limits the size of the memory population. J. Virol. 2013, 87, 12510–12522. [Google Scholar] [CrossRef] [PubMed]
  243. Merz, M.P.; Seal, S.V.; Grova, N.; Meriaux, S.; Guebels, P.; Kanli, G.; Mommaerts, E.; Nicot, N.; Kaoma, T.; Keunen, O.; et al. Early-life influenza A (H1N1) infection independently programs brain connectivity, HPA AXIS and tissue-specific gene expression profiles. Sci. Rep. 2024, 14, 5898. [Google Scholar] [CrossRef] [PubMed]
  244. Bailey, M.; Engler, H.; Hunzeker, J.; Sheridan, J.F. The hypothalamic-pituitary-adrenal axis and viral infection. Viral Immunol. 2003, 16, 141–157. [Google Scholar] [CrossRef]
  245. Silverman, M.N.; Pearce, B.D.; Biron, C.A.; Miller, A.H. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol. 2005, 18, 41–78. [Google Scholar] [CrossRef]
  246. Ohno, M.; Sekiya, T.; Nomura, N.; Daito, T.J.; Shingai, M.; Kida, H. Influenza virus infection affects insulin signaling, fatty acid-metabolizing enzyme expressions, and the tricarboxylic acid cycle in mice. Sci. Rep. 2020, 10, 10879. [Google Scholar] [CrossRef]
  247. Thomas, S.; Ouhtit, A.; Al Khatib, H.A.; Eid, A.H.; Mathew, S.; Nasrallah, G.K.; Emara, M.M.; Al Maslamani, M.A.; Yassine, H.M. Burden and disease pathogenesis of influenza and other respiratory viruses in diabetic patients. J. Infect. Public Health 2022, 15, 412–424. [Google Scholar] [CrossRef]
  248. Raber, J.; Rhea, E.M.; Banks, W.A. The Effects of Viruses on Insulin Sensitivity and Blood-Brain Barrier Function. Int. J. Mol. Sci. 2023, 24, 2377. [Google Scholar] [CrossRef]
  249. Modin, D.; Claggett, B.; Johansen, N.D.; Solomon, S.D.; Trebbien, R.; Grove Krause, T.; Staehr Jensen, J.U.; Porsborg Andersen, M.; Gislason, G.; Biering-Sorensen, T. Excess Mortality and Hospitalizations Associated With Seasonal Influenza in Patients With Heart Failure. J. Am. Coll. Cardiol. 2024, 84, 2460–2467. [Google Scholar] [CrossRef]
  250. Sin, P.; Siddiqui, M.; Wozniak, R.; Bare, I.; Minion, J.; Sanche, S.; Udell, J.; Lavoie, A.; Dehghani, P. Heart Failure after Laboratory Confirmed Influenza Infection (FLU-HF). Glob. Heart 2022, 17, 43. [Google Scholar] [CrossRef]
  251. Vardeny, O.; Solomon, S.D. Influenza and Heart Failure: A Catchy Comorbid Combination. JACC Heart Fail. 2019, 7, 118–120. [Google Scholar] [CrossRef]
  252. Watanabe, T. Renal complications of seasonal and pandemic influenza A virus infections. Eur. J. Pediatr. 2013, 172, 15–22. [Google Scholar] [CrossRef]
  253. Martin-Loeches, I.; Papiol, E.; Rodriguez, A.; Diaz, E.; Zaragoza, R.; Granada, R.M.; Socias, L.; Bonastre, J.; Valverdu, M.; Pozo, J.C.; et al. Acute kidney injury in critical ill patients affected by influenza A (H1N1) virus infection. Crit. Care 2011, 15, R66. [Google Scholar] [CrossRef]
  254. Adams, D.H.; Hubscher, S.G. Systemic viral infections and collateral damage in the liver. Am. J. Pathol. 2006, 168, 1057–1059. [Google Scholar] [CrossRef]
  255. Schutte, A.; Ciesek, S.; Wedemeyer, H.; Lange, C.M. Influenza virus infection as precipitating event of acute-on-chronic liver failure. J. Hepatol. 2019, 70, 797–799. [Google Scholar] [CrossRef]
  256. Nonaka, K.; Matsuda, Y.; Kakizaki, M.; Takakuma, S.; Hamamatsu, A.; Sakashita, Y.; Matsubara, T.; Murayama, S.; Ishiwata, T.; Yamanaka, N.; et al. Acute Liver Failure Associated with Influenza A Virus Infection: An Autopsy Case Report. Jpn. J. Infect. Dis. 2019, 72, 347–349. [Google Scholar] [CrossRef]
  257. Levi, M.; Keller, T.T.; van Gorp, E.; ten Cate, H. Infection and inflammation and the coagulation system. Cardiovasc. Res. 2003, 60, 26–39. [Google Scholar] [CrossRef]
  258. Yang, Y.; Zheng, Q.; Yang, L.; Wu, L. Comparison of inflammatory markers, coagulation indicators and outcomes between influenza and COVID-19 infection amongst children: A systematic review and meta-analysis. Heliyon 2024, 10, e30391. [Google Scholar] [CrossRef]
  259. Yang, Y.; Tang, H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell Mol. Immunol. 2016, 13, 432–442. [Google Scholar] [CrossRef]
  260. Qiu, X.; Liu, M.; Wang, Q.; Zhang, Y.; Kong, L.; Zhou, L. Thrombosis in Critically Ill Influenza Patients: Incidence and Risk Factors. Clin. Appl. Thromb. Hemost. 2024, 30, 10760296241278615. [Google Scholar] [CrossRef]
  261. Wang, X.; Pu, F.; Yang, X.; Feng, X.; Zhang, J.; Duan, K.; Nian, X.; Ma, Z.; Ma, X.X.; Yang, X.M. Immunosuppressants exert antiviral effects against influenza A(H1N1)pdm09 virus via inhibition of nucleic acid synthesis, mRNA splicing, and protein stability. Virulence 2024, 15, 2301242. [Google Scholar] [CrossRef]
  262. Kunisaki, K.M.; Janoff, E.N. Influenza in immunosuppressed populations: A review of infection frequency, morbidity, mortality, and vaccine responses. Lancet Infect. Dis. 2009, 9, 493–504. [Google Scholar] [CrossRef]
  263. Greffe, S.; Guerrisi, C.; Souty, C.; Vilcu, A.M.; Hayem, G.; Costantino, F.; Padovano, I.; Bourgault, I.; Trad, S.; Ponsoye, M.; et al. Influenza-like illness in individuals treated with immunosuppressants, biologics, and/or systemic corticosteroids for autoimmune or chronic inflammatory disease: A crowdsourced cohort study, France, 2017–2018. Influenza Other Respir. Viruses 2023, 17, e13148. [Google Scholar] [CrossRef] [PubMed]
  264. Dimopoulos, G.; Lerikou, M.; Tsiodras, S.; Chranioti, A.; Perros, E.; Anagnostopoulou, U.; Armaganidis, A.; Karakitsos, P. Viral epidemiology of acute exacerbations of chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 2012, 25, 12–18. [Google Scholar] [CrossRef] [PubMed]
  265. Zwaans, W.A.; Mallia, P.; van Winden, M.E.; Rohde, G.G. The relevance of respiratory viral infections in the exacerbations of chronic obstructive pulmonary disease-a systematic review. J. Clin. Virol. 2014, 61, 181–188. [Google Scholar] [CrossRef] [PubMed]
  266. Wedzicha, J.A. Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2004, 1, 115–120. [Google Scholar] [CrossRef]
  267. Wu, X.; Chen, D.; Gu, X.; Su, X.; Song, Y.; Shi, Y. Prevalence and risk of viral infection in patients with acute exacerbation of chronic obstructive pulmonary disease: A meta-analysis. Mol. Biol. Rep. 2014, 41, 4743–4751. [Google Scholar] [CrossRef]
  268. Gopal, R.; Marinelli, M.A.; Alcorn, J.F. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front. Immunol. 2020, 11, 570681. [Google Scholar] [CrossRef]
  269. Skaarup, K.G.; Modin, D.; Nielsen, L.; Jensen, J.U.S.; Biering-Sorensen, T. Influenza and cardiovascular disease pathophysiology: Strings attached. Eur. Heart J. Suppl. 2023, 25, A5–A11. [Google Scholar] [CrossRef]
  270. Estabragh, Z.R.; Mamas, M.A. The cardiovascular manifestations of influenza: A systematic review. Int. J. Cardiol. 2013, 167, 2397–2403. [Google Scholar] [CrossRef]
  271. Mamas, M.A.; Fraser, D.; Neyses, L. Cardiovascular manifestations associated with influenza virus infection. Int. J. Cardiol. 2008, 130, 304–309. [Google Scholar] [CrossRef]
  272. Nguyen, T.H.O.; Koutsakos, M.; van de Sandt, C.E.; Crawford, J.C.; Loh, L.; Sant, S.; Grzelak, L.; Allen, E.K.; Brahm, T.; Clemens, E.B.; et al. Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nat. Commun. 2021, 12, 2691. [Google Scholar] [CrossRef] [PubMed]
  273. Louie, A.Y.; Kim, J.S.; Drnevich, J.; Dibaeinia, P.; Koito, H.; Sinha, S.; McKim, D.B.; Soto-Diaz, K.; Nowak, R.A.; Das, A.; et al. Influenza A virus infection disrupts oligodendrocyte homeostasis and alters the myelin lipidome in the adult mouse. J. Neuroinflammation 2023, 20, 190. [Google Scholar] [CrossRef] [PubMed]
  274. Dusedau, H.P.; Steffen, J.; Figueiredo, C.A.; Boehme, J.D.; Schultz, K.; Erck, C.; Korte, M.; Faber-Zuschratter, H.; Smalla, K.H.; Dieterich, D.; et al. Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021, 12, e0177621. [Google Scholar] [CrossRef] [PubMed]
  275. Rommel, M.G.E.; Walz, L.; Fotopoulou, F.; Kohlscheen, S.; Schenk, F.; Miskey, C.; Botezatu, L.; Krebs, Y.; Voelker, I.M.; Wittwer, K.; et al. Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output. Cell Rep. 2022, 41, 111447. [Google Scholar] [CrossRef]
  276. Filgueiras-Rama, D.; Vasilijevic, J.; Jalife, J.; Noujaim, S.F.; Alfonso, J.M.; Nicolas-Avila, J.A.; Gutierrez, C.; Zamarreno, N.; Hidalgo, A.; Bernabe, A.; et al. Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovasc. Res. 2021, 117, 876–889. [Google Scholar] [CrossRef]
  277. Kenney, A.D.; Aron, S.L.; Gilbert, C.; Kumar, N.; Chen, P.; Eddy, A.; Zhang, L.; Zani, A.; Vargas-Maldonado, N.; Speaks, S.; et al. Influenza virus replication in cardiomyocytes drives heart dysfunction and fibrosis. Sci. Adv. 2022, 8, eabm5371. [Google Scholar] [CrossRef]
  278. Ng, C.T.; Fong, L.Y.; Tan, J.J.; Abdullah, M.N.H. Endothelial barrier disruptive effect of IFN-Y and TNF-alpha: Synergism of pro-inflammatory cytokines. Cytokine 2025, 190, 156922. [Google Scholar] [CrossRef]
  279. Altyar, A.E.; Bhardwaj, S.; Ghaboura, N.; Kaushik, P.; Alenezi, S.K.; Mantargi, M.J.S.; Afzal, M. Role of IL-2, IL-6, and TNF-alpha as Potential Biomarkers in Ischemic Heart Disease: A Comparative Study of Patients with CAD and Non-CAD. Med. Sci. 2025, 13, 40. [Google Scholar] [CrossRef]
  280. Zhang, H.; Dhalla, N.S. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef]
  281. Blomqvist, A.; Engblom, D. Neural Mechanisms of Inflammation-Induced Fever. Neuroscientist 2018, 24, 381–399. [Google Scholar] [CrossRef]
  282. Pongratz, G.; Straub, R.H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 2014, 16, 504. [Google Scholar] [CrossRef]
  283. Bahadoran, A.; Bezavada, L.; Smallwood, H.S. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol. Rev. 2020, 295, 140–166. [Google Scholar] [CrossRef]
  284. Ayari, A.; Rosa-Calatrava, M.; Lancel, S.; Barthelemy, J.; Pizzorno, A.; Mayeuf-Louchart, A.; Baron, M.; Hot, D.; Deruyter, L.; Soulard, D.; et al. Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun. Biol. 2020, 3, 237. [Google Scholar] [CrossRef]
  285. Smallwood, H.S.; Duan, S.; Morfouace, M.; Rezinciuc, S.; Shulkin, B.L.; Shelat, A.; Zink, E.E.; Milasta, S.; Bajracharya, R.; Oluwaseum, A.J.; et al. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Rep. 2017, 19, 1640–1653. [Google Scholar] [CrossRef]
  286. Rezinciuc, S.; Bezavada, L.; Bahadoran, A.; Duan, S.; Wang, R.; Lopez-Ferrer, D.; Finkelstein, D.; McGargill, M.A.; Green, D.R.; Pasa-Tolic, L.; et al. Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathog. 2020, 16, e1008957. [Google Scholar] [CrossRef]
  287. Ji, S.; Dai, M.Y.; Huang, Y.; Ren, X.C.; Jiang, M.L.; Qiao, J.P.; Zhang, W.Y.; Xu, Y.H.; Shen, J.L.; Zhang, R.Q.; et al. Influenza a virus triggers acute exacerbation of chronic obstructive pulmonary disease by increasing proinflammatory cytokines secretion via NLRP3 inflammasome activation. J. Inflamm. 2022, 19, 8. [Google Scholar] [CrossRef] [PubMed]
  288. Chen, Q.; Liu, Y.; Lu, A.; Ni, K.; Xiang, Z.; Wen, K.; Tu, W. Influenza virus infection exacerbates experimental autoimmune encephalomyelitis disease by promoting type I T cells infiltration into central nervous system. J. Autoimmun. 2017, 77, 1–10. [Google Scholar] [CrossRef] [PubMed]
  289. Stegemann-Koniszewski, S.; Behrens, S.; Boehme, J.D.; Hochnadel, I.; Riese, P.; Guzman, C.A.; Kroger, A.; Schreiber, J.; Gunzer, M.; Bruder, D. Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation via Toll-Like Receptor 7. Front. Immunol. 2018, 9, 245. [Google Scholar] [CrossRef] [PubMed]
  290. Pizzolla, A.; Smith, J.M.; Brooks, A.G.; Reading, P.C. Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus. J. Leukoc. Biol. 2017, 101, 851–861. [Google Scholar] [CrossRef]
  291. Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
  292. Martel, J.; Chang, S.H.; Ko, Y.F.; Hwang, T.L.; Young, J.D.; Ojcius, D.M. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef] [PubMed]
  293. Froes, F.; Timoteo, A.; Almeida, B.; Raposo, J.F.; Oliveira, J.; Carrageta, M.; Duque, S.; Morais, A. Influenza vaccination in older adults and patients with chronic disorders: A position paper from the Portuguese Society of Pulmonology, the Portuguese Society of Cardiology, the Portuguese Society of Diabetology, the Portuguese Society of Infectious Diseases and Clinical Microbiology, the Portuguese Society of Geriatrics and Gerontology, and the Study Group of Geriatrics of the Portuguese Society of Internal Medicine. Pulmonology 2024, 30, 422–436. [Google Scholar] [CrossRef] [PubMed]
  294. Antonelli Incalzi, R.; Consoli, A.; Lopalco, P.; Maggi, S.; Sesti, G.; Veronese, N.; Volpe, M. Influenza vaccination for elderly, vulnerable and high-risk subjects: A narrative review and expert opinion. Intern. Emerg. Med. 2024, 19, 619–640. [Google Scholar] [CrossRef]
  295. Mettelman, R.C.; Thomas, P.G. Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harb. Perspect. Med. 2021, 11, a038711. [Google Scholar] [CrossRef]
  296. Rosero, C.I.; Gravenstein, S.; Saade, E.A. Influenza and Aging: Clinical Manifestations, Complications, and Treatment Approaches in Older Adults. Drugs Aging 2025, 42, 39–55. [Google Scholar] [CrossRef]
  297. Lee, C.C.; Liu, Y.; Lu, K.T.; Wei, C.; Su, K.; Hsu, W.T.; Chen, S.C. Comparison of influenza hospitalization outcomes among adults, older adults, and octogenarians: A US national population-based study. Clin. Microbiol. Infect. 2021, 27, 435–442. [Google Scholar] [CrossRef]
  298. Liu, R.; Liu, X.; Yang, P.; Du, X.; He, L.; Chen, T.; Li, X.; Xie, G.; Wu, S.; Su, J.; et al. Influenza-associated cardiovascular mortality in older adults in Beijing, China: A population-based time-series study. BMJ Open 2020, 10, e042487. [Google Scholar] [CrossRef]
  299. Ho, T.Y.; Huang, K.Y.; Huang, T.T.; Huang, Y.S.; Ho, H.C.; Chou, P.; Lin, C.H.; Wei, C.K.; Lian, W.C.; Chen, T.C.; et al. The impact of influenza vaccinations on the adverse effects and hospitalization rate in the elderly: A national based study in an Asian country. PLoS ONE 2012, 7, e50337. [Google Scholar] [CrossRef]
  300. Paget, J.; Staadegaard, L.; Wang, X.; Li, Y.; van Pomeren, T.; van Summeren, J.; Duckers, M.; Chaves, S.S.; Johnson, E.K.; Mahe, C.; et al. Global and national influenza-associated hospitalisation rates: Estimates for 40 countries and administrative regions. J. Glob. Health 2023, 13, 04003. [Google Scholar] [CrossRef]
  301. Allard, R.; Leclerc, P.; Tremblay, C.; Tannenbaum, T.N. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care 2010, 33, 1491–1493. [Google Scholar] [CrossRef]
  302. Marshall, R.J.; Armart, P.; Hulme, K.D.; Chew, K.Y.; Brown, A.C.; Hansbro, P.M.; Bloxham, C.J.; Flint, M.; Ronacher, K.; Bielefeldt-Ohmann, H.; et al. Glycemic Variability in Diabetes Increases the Severity of Influenza. mBio 2020, 11, e02841-19. [Google Scholar] [CrossRef]
  303. Miron, V.D.; Sandulescu, O.; Streinu-Cercel, A.; Florea, D.; Paraschiv, S.; Banica, L.; Vlaicu, O.; Otelea, D.; Bilasco, A.; Pitigoi, D.; et al. Age, comorbidity burden and late presentation are significant predictors of hospitalization length and acute respiratory failure in patients with influenza. Sci. Rep. 2024, 14, 15563. [Google Scholar] [CrossRef] [PubMed]
  304. Collaborators, G.B.D.I. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: An analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2019, 7, 69–89. [Google Scholar] [CrossRef] [PubMed]
  305. Nguyen, J.L.; Yang, W.; Ito, K.; Matte, T.D.; Shaman, J.; Kinney, P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016, 1, 274–281. [Google Scholar] [CrossRef] [PubMed]
  306. Yedlapati, S.H.; Khan, S.U.; Talluri, S.; Lone, A.N.; Khan, M.Z.; Khan, M.S.; Navar, A.M.; Gulati, M.; Johnson, H.; Baum, S.; et al. Effects of Influenza Vaccine on Mortality and Cardiovascular Outcomes in Patients With Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e019636. [Google Scholar] [CrossRef]
  307. Chen, L.; Han, X.; Li, Y.; Zhang, C.; Xing, X. The severity and risk factors for mortality in immunocompromised adult patients hospitalized with influenza-related pneumonia. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 55. [Google Scholar] [CrossRef]
  308. Kodde, C.; Bonsignore, M.; Schondube, D.; Bauer, T.; Hohenstein, S.; Bollmann, A.; Meier-Hellmann, A.; Kuhlen, R.; Nachtigall, I. Mortality in cancer patients with SARS-CoV-2 or seasonal influenza: An observational cohort study from a German-wide hospital network. Infection 2023, 51, 119–127. [Google Scholar] [CrossRef]
  309. Modin, D.; Claggett, B.; Jorgensen, M.E.; Kober, L.; Benfield, T.; Schou, M.; Jensen, J.S.; Solomon, S.D.; Trebbien, R.; Fralick, M.; et al. Flu Vaccine and Mortality in Hypertension: A Nationwide Cohort Study. J. Am. Heart Assoc. 2022, 11, e021715. [Google Scholar] [CrossRef]
  310. Bacurau, A.G.M.; Francisco, P. Reasons for non-vaccination against influenza among older adults with hypertension in Brazil: A cross-sectional study. Sao Paulo Med. J. 2020, 138, 322–325. [Google Scholar] [CrossRef]
  311. Jong, H.C.; Zheng, J.Q.; Zheng, C.M.; Lin, C.H.; Chiu, C.C.; Hsu, M.H.; Fang, Y.A.; Hao, W.R.; Chen, C.C.; Yang, T.Y.; et al. Effect of Annual Influenza Vaccination on the Risk of Lung Cancer Among Patients With Hypertension: A Population-Based Cohort Study in Taiwan. Int. J. Public Health 2023, 68, 1605370. [Google Scholar] [CrossRef]
  312. Li, Q.; Zhang, M.; Chen, H.; Wu, F.; Xian, J.; Zheng, L.; Liang, M.; Cao, H.; Zhou, X.; Gu, Z.; et al. Influenza Vaccination Coverage among Older Adults with Hypertension in Shenzhen, China: A Cross-Sectional Survey during the COVID-19 Pandemic. Vaccines 2021, 9, 105. [Google Scholar] [CrossRef]
  313. Malacara-Villasenor, A.; Ilaraza-Lomeli, H.; Tapia-Conyer, R.; Sarti, E. Influenza and morbidity and mortality risk in patients in Mexico with systemic arterial hypertension alone or with comorbidities: A retrospective, observational, cross-sectional study from 2014 to 2020. BMJ Open 2021, 11, e057225. [Google Scholar] [CrossRef]
  314. Godoy, P.; Castilla, J.; Mayoral, J.M.; Delgado-Rodriguez, M.; Martin, V.; Astray, J.; Soldevila, N.; Gonzalez-Candelas, F.; Castro, A.; Baricot, M.; et al. Smoking may increase the risk of hospitalization due to influenza. Eur. J. Public. Health 2016, 26, 882–887. [Google Scholar] [CrossRef]
  315. Godoy, P.; Castilla, J.; Soldevila, N.; Mayoral, J.M.; Toledo, D.; Martin, V.; Astray, J.; Egurrola, M.; Morales-Suarez-Varela, M.; Dominguez, A.; et al. Smoking may increase the risk of influenza hospitalization and reduce influenza vaccine effectiveness in the elderly. Eur. J. Public Health 2018, 28, 150–155. [Google Scholar] [CrossRef] [PubMed]
  316. Han, L.; Ran, J.; Mak, Y.W.; Suen, L.K.; Lee, P.H.; Peiris, J.S.M.; Yang, L. Smoking and Influenza-associated Morbidity and Mortality: A Systematic Review and Meta-analysis. Epidemiology 2019, 30, 405–417. [Google Scholar] [CrossRef] [PubMed]
  317. Hilton, D.D. Cigarette smoking and influenza. Br. Med. J. 1970, 1, 566. [Google Scholar] [CrossRef] [PubMed]
  318. Lawrence, H.; Hunter, A.; Murray, R.; Lim, W.S.; McKeever, T. Cigarette smoking and the occurrence of influenza—Systematic review. J. Infect. 2019, 79, 401–406. [Google Scholar] [CrossRef]
  319. Wong, C.M.; Yang, L.; Chan, K.P.; Chan, W.M.; Song, L.; Lai, H.K.; Thach, T.Q.; Ho, L.M.; Chan, K.H.; Lam, T.H.; et al. Cigarette smoking as a risk factor for influenza-associated mortality: Evidence from an elderly cohort. Influenza Other Respir. Viruses 2013, 7, 531–539. [Google Scholar] [CrossRef]
  320. Willis, G.A.; Preen, D.B.; Richmond, P.C.; Jacoby, P.; Effler, P.V.; Smith, D.W.; Robins, C.; Borland, M.L.; Levy, A.; Keil, A.D.; et al. The impact of influenza infection on young children, their family and the health care system. Influenza Other Respir. Viruses 2019, 13, 18–27. [Google Scholar] [CrossRef]
  321. Shi, Y.; Chen, W.; Zeng, M.; Shen, G.; Sun, C.; Liu, G.; Gong, H.; Wang, C.; Ge, M.; Xu, J.; et al. Clinical features and risk factors for severe influenza in children: A study from multiple hospitals in Shanghai. Pediatr. Neonatol. 2021, 62, 428–436. [Google Scholar] [CrossRef]
  322. Shi, S.J.; Li, H.; Liu, M.; Liu, Y.M.; Zhou, F.; Liu, B.; Qu, J.X.; Cao, B. Mortality prediction to hospitalized patients with influenza pneumonia: PO(2) /FiO(2) combined lymphocyte count is the answer. Clin. Respir. J. 2017, 11, 352–360. [Google Scholar] [CrossRef]
  323. Hollingsworth, R.; El Guerche-Seblain, C.; Tsai, T.; Vasiliev, Y.; Lee, S.; Bright, H.; Barbosa, P. Assessment of the benefits of seasonal influenza vaccination: Elements of a framework to interpret estimates of vaccine effectiveness and support robust decision-making and communication. Influenza Other Respir. Viruses 2021, 15, 164–174. [Google Scholar] [CrossRef] [PubMed]
  324. Grohskopf, L.A.; Ferdinands, J.M.; Blanton, L.H.; Broder, K.R.; Loehr, J. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2024–2025 Influenza Season. MMWR Recomm. Rep. 2024, 73, 1–25. [Google Scholar] [CrossRef] [PubMed]
  325. Brydak, L.B.; Wozniak Kosek, A.; Nitsch-Osuch, A. Influenza vaccines and vaccinations in Poland—Past, present and future. Med. Sci. Monit. 2012, 18, RA166–RA171. [Google Scholar] [CrossRef]
  326. Davenport, F.M. Inactivated influenza virus vaccines. Past, present, and future. Am. Rev. Respir. Dis. 1961, 83 Pt 2, 146–156. [Google Scholar]
  327. Kim, Y.H.; Hong, K.J.; Kim, H.; Nam, J.H. Influenza vaccines: Past, present, and future. Rev. Med. Virol. 2022, 32, e2243. [Google Scholar] [CrossRef]
  328. Talbot, H.K.; Nian, H.; Zhu, Y.; Chen, Q.; Williams, J.V.; Griffin, M.R. Clinical effectiveness of split-virion versus subunit trivalent influenza vaccines in older adults. Clin. Infect. Dis. 2015, 60, 1170–1175. [Google Scholar] [CrossRef]
  329. Li, A.P.Y.; Cohen, C.A.; Leung, N.H.L.; Fang, V.J.; Gangappa, S.; Sambhara, S.; Levine, M.Z.; Iuliano, A.D.; Perera, R.; Ip, D.K.M.; et al. Immunogenicity of standard, high-dose, MF59-adjuvanted, and recombinant-HA seasonal influenza vaccination in older adults. NPJ Vaccines 2021, 6, 25. [Google Scholar] [CrossRef]
  330. Isakova-Sivak, I.; Rudenko, L. Next-generation influenza vaccines based on mRNA technology. Lancet Infect. Dis. 2025, 25, 2–3. [Google Scholar] [CrossRef]
  331. Bernstein, D.I.; Yan, L.; Treanor, J.; Mendelman, P.M.; Belshe, R.; Cold-Adapted, T.I.V.S.G. Effect of yearly vaccinations with live, attenuated, cold-adapted, trivalent, intranasal influenza vaccines on antibody responses in children. Pediatr. Infect. Dis. J. 2003, 22, 28–34. [Google Scholar] [CrossRef]
  332. Karron, R.A.; Talaat, K.; Luke, C.; Callahan, K.; Thumar, B.; Dilorenzo, S.; McAuliffe, J.; Schappell, E.; Suguitan, A.; Mills, K.; et al. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine 2009, 27, 4953–4960. [Google Scholar] [CrossRef]
  333. Kendal, A.P. Cold-adapted live attenuated influenza vaccines developed in Russia: Can they contribute to meeting the needs for influenza control in other countries? Eur. J. Epidemiol. 1997, 13, 591–609. [Google Scholar] [CrossRef]
  334. Subbarao, K. Live Attenuated Cold-Adapted Influenza Vaccines. Cold Spring Harb. Perspect. Med. 2021, 11, a038653. [Google Scholar] [CrossRef]
  335. Hegde, N.R. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum. Vaccin. Immunother. 2015, 11, 1223–1234. [Google Scholar] [CrossRef]
  336. Bechini, A.; Ninci, A.; Del Riccio, M.; Biondi, I.; Bianchi, J.; Bonanni, P.; Mannucci, E.; Monami, M. Impact of Influenza Vaccination on All-Cause Mortality and Hospitalization for Pneumonia in Adults and the Elderly with Diabetes: A Meta-Analysis of Observational Studies. Vaccines 2020, 8, 263. [Google Scholar] [CrossRef]
  337. Bekkat-Berkani, R.; Wilkinson, T.; Buchy, P.; Dos Santos, G.; Stefanidis, D.; Devaster, J.M.; Meyer, N. Seasonal influenza vaccination in patients with COPD: A systematic literature review. BMC Pulm. Med. 2017, 17, 79. [Google Scholar] [CrossRef] [PubMed]
  338. Domnich, A.; de Waure, C. Comparative effectiveness of adjuvanted versus high-dose seasonal influenza vaccines for older adults: A systematic review and meta-analysis. Int. J. Infect. Dis. 2022, 122, 855–863. [Google Scholar] [CrossRef] [PubMed]
  339. Esposito, S.; Principi, N. Different influenza vaccine formulations and adjuvants for childhood influenza vaccination. Vaccine 2011, 29, 7535–7541. [Google Scholar] [CrossRef] [PubMed]
  340. Liprandi, A.S.; Liprandi, M.I.S.; Zaidel, E.J.; Aisenberg, G.M.; Baranchuk, A.; Barbosa, E.C.D.; Sanchez, G.B.; Alexander, B.; Zanetti, F.T.L.; Santi, R.L.; et al. Influenza Vaccination for the Prevention of Cardiovascular Disease in the Americas: Consensus document of the Inter-American Society of Cardiology and the Word Heart Federation. Glob. Heart 2021, 16, 55. [Google Scholar] [CrossRef]
  341. Carro, A. The impact of influenza vaccination on cardiovascular diseases. Eur. Heart J. Suppl. 2023, 25, A25–A30. [Google Scholar] [CrossRef] [PubMed]
  342. Loeb, M.; Dokainish, H.; Dans, A.; Palileo-Villanueva, L.M.; Roy, A.; Karaye, K.; Zhu, J.; Liang, Y.; Goma, F.; Damasceno, A.; et al. Randomized controlled trial of influenza vaccine in patients with heart failure to reduce adverse vascular events (IVVE): Rationale and design. Am. Heart J. 2019, 212, 36–44. [Google Scholar] [CrossRef] [PubMed]
  343. Loeb, M.; Roy, A.; Dokainish, H.; Dans, A.; Palileo-Villanueva, L.M.; Karaye, K.; Zhu, J.; Liang, Y.; Goma, F.; Damasceno, A.; et al. Influenza vaccine to reduce adverse vascular events in patients with heart failure: A multinational randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2022, 10, e1835–e1844. [Google Scholar] [CrossRef] [PubMed]
  344. Gershon, A.S.; Chung, H.; Porter, J.; Campitelli, M.A.; Buchan, S.A.; Schwartz, K.L.; Crowcroft, N.S.; Campigotto, A.; Gubbay, J.B.; Karnauchow, T.; et al. Influenza Vaccine Effectiveness in Preventing Hospitalizations in Older Patients With Chronic Obstructive Pulmonary Disease. J. Infect. Dis. 2020, 221, 42–52. [Google Scholar] [CrossRef]
  345. Kopsaftis, Z.; Wood-Baker, R.; Poole, P. Influenza vaccine for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2018, 6, CD002733. [Google Scholar] [CrossRef]
  346. Li, Y.; Ma, Y.; An, Z.; Yue, C.; Wang, Y.; Liu, Y.; Yuan, X.; Zhang, S.; Shao, M.; Li, C.; et al. Immunogenicity of trivalent seasonal influenza vaccine in patients with chronic obstructive pulmonary disease. Hum. Vaccin. Immunother. 2021, 17, 3131–3136. [Google Scholar] [CrossRef]
  347. Lupatkin, H. Influenza Vaccine in the Elderly and Chronic Obstructive Pulmonary Disease. Curr. Infect. Dis. Rep. 2005, 7, 200–203. [Google Scholar] [CrossRef]
  348. Neuzil, K.M.; O’Connor, T.Z.; Gorse, G.J.; Nichol, K.L. Recognizing influenza in older patients with chronic obstructive pulmonary disease who have received influenza vaccine. Clin. Infect. Dis. 2003, 36, 169–174. [Google Scholar] [CrossRef]
  349. Poole, P.J.; Chacko, E.; Wood-Baker, R.W.; Cates, C.J. Influenza vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006, 25, CD002733. [Google Scholar] [CrossRef]
  350. Tippett, A.; Ess, G.; Hussaini, L.; Reese, O.; Salazar, L.; Kelly, M.; Taylor, M.; Ciric, C.; Keane, A.; Cheng, A.; et al. Influenza Vaccine Effectiveness Pre-pandemic Among Adults Hospitalized With Congestive Heart Failure or Chronic Obstructive Pulmonary Disease and Older Adults. Clin. Infect. Dis. 2024, 78, 1065–1072. [Google Scholar] [CrossRef]
  351. Young-Xu, Y.; Smith, J.; Nealon, J.; Mahmud, S.M.; Van Aalst, R.; Thommes, E.W.; Neupane, N.; Lee, J.K.H.; Chit, A. Influenza vaccine in chronic obstructive pulmonary disease among elderly male veterans. PLoS ONE 2022, 17, e0262072. [Google Scholar] [CrossRef]
  352. Koesnoe, S.; Hasibuan, A.S.; Suastika, K.; Kartasasmita, C.; Aman, A.M.; Kshanti, I.A.; Wisnu, W.; Djauzi, S.; Rengganis, I.; Widhani, A.; et al. Consensus Guidelines for Influenza Vaccination in Patients with Diabetes. Acta Med. Indones. 2024, 56, 126–133. [Google Scholar] [PubMed]
  353. Verket, M.; Jacobsen, M.; Schutt, K.; Marx, N.; Muller-Wieland, D. Influenza vaccination in patients affected by diabetes. Eur. Heart J. Suppl. 2023, 25, A36–A41. [Google Scholar] [CrossRef] [PubMed]
  354. Seo, Y.B.; Baek, J.H.; Lee, J.; Song, J.Y.; Lee, J.S.; Cheong, H.J.; Kim, W.J. Long-Term Immunogenicity and Safety of a Conventional Influenza Vaccine in Patients with Type 2 Diabetes. Clin. Vaccine Immunol. 2015, 22, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
  355. Skaarup, K.G.; Lassen, M.C.H.; Modin, D.; Johansen, N.D.; Loiacono, M.M.; Harris, R.C.; Lee, J.K.H.; Dufournet, M.; Vardeny, O.; Peikert, A.; et al. The relative vaccine effectiveness of high-dose vs standard-dose influenza vaccines in preventing hospitalization and mortality: A meta-analysis of evidence from randomized trials. J. Infect. 2024, 89, 106187. [Google Scholar] [CrossRef]
  356. Jagielska, A.M.; Brydak, L.B.; Nitsch-Osuch, A.S. Immunogenicity of Split Inactivated Quadrivalent Influenza Vaccine in Adults with Obesity in the 2017/2018 Season. Med. Sci. Monit. 2021, 27, e929572. [Google Scholar] [CrossRef]
  357. Karlsson, E.A.; Hertz, T.; Johnson, C.; Mehle, A.; Krammer, F.; Schultz-Cherry, S. Obesity Outweighs Protection Conferred by Adjuvanted Influenza Vaccination. mBio 2016, 7, e01144-16. [Google Scholar] [CrossRef]
  358. Harris, J.A.; Moniz, M.H.; Iott, B.; Power, R.; Griggs, J.J. Obesity and the receipt of influenza and pneumococcal vaccination: A systematic review and meta-analysis. BMC Obes. 2016, 3, 24. [Google Scholar] [CrossRef]
  359. Bartholdy, K.V.; Johansen, N.D.; Janstrup, K.H.; Modin, D.; Nealon, J.; Samson, S.; Loiacono, M.M.; Harris, R.; Schade Larsen, C.; Reimer Jensen, A.M.; et al. High-Dose vs Standard-Dose Influenza Vaccine in Chronic Kidney Disease: A Secondary Analysis of DANFLU-1. J. Am. Coll. Cardiol. 2024, 84, 1144–1148. [Google Scholar] [CrossRef]
  360. Layton, J.B.; McGrath, L.J.; Sahrmann, J.M.; Ma, Y.; Dharnidharka, V.R.; O’Neil, C.; Weber, D.J.; Butler, A.M. Comparative safety of high-dose versus standard-dose influenza vaccination in patients with end-stage renal disease. Vaccine 2020, 38, 5178–5186. [Google Scholar] [CrossRef]
  361. Shrestha, A.B.; Mohammed, Y.A.; Umar, T.P.; Shrestha, S.; Mehta, A.; Jaiswal, V. Exploring the possible therapeutic role of influenza vaccine in chronic kidney disease patients. Ann. Med. Surg. 2023, 85, 642–644. [Google Scholar] [CrossRef]
  362. Ma, B.M.; Yap, D.Y.H.; Yip, T.P.S.; Hung, I.F.N.; Tang, S.C.W.; Chan, T.M. Vaccination in patients with chronic kidney disease-Review of current recommendations and recent advances. Nephrology 2021, 26, 5–11. [Google Scholar] [CrossRef]
  363. Gianella, S.; Anderson, C.; Chaillon, A.; Wells, A.; Porrachia, M.; Caballero, G.; Meneses, M.; Lonergan, J.; Woodworth, B.; Gaitan, N.C.; et al. Impact of influenza and pneumococcal vaccines on HIV persistence and immune dynamics during suppressive antiretroviral therapy. AIDS 2024, 38, 1131–1140. [Google Scholar] [CrossRef]
  364. Zhang, W.; Sun, H.; Atiquzzaman, M.; Sou, J.; Anis, A.H.; Cooper, C. Influenza vaccination for HIV-positive people: Systematic review and network meta-analysis. Vaccine 2018, 36, 4077–4086. [Google Scholar] [CrossRef]
  365. Ceravolo, A.; Orsi, A.; Parodi, V.; Ansaldi, F. Influenza vaccination in HIV-positive subjects: Latest evidence and future perspective. J. Prev. Med. Hyg. 2013, 54, 1–10. [Google Scholar] [PubMed]
  366. Kroon, F.P.; van Dissel, J.T.; de Jong, J.C.; Zwinderman, K.; van Furth, R. Antibody response after influenza vaccination in HIV-infected individuals: A consecutive 3-year study. Vaccine 2000, 18, 3040–3049. [Google Scholar] [CrossRef] [PubMed]
  367. Remschmidt, C.; Wichmann, O.; Harder, T. Influenza vaccination in HIV-infected individuals: Systematic review and assessment of quality of evidence related to vaccine efficacy, effectiveness and safety. Vaccine 2014, 32, 5585–5592. [Google Scholar] [CrossRef] [PubMed]
  368. Hirzel, C.; Kumar, D. Influenza vaccine strategies for solid organ transplant recipients. Curr. Opin. Infect. Dis. 2018, 31, 309–315. [Google Scholar] [CrossRef]
  369. Kumar, D.; Blumberg, E.A.; Danziger-Isakov, L.; Kotton, C.N.; Halasa, N.B.; Ison, M.G.; Avery, R.K.; Green, M.; Allen, U.D.; Edwards, K.M.; et al. Influenza vaccination in the organ transplant recipient: Review and summary recommendations. Am. J. Transplant. 2011, 11, 2020–2030. [Google Scholar] [CrossRef]
  370. Cordero, E.; Manuel, O. Influenza vaccination in solid-organ transplant recipients. Curr. Opin. Organ. Transplant. 2012, 17, 601–608. [Google Scholar] [CrossRef]
  371. Vermeiren, P.; Aubert, V.; Sugamele, R.; Aubert, J.D.; Venetz, J.P.; Meylan, P.; Pascual, M.; Manuel, O. Influenza vaccination and humoral alloimmunity in solid organ transplant recipients. Transpl. Int. 2014, 27, 903–908. [Google Scholar] [CrossRef]
  372. Harmala, S.; Parisinos, C.; Shallcross, L.; O’Brien, A.; Hayward, A. Effectiveness of pneumococcal and influenza vaccines to prevent serious health complications in adults with chronic liver disease: A protocol for a systematic review. BMJ Open 2018, 8, e018223. [Google Scholar] [CrossRef]
  373. Harmala, S.; Parisinos, C.A.; Shallcross, L.; O’Brien, A.; Hayward, A. Effectiveness of influenza vaccines in adults with chronic liver disease: A systematic review and meta-analysis. BMJ Open 2019, 9, e031070. [Google Scholar] [CrossRef]
  374. Huang, P.H.; Nowalk, M.P.; Zimmerman, R.K.; Olson, S.M.; Talbot, H.K.; Zhu, Y.; Gaglani, M.; Murthy, K.; Monto, A.S.; Martin, E.T.; et al. Vaccine effectiveness against influenza-associated hospitalizations in adults with liver disease, 2015–2020: US Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN). Hum. Vaccin. Immunother. 2025, 21, 2457205. [Google Scholar] [CrossRef]
  375. Gaeta, G.B.; Pariani, E.; Amendola, A.; Brancaccio, G.; Cuomo, G.; Stornaiuolo, G.; Zappa, A.; Zanetti, A. Influenza vaccination in patients with cirrhosis and in liver transplant recipients. Vaccine 2009, 27, 3373–3375. [Google Scholar] [CrossRef]
  376. Hall, V.G.; Smibert, O.C.; Sullivan, S.G.; Lim, C.; Barr, I.G.; Peck, H.; Fuge-Larsen, P.; Demajo, J.; Klimevski, E.; Tennakoon, S.; et al. Influenza Vaccination Strategies in Patients with Hematologic Cancer. N. Engl. J. Med. 2025, 392, 306–308. [Google Scholar] [CrossRef]
  377. Halasa, N.B.; Savani, B.N.; Asokan, I.; Kassim, A.; Simons, R.; Summers, C.; Bourgeois, J.; Clifton, C.; Vaughan, L.A.; Lucid, C.; et al. Randomized Double-Blind Study of the Safety and Immunogenicity of Standard-Dose Trivalent Inactivated Influenza Vaccine versus High-Dose Trivalent Inactivated Influenza Vaccine in Adult Hematopoietic Stem Cell Transplantation Patients. Biol. Blood Marrow Transplant. 2016, 22, 528–535. [Google Scholar] [CrossRef]
  378. Abu-Shakra, M.; Press, J.; Buskila, D.; Sukenik, S. Influenza vaccination of patients with systemic lupus erythematosus: Safety and immunogenecity issues. Autoimmun. Rev. 2007, 6, 543–546. [Google Scholar] [CrossRef]
  379. Abu-Shakra, M.; Zalmanson, S.; Neumann, L.; Flusser, D.; Sukenik, S.; Buskila, D. Influenza virus vaccination of patients with systemic lupus erythematosus: Effects on disease activity. J. Rheumatol. 2000, 27, 1681–1685. [Google Scholar]
  380. Holvast, A.; Huckriede, A.; Wilschut, J.; Horst, G.; De Vries, J.J.; Benne, C.A.; Kallenberg, C.G.; Bijl, M. Safety and efficacy of influenza vaccination in systemic lupus erythematosus patients with quiescent disease. Ann. Rheum. Dis. 2006, 65, 913–918. [Google Scholar] [CrossRef]
  381. Holvast, B.; Huckriede, A.; Kallenberg, C.G.; Bijl, M. Influenza vaccination in systemic lupus erythematosus: Safe and protective? Autoimmun. Rev. 2007, 6, 300–305. [Google Scholar] [CrossRef]
  382. Mercado, U.; Acosta, H.; Avendano, L. Influenza vaccination of patients with systemic lupus erythematosus. Rev. Investig. Clin. 2004, 56, 16–20. [Google Scholar]
  383. Martinez-Baz, I.; Casado, I.; Navascues, A.; Portillo, M.E.; Guevara, M.; Ezpeleta, C.; Castilla, J. Chronic obstructive pulmonary disease and influenza vaccination effect in preventing outpatient and inpatient influenza cases. Sci. Rep. 2022, 12, 4862. [Google Scholar] [CrossRef] [PubMed]
  384. Bao, W.; Li, Y.; Wang, T.; Li, X.; He, J.; Wang, Y.; Wen, F.; Chen, J. Effects of influenza vaccination on clinical outcomes of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 68, 101337. [Google Scholar] [CrossRef] [PubMed]
  385. Remschmidt, C.; Wichmann, O.; Harder, T. Vaccines for the prevention of seasonal influenza in patients with diabetes: Systematic review and meta-analysis. BMC Med. 2015, 13, 53. [Google Scholar] [CrossRef] [PubMed]
  386. Dicembrini, I.; Silverii, G.A.; Clerico, A.; Fornengo, R.; Gabutti, G.; Sordi, V.; Tafuri, S.; Peruzzi, O.; Mannucci, E. Influenza: Diabetes as a risk factor for severe related-outcomes and the effectiveness of vaccination in diabetic population. A meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1099–1110. [Google Scholar] [CrossRef]
  387. Silverii, G.A.; Gabutti, G.; Tafuri, S.; Sarti, F.; Pratesi, A.; Clerico, A.; Fornengo, R.; Greco, C.; Irace, C.; Sordi, V.; et al. Diabetes as a risk factor for pneumococcal disease and severe related outcomes and efficacy/effectiveness of vaccination in diabetic population. Results from meta-analysis of observational studies. Acta Diabetol. 2024, 61, 1029–1039. [Google Scholar] [CrossRef]
  388. Goeijenbier, M.; van Sloten, T.T.; Slobbe, L.; Mathieu, C.; van Genderen, P.; Beyer, W.E.P.; Osterhaus, A. Benefits of flu vaccination for persons with diabetes mellitus: A review. Vaccine 2017, 35, 5095–5101. [Google Scholar] [CrossRef]
  389. Bersanelli, M.; Verzoni, E.; Cortellini, A.; Giusti, R.; Calvetti, L.; Ermacora, P.; Di Napoli, M.; Catino, A.; Guadalupi, V.; Guaitoli, G.; et al. Impact of influenza vaccination on survival of patients with advanced cancer receiving immune checkpoint inhibitors (INVIDIa-2): Final results of the multicentre, prospective, observational study. EClinicalMedicine 2023, 61, 102044. [Google Scholar] [CrossRef]
  390. Bitterman, R.; Eliakim-Raz, N.; Vinograd, I.; Zalmanovici Trestioreanu, A.; Leibovici, L.; Paul, M. Influenza vaccines in immunosuppressed adults with cancer. Cochrane Database Syst. Rev. 2018, 2, CD008983. [Google Scholar] [CrossRef]
  391. Eliakim-Raz, N.; Vinograd, I.; Zalmanovici Trestioreanu, A.; Leibovici, L.; Paul, M. Influenza vaccines in immunosuppressed adults with cancer. Cochrane Database Syst. Rev. 2013, 2013, CD008983. [Google Scholar] [CrossRef]
  392. Lisy, K. Influenza vaccines in immunosuppressed adults with cancer. Clin. J. Oncol. Nurs. 2014, 18, 367–368. [Google Scholar] [CrossRef] [PubMed]
  393. L’Huillier, A.G.; Ferreira, V.H.; Hirzel, C.; Nellimarla, S.; Ku, T.; Natori, Y.; Humar, A.; Kumar, D. T-cell responses following Natural Influenza Infection or Vaccination in Solid Organ Transplant Recipients. Sci. Rep. 2020, 10, 10104. [Google Scholar] [CrossRef] [PubMed]
  394. Manuel, O.; Lopez-Medrano, F.; Keiser, L.; Welte, T.; Carratala, J.; Cordero, E.; Hirsch, H.H. Influenza and other respiratory virus infections in solid organ transplant recipients. Clin. Microbiol. Infect. 2014, 20 (Suppl. S7), 102–108. [Google Scholar] [CrossRef] [PubMed]
  395. Mombelli, M.; Kampouri, E.; Manuel, O. Influenza in solid organ transplant recipients: Epidemiology, management, and outcomes. Expert. Rev. Anti Infect. Ther. 2020, 18, 103–112. [Google Scholar] [CrossRef]
  396. Cordero, E.; Bulnes-Ramos, A.; Aguilar-Guisado, M.; Gonzalez Escribano, F.; Olivas, I.; Torre-Cisneros, J.; Gavalda, J.; Aydillo, T.; Moreno, A.; Montejo, M.; et al. Effect of Influenza Vaccination Inducing Antibody Mediated Rejection in Solid Organ Transplant Recipients. Front. Immunol. 2020, 11, 1917. [Google Scholar] [CrossRef]
  397. Harboe, Z.B.; Modin, D.; Gustafsson, F.; Perch, M.; Gislason, G.; Sorensen, S.S.; Rasmussen, A.; Biering-Sorensen, T.; Nielsen, S.D. Effect of influenza vaccination in solid organ transplant recipients: A nationwide population-based cohort study. Am. J. Transplant. 2022, 22, 2409–2417. [Google Scholar] [CrossRef]
  398. Chu, S.Y.; Singleton, J.A.; McCauley, M.M.; Orenstein, W.A.; Hughes, J.M.; Mawle, A.C.; Modlin, J.F. Influenza vaccine for healthy working adults. JAMA 2001, 285, 291–292. [Google Scholar]
  399. Granwehr, B. Inactivated influenza vaccine prevented influenza in healthy adults. ACP J. Club 2007, 146, 60. [Google Scholar] [CrossRef]
  400. Grotto, I.; Mandel, Y.; Green, M.S.; Varsano, N.; Gdalevich, M.; Ashkenazi, I.; Shemer, J. Influenza vaccine efficacy in young, healthy adults. Clin. Infect. Dis. 1998, 26, 913–917. [Google Scholar] [CrossRef]
  401. Mendelman, P.M.; Cordova, J.; Cho, I. Safety, efficacy and effectiveness of the influenza virus vaccine, trivalent, types A and B, live, cold-adapted (CAIV-T) in healthy children and healthy adults. Vaccine 2001, 19, 2221–2226. [Google Scholar] [CrossRef]
  402. Treanor, J.; Keitel, W.; Belshe, R.; Campbell, J.; Schiff, G.; Zangwill, K.; Wolff, M.; Klimov, A.; Levandowski, R.; Lambert, L. Evaluation of a single dose of half strength inactivated influenza vaccine in healthy adults. Vaccine 2002, 20, 1099–1105. [Google Scholar] [CrossRef]
  403. Abu Aid, O.; Rohana, H.; Azrad, M.; Peretz, A. Evaluation of vaccine perceptions in Israel’s Elderly: A Comparative study of COVID-19 and influenza vaccination attitudes. Vaccine X 2024, 20, 100569. [Google Scholar] [CrossRef] [PubMed]
  404. Alvarez, F.P.; Chevalier, P.; Borms, M.; Bricout, H.; Marques, C.; Soininen, A.; Sainio, T.; Petit, C.; de Courville, C. Cost-effectiveness of influenza vaccination with a high dose quadrivalent vaccine of the elderly population in Belgium, Finland, and Portugal. J. Med. Econ. 2023, 26, 710–719. [Google Scholar] [CrossRef]
  405. Billings, W.Z.; Ge, Y.; Knight, J.H.; Hemme, H.; Hammerton, S.M.; Skarlupka, A.L.; Cao, W.; Shen, Y.; Bahl, J.; Thomas, P.G.; et al. High dose inactivated influenza vaccine inconsistently improves heterologous antibody responses in an elderly human cohort. J. Infect. Dis. 2025, 231, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
  406. Marbaix, S.; Dauby, N.; Mould-Quevedo, J. Cost-effectiveness of the adjuvanted quadrivalent influenza vaccine in the elderly Belgian population. Expert. Rev. Vaccines 2023, 22, 608–619. [Google Scholar] [CrossRef] [PubMed]
  407. Yang, T.; Tang, L.; Li, P.; Li, B.; Ye, L.; Zhou, J. Effectiveness of inactivated influenza vaccine against laboratory-confirmed influenza among Chinese elderly: A test-negative design. BMC Geriatr. 2024, 24, 404. [Google Scholar] [CrossRef]
  408. Huang, L.; Li, G.; Zhang, Y.; Zhao, X.; Wang, K.; Jia, C.; Zhang, W.; Tan, J.; Chen, X.; Li, Q.; et al. The Safety and Immunogenicity of a Quadrivalent Influenza Subunit Vaccine in Healthy Children Aged 6-35 Months: A Randomized, Blinded and Positive-Controlled Phase III Clinical Trial. Vaccines 2025, 13, 467. [Google Scholar] [CrossRef]
  409. Lee, H.E.; Park, S.B.; Kim, H.Y.; Baik, S.H.; Jung, K.; Kim, J.; Park, J.Y. Safety and Influenza Infections in Children Aged 6–35 Months Receiving Cell Culture-Derived Inactivated Quadrivalent Influenza Vaccine During the 2023–2024 Influenza Season in South Korea. Vaccines 2025, 13, 501. [Google Scholar] [CrossRef]
  410. Lee, S.L.; Kwan, M.Y.W.; Murphy, C.; Chan, E.L.Y.; Wong, J.S.C.; Sullivan, S.G.; Peiris, M.; Cowling, B.J. Influenza vaccine effectiveness against influenza-associated hospitalizations in children, Hong Kong, November 2023 to June 2024. Vaccine X 2024, 20, 100570. [Google Scholar] [CrossRef]
  411. Shinjoh, M.; Yaginuma, M.; Yamaguchi, Y.; Tamura, K.; Furuichi, M.; Tsumura, Y.; Itaki, R.; Iqbal, A.; Maeda, N.; Narabayashi, A.; et al. Effectiveness of inactivated influenza vaccine in children during the 2023/24 season: The first season after relaxation of intensive COVID-19 measures. Vaccine 2024, 42, 126241. [Google Scholar] [CrossRef] [PubMed]
  412. Tian, X.; Zhou, Y.; Deng, P.; Xu, N.; Liu, X.; Guo, Y.; Fang, A.; Liu, P.; Yan, Y.; Yang, L.; et al. Effectiveness and safety of a novel intranasal influenza vaccine in Chinese children: A phase IV multi-Center, randomized, double-blind, placebo-controlled clinical trial. Vaccine 2025, 59, 127268. [Google Scholar] [CrossRef]
  413. Wang, S.; Wang, Y.; Chen, D.; Xu, W.; Duan, P.; Ji, W.; Liu, W.; Huang, W.; Wu, B.; Chai, W.; et al. Safety and immunogenicity of full-dose quadrivalent influenza vaccine in children 6-35 months of age in China: A randomized, double-blind, clinical trial. Hum. Vaccin. Immunother. 2024, 20, 2425149. [Google Scholar] [CrossRef]
  414. Christensen, J.; Johansen, N.D.; Modin, D.; Janstrup, K.H.; Nealon, J.; Samson, S.; Loiacono, M.; Harris, R.; Larsen, C.S.; Jensen, A.M.R.; et al. Relative Effectiveness of High-Dose Versus Standard-Dose Quadrivalent Influenza Vaccine in Older Adults With Cardiovascular Disease: A Prespecified Analysis of the DANFLU-1 Randomized Clinical Trial. Circ. Cardiovasc. Qual. Outcomes 2025, 18, e011496. [Google Scholar] [CrossRef]
  415. Cooper, F.; Eisenman, B.; Hennekens, C.H.; Drowos, J. High- or Standard-Dose Influenza Vaccine for Middle-Aged Adults with Cardiovascular Disease: What’s a Doctor to Do. Cardiology 2016, 133, 195–197. [Google Scholar] [CrossRef]
  416. Diaz-Arocutipa, C.; Saucedo-Chinchay, J.; Mamas, M.A.; Vicent, L. Influenza vaccine improves cardiovascular outcomes in patients with coronary artery disease: A systematic review and meta-analysis. Travel. Med. Infect. Dis. 2022, 47, 102311. [Google Scholar] [CrossRef]
  417. Peikert, A.; Claggett, B.L.; Udell, J.A.; Joseph, J.; Hegde, S.M.; Kim, K.; Mao, L.; Wang, T.; Havighurst, T.C.; Farkouh, M.E.; et al. Influenza Vaccine Immune Response in Patients With High-Risk Cardiovascular Disease: A Secondary Analysis of the INVESTED Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 574–581. [Google Scholar] [CrossRef]
  418. Roy, A.; Yadav, S. Influenza vaccine in cardiovascular disease: Current evidence and practice in India. Indian. Heart J. 2024, 76, 365–369. [Google Scholar] [CrossRef]
  419. Vardeny, O. Influenza vaccine in cardiovascular disease: Time to move the needle. Eur. Heart J. 2022, 43, 4389–4391. [Google Scholar] [CrossRef]
  420. Vardeny, O.; Kim, K.; Udell, J.A.; Joseph, J.; Desai, A.S.; Farkouh, M.E.; Hegde, S.M.; Hernandez, A.F.; McGeer, A.; Talbot, H.K.; et al. Effect of High-Dose Trivalent vs Standard-Dose Quadrivalent Influenza Vaccine on Mortality or Cardiopulmonary Hospitalization in Patients With High-risk Cardiovascular Disease: A Randomized Clinical Trial. JAMA 2021, 325, 39–49. [Google Scholar] [CrossRef]
  421. Anderson, G.P.; Irving, L.B.; Jarnicki, A.; Kedzierska, K.; Koutsakos, M.; Kent, S.; Hurt, A.C.; Wheatley, A.K.; Nguyen, T.H.O.; Snape, N.; et al. Prime-boost, double-dose influenza vaccine immunity in COPD: A pilot observational study. ERJ Open Res. 2023, 9, 00641-2021. [Google Scholar] [CrossRef]
  422. Chuaychoo, B.; Kositanont, U.; Rittayamai, N.; Niyomthong, P.; Songserm, T.; Maranetra, K.N.; Rattanasaengloet, K.; Nana, A. The immunogenicity of the intradermal injection of seasonal trivalent influenza vaccine containing influenza A(H1N1)pdm09 in COPD patients soon after a pandemic. Hum. Vaccin. Immunother. 2016, 12, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
  423. de Roux, A.; Marx, A.; Burkhardt, O.; Schweiger, B.; Borkowski, A.; Banzhoff, A.; Pletz, M.W.; Lode, H. Impact of corticosteroids on the immune response to a MF59-adjuvanted influenza vaccine in elderly COPD-patients. Vaccine 2006, 24, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
  424. Snape, N.; Anderson, G.P.; Irving, L.B.; Jarnicki, A.G.; Hurt, A.C.; Collins, T.; Xi, Y.; Upham, J.W. Vaccine strain affects seroconversion after influenza vaccination in COPD patients and healthy older people. NPJ Vaccines 2022, 7, 8. [Google Scholar] [CrossRef] [PubMed]
  425. Chen, Z.; Yang, T. Effectiveness of inactivated influenza vaccine against laboratory-confirmed influenza in elderly Chinese patients with diabetes: A test-negative design case-control study. Hum. Vaccin. Immunother. 2025, 21, 2458814. [Google Scholar] [CrossRef]
  426. Lassen, M.C.H.; Johansen, N.D.; Modin, D.; Nealon, J.; Samson, S.; Dufournet, M.; Loiacono, M.M.; Larsen, C.S.; Jensen, A.M.R.; Landler, N.E.; et al. Effects of high-dose versus standard-dose quadrivalent influenza vaccine among patients with diabetes: A post-hoc analysis of the DANFLU-1 trial. Diabetes Obes. Metab. 2024, 26, 1821–1829. [Google Scholar] [CrossRef]
  427. Vamos, E.P.; Pape, U.J.; Curcin, V.; Harris, M.J.; Valabhji, J.; Majeed, A.; Millett, C. Effectiveness of the influenza vaccine in preventing admission to hospital and death in people with type 2 diabetes. CMAJ 2016, 188, E342–E351. [Google Scholar] [CrossRef]
  428. Chan, R.W.K.; Leung, W.M. Influenza vaccine uptake and associated factors in adult patients with type 2 diabetes in a general outpatient clinic in Hong Kong. Aust. J. Gen. Pract. 2023, 52, 643–649. [Google Scholar] [CrossRef]
  429. Cho, W.J.; Lee, D.K.; Lee, S.Y.; Sohn, S.H.; Park, H.L.; Park, Y.W.; Kim, H.; Nam, J.H. Diet-induced obesity reduces the production of influenza vaccine-induced antibodies via impaired macrophage function. Acta Virol. 2016, 60, 298–306. [Google Scholar] [CrossRef]
  430. Clarke, M.; Mathew, S.M.; Giles, L.C.; Pena, A.S.; Barr, I.G.; Richmond, P.C.; Marshall, H.S. A Prospective Study Investigating the Impact of Obesity on the Immune Response to the Quadrivalent Influenza Vaccine in Children and Adolescents. Vaccines 2022, 10, 699. [Google Scholar] [CrossRef]
  431. Kaposy, C. The influence of the stigma of obesity on H1N1 influenza vaccine sequencing in Canada in 2009. Vaccine 2011, 29, 9607–9610. [Google Scholar] [CrossRef]
  432. Chen, C.C.; Hao, W.R.; Hong, H.J.; Lin, K.J.; Chiu, C.C.; Yang, T.Y.; Fang, Y.A.; Jian, W.; Chen, M.Y.; Hsu, M.H.; et al. Protective Effects of Influenza Vaccine against Colorectal Cancer in Populations with Chronic Kidney Disease: A Nationwide Population-Based Cohort Study. Cancers 2023, 15, 2398. [Google Scholar] [CrossRef] [PubMed]
  433. Hao, W.R.; Yang, T.L.; Lai, Y.H.; Lin, K.J.; Fang, Y.A.; Chen, M.Y.; Hsu, M.H.; Chiu, C.C.; Yang, T.Y.; Chen, C.C.; et al. The Association between Influenza Vaccine and Risk of Chronic Kidney Disease/Dialysis in Patients with Hypertension. Vaccines 2023, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
  434. Heryaman, H.; Juli, C.; Nazir, A.; Syamsunarno, M.; Yahaya, B.H.; Turbawaty, D.K.; Sari, R.M.; Permana, H.; Supriyadi, R.; Atik, N. Immunogenicity, Safety, and Efficacy of Influenza Vaccine in T2DM and T2DM with Chronic Kidney Disease. Vaccines 2024, 12, 227. [Google Scholar] [CrossRef] [PubMed]
  435. Bickel, M.; Wieters, I.; Khaykin, P.; Nisius, G.; Haberl, A.; Stephan, C.; Von Hentig, N.; Herrmann, E.; Doerr, H.W.; Brodt, H.R.; et al. Low rate of seroconversion after vaccination with a split virion, adjuvanted pandemic H1N1 influenza vaccine in HIV-1-infected patients. AIDS 2010, 24, F31–F35. [Google Scholar] [CrossRef]
  436. Cordero, E.; Roca-Oporto, C.; Bulnes-Ramos, A.; Aydillo, T.; Gavalda, J.; Moreno, A.; Torre-Cisneros, J.; Montejo, J.M.; Fortun, J.; Munoz, P.; et al. Two Doses of Inactivated Influenza Vaccine Improve Immune Response in Solid Organ Transplant Recipients: Results of TRANSGRIPE 1-2, a Randomized Controlled Clinical Trial. Clin. Infect. Dis. 2017, 64, 829–838. [Google Scholar] [CrossRef]
  437. Bianchi, F.P.; Losito, F.; Labarile, N.; Shahini, E.; Cozzolongo, R. Prevention of influenza complications in patients with liver disease: A retrospective cohort study. Front. Public Health 2023, 11, 1288126. [Google Scholar] [CrossRef]
  438. Cherif, H.; Hoglund, M.; Pauksens, K. Adjuvanted influenza a (H1N1) 2009 vaccine in patients with hematological diseases: Good safety and immunogenicity even in chemotherapy-treated patients. Eur. J. Haematol. 2013, 90, 413–419. [Google Scholar] [CrossRef]
  439. Whitaker, J.A.; Parikh, S.A.; Shanafelt, T.D.; Kay, N.E.; Kennedy, R.B.; Grill, D.E.; Goergen, K.M.; Call, T.G.; Kendarian, S.S.; Ding, W.; et al. The humoral immune response to high-dose influenza vaccine in persons with monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL). Vaccine 2021, 39, 1122–1130. [Google Scholar] [CrossRef]
  440. Wiesik-Szewczyk, E.; Romanowska, M.; Mielnik, P.; Chwalinska-Sadowska, H.; Brydak, L.B.; Olesinska, M.; Zabek, J. Anti-influenza vaccination in systemic lupus erythematosus patients: An analysis of specific humoral response and vaccination safety. Clin. Rheumatol. 2010, 29, 605–613. [Google Scholar] [CrossRef]
  441. Crowe, S.R.; Merrill, J.T.; Vista, E.S.; Dedeke, A.B.; Thompson, D.M.; Stewart, S.; Guthridge, J.M.; Niewold, T.B.; Franek, B.S.; Air, G.M.; et al. Influenza vaccination responses in human systemic lupus erythematosus: Impact of clinical and demographic features. Arthritis Rheum. 2011, 63, 2396–2406. [Google Scholar] [CrossRef]
  442. Puges, M.; Biscay, P.; Barnetche, T.; Truchetet, M.E.; Richez, C.; Seneschal, J.; Gensous, N.; Lazaro, E.; Duffau, P. Immunogenicity and impact on disease activity of influenza and pneumococcal vaccines in systemic lupus erythematosus: A systematic literature review and meta-analysis. Rheumatology 2016, 55, 1664–1672. [Google Scholar] [CrossRef]
  443. Chang, C.C.; Chang, Y.S.; Chen, W.S.; Chen, Y.H.; Chen, J.H. Effects of annual influenza vaccination on morbidity and mortality in patients with Systemic Lupus Erythematosus: A Nationwide Cohort Study. Sci. Rep. 2016, 6, 37817. [Google Scholar] [CrossRef] [PubMed]
  444. Liao, Z.; Tang, H.; Xu, X.; Liang, Y.; Xiong, Y.; Ni, J. Immunogenicity and Safety of Influenza Vaccination in Systemic Lupus Erythematosus Patients Compared with Healthy Controls: A Meta-Analysis. PLoS ONE 2016, 11, e0147856. [Google Scholar] [CrossRef] [PubMed]
  445. Sim, J.J.L.; Lim, C.C. Influenza Vaccination in Systemic Lupus Erythematosus: Efficacy, Effectiveness, Safety, Utilization, and Barriers. Am. J. Med. 2022, 135, 286–296.e9. [Google Scholar] [CrossRef]
  446. Bayle, A.; Khettab, M.; Lucibello, F.; Chamseddine, A.N.; Goldschmidt, V.; Perret, A.; Ropert, S.; Scotte, F.; Loulergue, P.; Mir, O. Immunogenicity and safety of influenza vaccination in cancer patients receiving checkpoint inhibitors targeting PD-1 or PD-L1. Ann. Oncol. 2020, 31, 959–961. [Google Scholar] [CrossRef] [PubMed]
  447. Keam, B.; Kang, C.K.; Jun, K.I.; Moon, S.M.; Suh, K.J.; Lee, D.W.; Ock, C.Y.; Kim, M.; Choi, Y.; Lim, Y.; et al. Immunogenicity of Influenza Vaccination in Patients with Cancer Receiving Immune Checkpoint Inhibitors. Clin. Infect. Dis. 2020, 71, 422–425. [Google Scholar] [CrossRef]
  448. Waqar, S.N.; Boehmer, L.; Morgensztern, D.; Wang-Gillam, A.; Sorscher, S.; Lawrence, S.; Gao, F.; Guebert, K.; Williams, K.; Govindan, R. Immunogenicity of Influenza Vaccination in Patients With Cancer. Am. J. Clin. Oncol. 2018, 41, 248–253. [Google Scholar] [CrossRef]
Figure 1. A schematic illustrating chronic inflammation as a central hub bridging metabolic, inflammatory, and immunological disorders. Chronic inflammation acts as a central mediator, bidirectionally interacting with diseases (obesity, chronic respiratory diseases, cardiovascular disease, hypertension, chronic kidney disease, chronic hepatitis, diabetes, osteoporosis, and tumors) and triggering immunological/molecular alterations (T-cell exhaustion, senescence, epigenetic changes, Th1/Th2 imbalance, telomere attrition, and DNA damage). Key inflammatory factors are categorized into Th1–associated proinflammatory cytokines (IFN–γ, TNF–α, IL–2, IL–12, IL–18, and IL–27) and Th2–regulatory subsets (IL–4, IL–5, IL–6, IL–9, IL–10, IL–13, CCL17, and CCL22), which orchestrate pathological interactions. Note: Arrows in the figure are presented in one–way/two–way forms to indicate the strength of causal relationships or feedback regulation in basic research and clinical findings, and the node size reflects its biological status.
Figure 1. A schematic illustrating chronic inflammation as a central hub bridging metabolic, inflammatory, and immunological disorders. Chronic inflammation acts as a central mediator, bidirectionally interacting with diseases (obesity, chronic respiratory diseases, cardiovascular disease, hypertension, chronic kidney disease, chronic hepatitis, diabetes, osteoporosis, and tumors) and triggering immunological/molecular alterations (T-cell exhaustion, senescence, epigenetic changes, Th1/Th2 imbalance, telomere attrition, and DNA damage). Key inflammatory factors are categorized into Th1–associated proinflammatory cytokines (IFN–γ, TNF–α, IL–2, IL–12, IL–18, and IL–27) and Th2–regulatory subsets (IL–4, IL–5, IL–6, IL–9, IL–10, IL–13, CCL17, and CCL22), which orchestrate pathological interactions. Note: Arrows in the figure are presented in one–way/two–way forms to indicate the strength of causal relationships or feedback regulation in basic research and clinical findings, and the node size reflects its biological status.
Vaccines 13 00936 g001
Figure 2. Schematic diagram of influenza virus inhibiting host cell immune responses. The influenza virus contains key proteins (PB2, PB1, PA, NP, HA, NA, M2, PB1-F2, NS1) and viral RNA; after entering host cells, viral RNA is encapsulated in endosomes and recognized by pattern recognition receptors (PRRs, including TLR3/7/8 and RIG-I), where TLRs activate NF-κB/IRF pathways via MyD88/TRIF to promote cytokines and interferons, while RIG-I interacts with MAVS, activates TBK1/IKKε, phosphorylates IRF3/IRF7, and induces type I IFN. Viral proteins such as PB1-F2 interfere with protein translation via p11α/eIF2α and modulate immune signaling via MAVS; host defenses include PKR (which inhibits protein synthesis and regulates NF-κB), OAS1 (which degrades RNA), and the NLRP3 inflammasome (which activates Caspase-1 and promotes IL-1β). The virus also induces apoptosis (regulated by Caspases) and autophagy (via autophagosome formation), and these processes may affect viral clearance or host resource utilization.
Figure 2. Schematic diagram of influenza virus inhibiting host cell immune responses. The influenza virus contains key proteins (PB2, PB1, PA, NP, HA, NA, M2, PB1-F2, NS1) and viral RNA; after entering host cells, viral RNA is encapsulated in endosomes and recognized by pattern recognition receptors (PRRs, including TLR3/7/8 and RIG-I), where TLRs activate NF-κB/IRF pathways via MyD88/TRIF to promote cytokines and interferons, while RIG-I interacts with MAVS, activates TBK1/IKKε, phosphorylates IRF3/IRF7, and induces type I IFN. Viral proteins such as PB1-F2 interfere with protein translation via p11α/eIF2α and modulate immune signaling via MAVS; host defenses include PKR (which inhibits protein synthesis and regulates NF-κB), OAS1 (which degrades RNA), and the NLRP3 inflammasome (which activates Caspase-1 and promotes IL-1β). The virus also induces apoptosis (regulated by Caspases) and autophagy (via autophagosome formation), and these processes may affect viral clearance or host resource utilization.
Vaccines 13 00936 g002
Table 1. Immunological dysregulation and associated pathological mechanisms in chronic diseases.
Table 1. Immunological dysregulation and associated pathological mechanisms in chronic diseases.
Abnormality
Type
Key FeaturesAssociated DiseasesMolecular MechanismsReference
Cellular Immunity DysfunctionTh17/Treg imbalance;
NK cell dysfunction;
Reduced CD8+ T-cell cytotoxicity
COPD; Rheumatoid arthritis; SLETh17 cells secrete proinflammatory cytokines (IL-17/IL-22);
Treg dysfunction leads to loss of immune tolerance;
CD8+ T cells exhibit mitochondrial dysfunction
[59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75]
Humoral Immunity DysfunctionDecreased IgG/IgA/IgM levels;
Impaired antibody response
Chronic infections; Autoimmune diseasesAbnormal B cell activation;
Reduced antibody production;
Impaired pathogen clearance
[76,77,78,79,80,81]
Cytokine DysregulationPersistent overexpression of IL-6; IL-1β; and TNF-α;
Proinflammatory/anti-inflammatory imbalance
Cardiovascular diseases; Diabetes; SLENF-κB pathway activation → excessive cytokine release → tissue damage and chronic inflammation[82,83,84,85,86,87,88,89,90]
Autoimmune ReactionsElevated autoantibodies (e.g., anti-nuclear antibodies);
Activation of autoreactive T/B cells
Rheumatoid arthritis; Type 1 diabetesBreakdown of immune tolerance;
Attack on self-antigens
[91,92,93,94,95,96,97,98,99]
Signaling Pathway AbnormalitiesOveractivation of TLR/NF-κB pathways;
Dysregulation of JAK-STAT pathways
Autoimmune diseases; Chronic inflammationTLR recognizes pathogens → NF-κB → proinflammatory cytokine release- JAK-STAT mediates abnormal cytokine signaling[100,101,102,103,104,105,106,107,108,109,110,111,112]
Epigenetic MechanismsAbnormal DNA methylation/histone modification;
Dysregulated immune-related gene expression
Chronic fatigue syndrome; CancerHDAC activity changes; gene silencing or activation[113,114,115,116,117,118,119]
Microenvironmental InfluencesDisrupted cytokine/chemokine microenvironment;
Tissue fibrosis or remodeling
COPD; Pulmonary fibrosisInflammatory mediators (e.g., TGF-β) promote abnormal tissue repair, organ dysfunction[120,121,122,123,124,125,126]
Note: The arrows in this table denote a sequential causal relationship within the biological process.
Table 2. Pathological mechanisms and clinical consequences of influenza infection in patients with chronic disease.
Table 2. Pathological mechanisms and clinical consequences of influenza infection in patients with chronic disease.
Mechanism CategoryPathological MechanismAssociated
Chronic Diseases
Clinical Symptoms
and Hazards
Reference
Inflammatory Response and Cytokine StormInfluenza virus activates the immune system, releasing proinflammatory cytokines (IL-6, TNF-α) that trigger systemic inflammatory response syndrome (SIRS).Cardiovascular diseases; COPD/asthma; autoimmune diseasesCardiovascular: Plaque rupture and myocardial fibrosis;
COPD/asthma: Airway spasm and increased mucus production;
Autoimmune diseases: Activation of autoimmune responses.
[168,169,209,239,240]
Immune System Dysfunction and Secondary InfectionsViral suppression of interferon signaling leads to T-cell exhaustion and secondary bacterial infections (e.g., Streptococcus pneumoniae).Diabetes; chronic kidney/liver diseasesDiabetes: Increased risk of severe pneumonia;
Kidney/liver diseases: Increased sepsis risk and accelerated organ failure.
[241,242]
Metabolic and Homeostatic DysregulationInfection activates the HPA axis, leading to insulin resistance and increased catabolism.Diabetes; heart failureDiabetes: Stress-induced hyperglycemia and diabetic ketoacidosis;
Heart failure: Sympathetic activation → increased cardiac workload.
[243,244,245,246,247,248,249,250,251]
Organ Compensatory InsufficiencyPatients with chronic disease have reduced organ reserve capacity, with infection-induced metabolic demands exceeding compensatory ability.Chronic kidney disease; chronic liver diseaseKidney disease: Dehydration/sepsis and acute kidney injury (AKI);
Liver disease: Hepatocyte necrosis and hepatic encephalopathy/coagulopathy
[252,253,254,255,256]
Coagulation AbnormalitiesThe virus activates endothelial cells and platelets, inducing a hypercoagulable state (tissue factor release).Cardiovascular diseases; malignant tumorsCardiovascular: Increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE);
Tumors: Superimposed thrombotic risk
[257,258,259,260]
Drug InteractionsImmunosuppressants (e.g., glucocorticoids) inhibit antiviral immunity; β-blockers mask infection symptoms.Patients using immunosuppressants/
cardiovascular drugs
Prolonged viral replication time;
Delayed infection diagnosis.
[261,262,263]
Table 3. Indicators for patients with chronic disease during influenza infection.
Table 3. Indicators for patients with chronic disease during influenza infection.
Health IndicatorDisease CategoryStatistical ValueRisk Comparison (vs. Healthy Population)Reference
Hospitalization RateChronic Respiratory Diseases3–5× higher riskAccounts for 21.4% of total hospitalizations[299]
Cardiovascular Diseases2.8x higher rateContributes to 18.6% of hospitalization causes[23,300]
Severity RateDiabetes40% higher
severity conversion rate
Accounts for 63% of influenza severe cases[301,302]
Elderly Chronic Patients (≥65 years)12.7% severity rateContributes to 71% of ICU cases[296,303]
Mortality RateOverall Chronic Patients82% of influenza deathsFebruary 2025 mortality rate: 0.01%[304]
Cardiovascular and Cerebrovascular Diseases278.6 per 100,0001.8x higher death risk[305,306]
Cancer Patients320 per 100,0003.2x higher mortality[307,308]
Special Risk FactorsHypertension (Awareness Rate: 45.72%)Significantly increases complication risk/[309,310,311,312,313]
Chronic Patients with Smoking History55% higher severity rate/[314,315,316,317,318,319]
Table 4. Vaccination efficacy and clinical benefits across high-risk populations *.
Table 4. Vaccination efficacy and clinical benefits across high-risk populations *.
Population GroupHospitalization Rate Reduction
(vs. Unvaccinated in the Same Group)
Mortality Rate Reduction (vs. Unvaccinated in the Same Group)Vaccine TypesMechanism of Vaccine ProtectionReferences
Elderly (≥65 years)43–52%38–56%High-dose/adjuvanted vaccinesEnhanced immunogenicity in immunosenescent populations[338]
Children
(6 months-5 years)
40–70%65–75%Standard pediatric formulationsImmature immune system priming[339]
Patients with Chronic Disease Cardiovascular Disease30–56%18–34%Standard formulationsReduction in cardiovascular stress during infection[340,341,342,343]
COPD Patients32–52%50–70%Standard formulationsAlleviation of respiratory impairment during infection[344,345,346,347,348,349,350,351]
Diabetes (Type 1/2)23–58%16–46%Standard formulationsGlycemic stabilization during infection[352,353,354,355]
Obesity20–40%10–25%Standard formulationsMitigation of metabolic stress during infection[205,356,357,358]
Chronic Kidney Disease11–30%15–30%Standard formulationsMitigation of renal burden and dialysis dependence[359,360,361,362]
HIV/AIDS20–40%10–25%High-dose vaccinesImmune reconstitution effects[363,364,365,366,367]
Post-Organ Transplant20–40%10–40%Standard formulationsImmunosuppression modulation[368,369,370,371]
Chronic Liver Disease27–50%10–20%Standard formulationsHepatic protective effects[372,373,374,375]
Hematologic Diseases20–40%10–25%Standard formulationsReduction in infection-induced disease exacerbations[376,377]
Systemic Lupus Erythematosus18–52%40–59%Standard formulationsAutoimmune modulation effects[378,379,380,381,382]
* All data represent comparisons between vaccinated and unvaccinated patients within the same high-risk/chronic disease group.
Table 5. Influenza vaccine seroconversion rates across different populations.
Table 5. Influenza vaccine seroconversion rates across different populations.
Population GroupH1N1 Seroconversion RateH3N2 Seroconversion RateB-Type Influenza Seroconversion RateVaccine TypeReferences
Healthy Adults40–60%30–50%35–55%Standard inactivated vaccine[398,399,400,401,402]
Elderly (≥65 years)40–50%30–40%25–35%High-dose/adjuvanted vaccine[403,404,405,406,407]
Children (6 months-5 years)40–70%65–75%50–70%Pediatric formulation[408,409,410,411,412,413]
Patients with Chronic Disease Cardiovascular Disease30–50%20–40%25–45%Standard vaccine[414,415,416,417,418,419,420]
COPD35–55%25–45%30–50%Standard vaccine[345,421,422,423,424]
Diabetes (Type 1/2)24–58%18–42%20–40%High-dose vaccine[354,425,426,427,428]
Obesity30–50%20–40%25–45%Standard vaccine[356,429,430,431]
Chronic Kidney Disease50–60%40–50%30–40%Standard vaccine[359,361,432,433,434]
HIV/AIDS40–60%30–50%30–50%High-dose vaccine[435]
Post-Organ Transplant40–60%30–50%20–40%Standard vaccine[436]
Chronic Liver Disease35–55%25–45%30–50%Standard vaccine[372,373,437]
Hematologic Diseases30–50%20–40%25–45%Standard vaccine[438,439]
Systemic Lupus Erythematosus35–55%25–45%30–50%Standard vaccine[382,440,441,442,443,444,445]
Malignant Tumors30–50%20–40%10–30%Standard/high-dose vaccine[446,447,448]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Lian, R.; Zhang, H.; An, Y.; Chen, Z. Chronic Diseases and Influenza Vaccines. Vaccines 2025, 13, 936. https://doi.org/10.3390/vaccines13090936

AMA Style

Lian R, Zhang H, An Y, Chen Z. Chronic Diseases and Influenza Vaccines. Vaccines. 2025; 13(9):936. https://doi.org/10.3390/vaccines13090936

Chicago/Turabian Style

Lian, Rui, Hongbo Zhang, Youcai An, and Ze Chen. 2025. "Chronic Diseases and Influenza Vaccines" Vaccines 13, no. 9: 936. https://doi.org/10.3390/vaccines13090936

APA Style

Lian, R., Zhang, H., An, Y., & Chen, Z. (2025). Chronic Diseases and Influenza Vaccines. Vaccines, 13(9), 936. https://doi.org/10.3390/vaccines13090936

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop