Vaccinations for Elite Athletes
Abstract
1. Introduction
2. Vaccinations for Athletes Not Officially Recommended for Young Healthy Adults
2.1. RSV Vaccination
2.2. COVID-19 Vaccination
2.3. Pneumococcal Vaccination
2.4. Herpes Zoster Vaccination
3. Vaccinations for Athletes Recommended for All Young Adults
3.1. Influenza Vaccination
3.2. Pertussis Vaccination
3.3. Measles Vaccination
4. Vaccinations for Athletes Needed Locally
4.1. Meningococcal Vaccination
4.2. Tick-Borne Encephalitis Vaccination
4.3. Chikungunya Virus Vaccination
5. Vaccine Hesitance of Elite Athletes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACIP | Advisory Committee on Immunization Practices |
ARI | Acute respiratory illness |
CDC | Centers for Disease Control and Prevention |
CHIKV | Chikungunya virus |
COVID-19 | Coronavirus disease 2019 |
FDA | Food and Drug Administration |
PCR | Polymerase chain reaction |
PCV | Pneumococcal conjugate vaccine |
RSV | Respiratory syncytial virus |
TBE | Tick-borne encephalitis |
References
- Gärtner, B.C.; Meyer, T. Vaccination in elite athletes. Sports Med. 2014, 44, 1361–1376. [Google Scholar] [CrossRef] [PubMed]
- Derman, W.; Badenhorst, M.; Eken, M.M.; Ezeiza-Gomez, J.; Fitzpatrick, J.; Gleeson, M.; Kunorozva, L.; Mjosund, K.; Mountjoy, M.; Sewry, N.; et al. Incidence of acute respiratory illnesses in athletes: A systematic review and meta-analysis by a subgroup of the IOC consensus on “acute respiratory illness in the athlete”. Br. J. Sports Med. 2022, 56, 630–638. [Google Scholar] [CrossRef]
- Grönroos, W.; Uhari, M.; Ruuskanen, O. Occurrence of acute respiratory illnesses in athletes: A systematic review and meta-analysis. Exerc. Immunol. Rev. 2025, in press. [Google Scholar]
- Kurowski, M.; Seys, S.; Bonini, M.; del Giacco, S.; Delgado, L.; Diamant, Z.; Kowalski, M.L.; Moreira, A.; Rukhadze, M.; Couto, M. Physical exercise, immune response, and susceptibility to infections-current knowledge and growing research areas. Allergy 2022, 77, 2653–2664. [Google Scholar] [CrossRef] [PubMed]
- Klompas, M.; Milton, D.K.; Rhee, C.; Baker, M.A.; Leekha, S. Current insights into respiratory virus transmission and potential implications for infection control programs. Ann. Intern. Med. 2021, 174, 1710–1718. [Google Scholar] [CrossRef]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.J.; Landawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, eabd9149. [Google Scholar] [CrossRef]
- Valtonen, M.; Grönroos, W.; Luoto, R.; Waris, M.; Uhari, M.; Heinonen, O.J.; Ruuskanen, O. Increased risk of respiratory viral infections in elite athletes: A controlled study. PLoS ONE 2021, 16, e0250907. [Google Scholar] [CrossRef]
- Luoto, R.; Laatikainen-Raussi, V.; Mjösund, K.E.; Valtonen, M.; Uhari, M.; Ihalainen, J.K.; Vuorinen, T.; Hakanen, A.; Waris, M.; Heinonen, O.J.; et al. Viral acute respiratory illnesses in elite athletes: A 12-month controlled follow-up study. PLoS ONE 2025, 20, e0322283. [Google Scholar] [CrossRef]
- Papagiannis, D.; Rachiotis, G.; Xanthopoulos, A.; Simou, A.; Zilidis, C.; Triposkiadis, F. Vaccination practices and influenza in professional football players in Greece. Occup. Med. 2020, 70, 200–202. [Google Scholar] [CrossRef]
- Turner, S.E.G.; Hull, J.H.; Jackson, A.; Loosemore, M.; Ranson, C.; Kelleher, P.; Shah, A. Screening identifies suboptimal vaccination protection in illness-susceptible elite athletes. Clin. J. Sport Med. 2021, 31, e470–e472. [Google Scholar] [CrossRef]
- Marinos, G.; Lamprinos, D.; Georgakopoulos, P.; Kavoukidis, N.; Oikonomou, E.; Zoumpoulis, G.; Siasos, G.; Schizas, D.; Nikolopoulos, A.; Botonis, P.G.; et al. Evaluation of the perceptions, attitudes and practices among Greek non-professional athletes visiting a public hospital during March 2022, towards COVID-19 vaccination and its consequences on sports training and sports activity. Vaccines 2022, 10, 1821. [Google Scholar] [CrossRef] [PubMed]
- Ricco, M.; Peruzzi, S. Tetanus vaccination status and vaccine hesitancy in amateur basketball players (Italy, 2020). Vaccines 2022, 10, 131. [Google Scholar] [CrossRef]
- Shahi, V.; Zhang, C.; Figler, R. Prevalence of immunity to hepatitis B in NCAA athletes. J. Sports Med. Phys. Fit. 2024, 65, 448–451. [Google Scholar] [CrossRef]
- Komici, K.; Tafuri, S.; Noviello, C.; D’Amico, F.; Persichini, L.; Guerra, G. Vaccination coverage among adolescent athletes: Patterns, gaps, and implications for sports medicine. Hum. Vaccines Immunother. 2025, 21, 2527448. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. Recommended Adult Immunisation Schedule for Ages 19 Years or Older; Center for Disease Control and Prevention: Atlanta, GA, USA, 2024. Available online: https://www.cdc.gov/vaccines/hcp/imz-schedules/adult-age.html (accessed on 28 December 2023).
- Branche, A.R. Real-world effectiveness studies of the benefit of RSV vaccines. Lancet 2024, 404, 1498–1500. [Google Scholar] [CrossRef]
- Ison, M.G.; Papi, A.; Athan, E.; Feldman, R.G.; Langley, J.M.; Lee, D.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; et al. Efficacy and safety of respiratory syncytial virus (RSV) prefusion F protein vaccine (RSVPreF3 OA) in older adults over 2 RSV seasons. Clin. Infect. Dis. 2024, 78, 1732–1744. [Google Scholar] [CrossRef]
- Falsey, A.; Hosman, T.; Bastian, A.R.; Vandenberghe, S.; Chan, E.K.H.; Douoguih, M.; Heijnen, E.; Comeaux, C.A.; Callendret, B.; CYPRESS investigators. Long-term efficacy and immunogenicity of Ad26.RSV.preF-RSV preF protein vaccine (CYPRESS): A randomised, double-blind, placebo-controlled, phase 2b study. Lancet Infect. Dis. 2024, 24, 1015–1024. [Google Scholar] [CrossRef]
- Curran, D.; Matthews, S.; Cabrera, E.S.; Perez, S.N.; Breva, L.P.; Rämet, M.; Helman, L.; Park, D.W.; Schwarz, T.F.; Melendez, I.M.G.; et al. The respiratory syncytial virus prefusion F protein vaccine attenuates the severity of respiratory syncytial virus-associated disease in breakthrough infections in adults ≥60 years of age. Influenza Other Respir. Viruses 2024, 18, e13236. [Google Scholar] [CrossRef]
- Terstappen, J.; Hak, S.F.; Bhan, A.; Bogaerts, D.; Bont, L.J.; Buchholz, U.J.; Clark, A.D.; Cohen, C.; Dagan, R.; Feikin, D.R.; et al. The respiratory syncytial virus vaccine and monoclonal antibody landscape: The road to global access. Lancet Infect. Dis. 2024, 24, e747–e761. [Google Scholar] [CrossRef] [PubMed]
- Langedijk, A.; Bont, L.J. Respiratory syncytial virus infection and novel interventions. Nat. Rev. 2023, 21, 734–749. [Google Scholar] [CrossRef] [PubMed]
- Valtonen, M.; Waris, M.; Vuorinen, T.; Eerola, E.; Hakanen, A.J.; Mjosund, K.; Grönroos, W.; Heinonen, O.J.; Ruuskanen, O. Common cold in Team Finland during 2018 Winter Olympic Games (PyeongChang): Epidemiology, diagnosis including molecular point-of-care testing (POCT) and treatment. Br. J. Sports Med. 2019, 53, 1093–1098. [Google Scholar] [CrossRef]
- Park, W.; Yoo, S.; Lee, S.; Chung, J.; Jang, K.; Moon, J. Respiratory syncytial virus outbreak in the basic military training camp of the Republic of Korea air force. J. Prev. Med. Public Health 2015, 48, 10–17. [Google Scholar] [CrossRef]
- Heikkinen, T.; Valkonen, H.; Waris, M.; Ruuskanen, O. Transmission of respiratory syncytial virus infection within families. Open Forum Infect. Dis. 2014, 2, ofu118. [Google Scholar] [CrossRef]
- Cox, S.N.; Roychoudhury, P.; Frivold, C.; Acker, Z.; Babu, T.M.; Boisvert, C.L.; Carone, M.; Ehmen, B.; Englund, J.A.; Feldstein, L.R.; et al. Household transmission and genomic diversity of respiratory syncytial virus (RSV) in the United States, 2022–2023. Clin. Infect. Dis. 2025, ciaf048. [Google Scholar] [CrossRef]
- Wu, N.; Joyal-Desmarais, K.; Ribeiro, P.A.B.; Vieira, A.M.; Stojanovic, J.; Sanuade, C.; Yip, D.; Bacon, S.I. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: Findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. Lancet Respir. Med. 2023, 11, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakopoulos, L.; Moulia, D.L.; Godfrey, M.; Link-Gelles, R.; Roper, L.; Havers, F.P.; Taylor, C.A.; Stokley, S.; Talbot, H.K.; Schechter, R.; et al. Use of COVID-19 vaccines from persons aged ≥6 months: Recommendations of the Advisory Committee on Immunization Practices—United States, 2024–2025. MMWR. Morb. Mortal. Wkly. Rep. 2024, 73, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Makary, M.A. An evidence-based approach to COVID-19 vaccination. N. Engl. J. Med. 2025, 392, 2484–2486. [Google Scholar] [CrossRef]
- Townsend, J.P.; Hassler, H.B.; Dornburg, A. Optimal annual COVID-19 vaccine boosting dates following previous booster vaccination or breakthrough infection. Clin. Infect. Dis. 2025, 80, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Halmans, L.; Venhorst, A.; Klemis, V.; Schmidt, T.; Greiss, F.; Sester, U.; Gärtner, F.; Sester, M.; Meyer, T. Immune response to COVID-19 Vaccination in elite athletes. Exerc. Immunol. Rev. 2024, 30, 63–70. [Google Scholar]
- Hull, J.H.; Wootten, M.; Randon, C. Tolerability and impact of SARS-CoV-2 vaccination in elite athletes. Lancet Respir. Med. 2022, 10, e5–e6. [Google Scholar] [CrossRef]
- Hviid, A.; Nieminen, T.A.; Pihlström, N.; Gunnes, N.; Dahl, J.; Karlstadt, O.; Lovdal Gulseth, H.; Sundström, A.; Husby, A.; Vislov Hansen, J.; et al. Booster vaccination with SARS-CoV-2 mRNA vaccines and myocarditis in adolescents and young adults: A Nordic cohort study. Eur. Heart J. 2024, 45, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Mahneva, O.; Fakhoury, T.R.; Hanspal, S.S.; Velazquez, J.O.G.; Patel, N.; Henzlova, M.J. Systematic review of COVID-19 and COVID-19 mRNA vaccine myocarditis in athletes: Incidence, diagnosis, prognosis, and return-to-play principles. Clin. J. Sport Med. 2025, 35, 191–205. [Google Scholar] [CrossRef]
- Vu, S.L.; Bertand, M.; Semenzato, L.; Jabgi, M.; Botton, J.; Drouin, J.; Weill, A.; Dray-Spira, R.; Zureik, M. Influence of mRNA COVID-19 vaccine dosing interval on the risk of myocarditis. Nat. Commun. 2024, 15, 7745. [Google Scholar] [CrossRef]
- Semenzato, L.; Vu, S.L.; Botton, J.; Bertrand, M.; Jabagi, M.; Drouin, J.; Cuenot, F.; Zores, F.; Dray-Spira, R.; Weill, A.; et al. Long-term prognosis of patients with myocarditis attributed to COVID-10 mRNA vaccination, SARS-CoV-2 infection, and conventional etiologies. JAMA 2024, 332, 1367–1377. [Google Scholar] [CrossRef]
- Machida, M.; Dai, K.; Nakamura, I.; Inoue, S. Causes of COVID-19 outbreaks during sports and exercise: A systematic review. Sports Med. 2025, 55, 713–727. [Google Scholar] [CrossRef]
- Lemes, I.R.; Smaira, F.I.; Ribeiro, W.J.D.; Favero, N.K.; Matos, L.D.N.J.; de Sa RPinto, A.; Dolan, E.; Gualano, B.; Coalition SPORT-COVID-19. Acute and post-acute COVID-19 presentations in athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2022, 56, 941–947. [Google Scholar] [CrossRef]
- Hull, J.H.; Williams, Z.; Wootten, M.; Ranson, C.; Heron, N. Recovery from COVID-19 in athletes and impact on sporting participation. J. Sci. Med. Sport 2023, 26, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Monosilio, S.; Prosperi, S.; Squeo, M.R.; Spataro, S.; Spataro, A.; Maestrini, V. Short and long-term cardiovascular sequelae after SARS-CoV-2 infection: A narrative review focusing on athletes. Viruses 2023, 15, 493. [Google Scholar] [CrossRef] [PubMed]
- Tsampasian, V.; Androulakis, E.; Catumbela, R.; Gati, S.; Papadakis, M.; Vassiliou, V.S. Prevalence of abnormal cardiovascular magnetic resonance findings in athletes recovered from COVID-19 infection: A systematic review and meta-analysis. J. Clin. Med. 2024, 13, 3290. [Google Scholar] [CrossRef]
- Ribeiro, J.; Caldeira, D.; Dores, H. Long-term manifestations of COVID-19 in athletes: A narrative review. Physician Sports Med. 2024, 52, 452–459. [Google Scholar] [CrossRef]
- Kobayashi, M.; Leidner, A.J.; Gierke, R.; Farrar, J.L.; Morgan, R.L.; Campos-Outcalt, D.; Schecter, R.; Poehling, K.A.; Long, S.S.; Loehr, J.; et al. Use of 21-valent pneumococcal conjugate vaccine among U.S. adults: Recommendations of the Advisory Committee on Immunization Practices-United States, 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.T.; Paulo, A.C.; Froes, F.; de Lencastre, H.; Sa-Leao, R. Dynamics of pneumococcal carriage in adults: A new look at an old paradigm. J. Infect. Dis. 2021, 223, 1590–1600. [Google Scholar] [CrossRef]
- Mitsi, E.; Nikolaou, E.; Goncalves, A.; Blizard, A.; Hill, H.; Farrar, M.; Hyder-Wright, A.; Akeju, O.; Hamilton, J.; Howard, A.; et al. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024, 32, 1608–1620. [Google Scholar] [CrossRef]
- Besterman, S.; Bogaert, D.; Bont, L.; Mejioas, A.; Ramilo, O.; Weinberger, D.M.; Dagan, R. Interactions between respiratory syncytial virus and Streptococcus pneumoniae in the pathogenesis of childhood respiratory infections: A systematic review. Lancet Respir. Med. 2024, 12, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.M.; Zhu, Y.; Griffin, M.R.; Edwards, K.M.; Williams, J.V.; Gil, A.I.; Vidal, J.E.; Klugman, K.P.; Lanata, C.F.; Grijalva, C.G. Nasopharyngeal pneumococcal density during asymptomatic respiratory virus infection and risk for subsequent acute respiratory illness. Emerg. Infect. Dis. 2019, 25, 2040–2047. [Google Scholar] [CrossRef]
- Sepulveda-Pachon, I.T.; Dunne, E.M.; Hanquet, G.; Baay, M.; Menon, S.; Jodar, L.; Gessner, B.D.; Theilacker, C. Effect of pneumococcal conjugate vaccines on viral respiratory infections: A systematic review. J. Infect. Dis. 2024, 230, e657–e667. [Google Scholar] [CrossRef]
- Madhi, S.A.; Klugman, K.P. The Vaccine Trialist Group. A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat. Med. 2004, 10, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Lewnard, J.A.; Bruxvoort, K.J.; Hong, V.X.; Grant, L.R.; Jodar, L.; Cane, A.; Gessner, B.D.; Tartof, S. Effectiveness of pneumococcal conjugate Vaccination against virus-associated lower respiratory tract infection among adults: A case-control study. J. Infect. Dis. 2023, 227, 498–511. [Google Scholar] [CrossRef]
- Lewnard, J.A.; Hong, V.; Grant, L.R.; Ackerson, B.K.; Bruxvoort, K.J.; Pomichowski, M.; Arguedas, A.; Cane, A.; Jodar, L.; Gessner, B.D.; et al. Association of pneumococcal conjugate Vaccination with severe acute respiratory syndrome coronavirus 2 infection among older adult recipients of coronavirus disease 2019 vaccines: A longitudinal cohort study. J. Infect. Dis. 2024, 230, e1082–e1091. [Google Scholar] [CrossRef]
- Marra, F.; Yip, M.; Cragg, J.J.; Vadlamudi, N.K. Systematic review and meta-analysis of recombinant herpes zoster vaccine in immunocompromised populations. PLoS ONE 2024, 19, e313889. [Google Scholar] [CrossRef]
- Baskerville, R.; Castell, L.; Bermon, S. Sports and immunity, from the recreational to the elite athlete. Infect. Dis. Now 2024, 54, 104893. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Neto, J.C.; Lira, F.S.; Little, J.P.; Landells, G.; Islam, H.; Chazaud, B.; Pyne, D.B.; Teixeira, A.M.; Batatinha, H.; Antunes, B.M.; et al. Immunometabolism-fit: How exercise and training can modify T cell and macrophage metabolism in health and disease. Exerc. Immunol. Rev. 2022, 28, 28–46. [Google Scholar]
- Cohen, J.I. Herpes zoster. N. Engl. J. Med. 2013, 369, 255–263. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Hui, D.S.; Zambon, M.; Wentworth, D.E.; Monto, A.S. Influenza. Lancet 2022, 400, 693–706. [Google Scholar] [CrossRef]
- Clark, T.W.; Trgoning, J.S.; Lister, H.; Poletti, T.; Amin, F.; Nguyen-Van-Tam, J.S. Recent advances in the influence virus vaccine landscape: A comprehensive overview of technologies and trials. Clin. Microbiol. Rev. 2024, 37, e0002524. [Google Scholar] [CrossRef]
- White, E.B.; Grant, L.; Mak, J.; Olsho, L.; Edwards, L.J.; Naleway, A.; Burgess, J.L.; Ellingson, K.D.; Tyner, H.; Gaglani, M.; et al. Influenza vaccine effectiveness against illness and asymptomatic infection in 2022–2023: A prospective cohort study. Clin. Infect. Dis. 2025, 80, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Regan, A.K.; Arriola, C.S.; Couto, P.; Loayza, S.; de Almeida, F.N.; Antman, J.; Araya, S.; Vigueras, M.A.A.; Paredes, S.C.B.; Brstilo, I.F.; et al. Severity of influenza illness by seasonal influenza vaccination status among hospitalised patients in four South American countries, 2013–19: A surveillance-based cohort study. Lancet Infect. Dis. 2023, 23, 222–232. [Google Scholar] [CrossRef]
- Bohn-Goldbaum, E.; Owen, K.B.; Lee, V.Y.; Booy, R.; Edwards, M. Physical activity and acute exercise benefit influenza vaccination response: A systematic review with individual data meta-analysis. PLoS ONE 2022, 17, e0268625. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef] [PubMed]
- Fjellveit, E.B.; Cox, R.J.; Ostenjo, J.; Blomberg, B.; Ebbesen, M.H.; Langeland, N.; Mohn, K.G. Point-of-care influenza testing impacts clinical decision, patient flow, and length of stay in hospitalised adults. J. Infect. Dis. 2022, 226, 97–108. [Google Scholar] [CrossRef]
- Gundlapalli, A.V.; Rubin, M.A.; Samore, M.H.; Lopansri, B.; Lahey, T.; McGuire, H.L.; Winthrop, K.L.; Dunn, J.J.; Willick, S.E.; Vosters, R.L.; et al. Influenza, Winter Olympiad, 2002. Emerg. Infect. Dis. 2006, 12, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, N.; Hänninen, T.; Valtonen, M.; Heinonen, O.J.; Waris, M.; Ruuskanen, O. Influenza A outbreaks in two professional ice hockey teams during COVID-19 epidemic. Viruses 2022, 14, 2730. [Google Scholar] [CrossRef] [PubMed]
- Domenech de Celles, M.; Rohani, P. Pertussis vaccines, epidemiology and evolution. Nat. Rev. Microbiol. 2024, 22, 722–735. [Google Scholar] [CrossRef]
- Zepp, F.; Heininger, U.; Mertsola, J.; Bernatowska, E.; Guiso, N.; Roord, J.; Tozzi, A.E.; van Damme, P. Rationale for pertussis booster vaccination throughout life in Europe. Lancet Infect. Dis. 2011, 11, 557–570. [Google Scholar] [CrossRef]
- Regan, A.K. Challenges associated with pertussis detection, monitoring, and vaccination in adults. Expert Rev. Anti-Infect. Ther. 2025, 23, 639–650. [Google Scholar] [CrossRef]
- Mertsola, J.; Ruuskanen, O.; Eerola, E.; Viljanen, M.K. Intrafamilial spread of pertussis. J. Pediatr. 1983, 103, 359–363. [Google Scholar] [CrossRef]
- Do, L.A.H.; Mulholland, K. Measles 2025. N. Engl. J. Med. 2025, 4, 285. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, O.; Salmi, T.T.; Halonen, P. Measles vaccination after exposure to natural measles. J. Pediatr. 1978, 93, 43–46. [Google Scholar] [CrossRef]
- Kuppalli, K.; Omer, S.B. Measles: The urgent need for global immunisation and preparedness. Lancet 2025, 405, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Angulo, F.J.; Halsby, K.; Davidson, A.; Ravikumar, S.; Pilz, A.; Stark, J.H.; Moisi, J.C. Publicly available surveillance data on tick-borne encephalitis in Europe, 2023. Ticks Ticks Borne Dis. 2024, 15, 102388. [Google Scholar] [CrossRef]
- Lindqvist, L.; Vapalahti, O. Tick-borne encephalitis. Lancet 2008, 371, 1861–1871. [Google Scholar] [CrossRef]
- Halsby, K.; Gildea, L.; Zhang, P.; Angulo, F.J.; Pilz, A.; Moisi, J.; Colosia, A.; Snellner, J. Clinical spectrum of dynamics and sequelae following tick-borne encephalitis virus infection: A systematic literature review. Open Forum Infect. Dis. 2025, 12, ofaf317. [Google Scholar] [CrossRef]
- Zumla, A.; Ntoumi, F.; Ippolito, G.; PANDORA-ID-NET Consortium. Chikungunya virus disease returns to Europe: A turning point for the global arboviral landscape. Lancet 2025, 406, 891–894. [Google Scholar] [CrossRef]
- Dos Santos, G.R.; Jawed, F.; Mukandavire, C.; Deol, A.; Scarponi, D.; Mboera, L.E.G.; Seruyange, E.; Poirier, M.J.P.; Bosomprah, S.; Udeze, A.O.; et al. Global burden of chikungunya virus infections and the potential benefit of vaccination campaigns. Nat. Med. 2025, 31, 2342–2349. [Google Scholar] [CrossRef]
- Perez-Estigarribia, P.E.; Dos Santos, G.R.; Cauchemez, S.; Vazques, C.; Ibarrolla-Vannucci, A.K.; Sequera, G.; Villaba, S.; Ortega, M.J.; Di Fabio, J.L.; Scarponi, D.; et al. Modeling the impact of vaccine campaigns on the epidemic transmission dynamics of chikungynya virus outbreaks. Nat. Med. 2025, 31, 2335–2341. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.J.; Gadikou, E.; Murray, C.J.L. The vaccine-hesitant moment. N. Engl. J. Med. 2022, 387, 58–65. [Google Scholar] [CrossRef]
- Pearson, H. How to speak to a vaccine sceptic: Research reveals what works. Nature 2025, 624, 28991. [Google Scholar] [CrossRef] [PubMed]
- Sobierajski, T.; Krzywanski, J.; Mikulski, T.; Pokrywka, A.; Krysztofiak, H.; Kuchar, E. Sports elite means vaccine elite? Concerns and beliefs related to COVID-19 vaccines among Olympians and elite athletes. Vaccines 2022, 10, 1676. [Google Scholar] [CrossRef]
- Stenger, T.; Ledo, A.; Ziller, C.; Schub, D.; Schmidt, T.; Enders, M.; Gärtner, B.C.; Sester, M.; Meyer, T. Timing of vaccination after training: Immune response and side effects in athletes. Med. Sci. Sports Med. 2020, 52, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, S.; Jefferson, A.A. Trust, a key to counter vaccine hesitancy. J. Infect. Dis. 2025, 232, 274–277. [Google Scholar] [CrossRef]
Vaccine Target(s) | Routine Vaccination | For Elite Athletes |
---|---|---|
Chikungunya virus | Locally | Locally |
COVID-19 | >65 years old; risk groups | Recommended |
Haemophilus influenzae type b | Given in childhood | As general population |
Hepatitis A and hepatitis B | Given in childhood; risk groups | Check history |
Human papillomavirus | Given in childhood | As general population |
Influenza | Yearly | Recommended |
Measles, mumps, and rubella | Given in childhood | Check history |
Meningococcal infection | Locally | Locally |
Mpox | Risk groups, locally | Risk groups, locally |
Pneumococcal infection | Given in childhood; >50 years old | Recommended |
Poliovirus | Given in childhood | As general population |
Respiratory syncytial virus | >60 years old; pregnant persons | Recommended |
Tetanus, diphtheria, and pertussis | Given in childhood | Check history |
Tick-borne encephalitis virus | Locally | Locally |
Varicella | Given in childhood | Check history |
Zoster, recombinant | >50 years old | Recommended |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruuskanen, O.; Valtonen, M.; Heinonen, O.J.; Waris, M.; Mertsola, J. Vaccinations for Elite Athletes. Vaccines 2025, 13, 931. https://doi.org/10.3390/vaccines13090931
Ruuskanen O, Valtonen M, Heinonen OJ, Waris M, Mertsola J. Vaccinations for Elite Athletes. Vaccines. 2025; 13(9):931. https://doi.org/10.3390/vaccines13090931
Chicago/Turabian StyleRuuskanen, Olli, Maarit Valtonen, Olli J. Heinonen, Matti Waris, and Jussi Mertsola. 2025. "Vaccinations for Elite Athletes" Vaccines 13, no. 9: 931. https://doi.org/10.3390/vaccines13090931
APA StyleRuuskanen, O., Valtonen, M., Heinonen, O. J., Waris, M., & Mertsola, J. (2025). Vaccinations for Elite Athletes. Vaccines, 13(9), 931. https://doi.org/10.3390/vaccines13090931