Changing Landscape of Invasive Pneumococcal Disease Serotypes and Antimicrobial Resistance Following Pneumococcal Conjugate Vaccine Introduction in the Middle East and North Africa Region: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Study Selection Process
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Data Synthesis
- PCV7 serotypes: 4, 6B, 9V, 14, 18C, 19F, 23F.
- PCV13 serotypes: 1, 3, 5, 6A, 7F, 19A.
- PCV15 serotypes: 22F, 33F.
- PCV20 serotypes: 10A, 15B, 8, 11A, and 12F.
- NVTs represented all other serotypes that were typed and reported but did not fit any of the above classifications.
3. Results
3.1. Quality of Reporting of the Studies
3.2. Overall Characteristics and Serotype Distribution of S. pneumoniae Isolates
3.3. Serotype Distribution of S. pneumoniae Isolates by Country
3.3.1. Countries with No PCV Introduction into NIP
3.3.2. Countries with Data Pre and Post PCV Introduction into NIP
3.4. Antimicrobial Resistance to Penicillin, Macrolides, and Ceftriaxone/Cefotaxime
3.4.1. Countries with No PCV Introduction into NIP
3.4.2. Impact of PCV Introduction on AMR
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCV | Pneumococcal conjugate vaccine |
IPD | Invasive pneumococcal disease |
MENA | Middle East and North Africa |
AMR | Antimicrobial resistance |
VT | Vaccine type |
NVT | Non-vaccine type |
WHO | World Health Organization |
PPV23 | 23 valent pneumococcal polysaccharide vaccine |
USA | United States of America |
EPI | Extended Program of Immunization |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
NIP | National immunization program |
NT | Non-typeable isolates |
References
- Center for Disease Control and Pevention. Global Pneumococcal Disease and Vaccination. Available online: https://www.cdc.gov/pneumococcal/global.html (accessed on 27 January 2022).
- Center for Disease Control and Pevention. Pneumococcal Disease. Available online: https://www.cdc.gov/vaccines/pubs/pinkbook/pneumo.html#:~:text=Pneumococcal%20Polysaccharide%20Vaccine&text=The%20serotypes%20are%3A%201%2C%202,either%20intramuscular%20or%20subcutaneous%20injection (accessed on 18 August 2021).
- GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef]
- Croucher, N.J.; Løchen, A.; Bentley, S.D. Pneumococcal Vaccines: Host Interactions, Population Dynamics, and Design Principles. Annu. Rev. Microbiol. 2018, 72, 521–549. [Google Scholar] [CrossRef]
- Diawara, I.; Zerouali, K.; Katfy, K.; Zaki, B.; Belabbes, H.; Najib, J.; Elmdaghri, N. Invasive pneumococcal disease among children younger than 5 years of age before and after introduction of pneumococcal conjugate vaccine in Casablanca, Morocco. Int. J. Infect. Dis. 2015, 40, 95–101. [Google Scholar] [CrossRef]
- Reslan, L.; Youssef, N.; Boutros, C.F.; Assaf-Casals, A.; Fayad, D.; Khafaja, S.; Akl, F.; Finianos, M.; Rizk, A.A.; Shaker, R.; et al. The impact of vaccination on the burden of invasive pneumococcal disease from a nationwide surveillance program in Lebanon: An unexpected increase in mortality driven by non-vaccine serotypes. Expert Rev. Vaccines 2022, 21, 1905–1921. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Introduction of PCV (Pneumococcal conjugate vaccine) 2024. Available online: https://immunizationdata.who.int/global/wiise-detail-page/introduction-of-pcv-(pneumococcal-conjugate-vaccine)?ISO_3_CODE=&YEAR= (accessed on 20 April 2025).
- Càmara, J.; Marimón, J.M.; Cercenado, E.; Larrosa, N.; Quesada, M.D.; Fontanals, D.; Cubero, M.; Pérez-Trallero, E.; Fenoll, A.; Liñares, J.; et al. Decrease of invasive pneumococcal disease (IPD) in adults after introduction of pneumococcal 13-valent conjugate vaccine in Spain. PLoS ONE 2017, 12, e0175224. [Google Scholar] [CrossRef]
- Mungall, B.A.; Hoet, B.; Nieto Guevara, J.; Soumahoro, L. A systematic review of invasive pneumococcal disease vaccine failures and breakthrough with higher-valency pneumococcal conjugate vaccines in children. Expert Rev. Vaccines 2022, 21, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Karimaei, S.; Tohidinik, H.R.; Afshar, D.; Pourmand, M.R.; Ghahfarokhi, S.H.; Goodarzi, N.N.; Azarsa, M. Antimicrobial Susceptibility Pattern and Serotype Distribution of Streptococcus pneumoniae in the Middle East Region: A Systematic Review and MetaAnalysis. Acta Medica Iran. 2021, 59, 64–78. [Google Scholar] [CrossRef]
- Singh, J.; Sundaresan, S.; Manoharan, A.; Shet, A. Serotype distribution and antimicrobial susceptibility pattern in children≤5years with invasive pneumococcal disease in India-A systematic review. Vaccine 2017, 35 Pt B, 4501–4509. [Google Scholar] [CrossRef]
- Reyburn, R.; Maher, J.; von Mollendorf, C.; Gwee, A.; Mulholland, K.; Russell, F. The impact of the introduction of ten- or thirteen-valent pneumococcal conjugate vaccines on antimicrobial-resistant pneumococcal disease and carriage: A systematic literature review. J. Glob. Health 2023, 13, 05001. [Google Scholar] [CrossRef]
- Men, W.; Dong, Q.; Shi, W.; Yao, K. Serotype distribution and antimicrobial resistance patterns of invasive pneumococcal disease isolates from children in mainland China-a systematic review. Braz. J. Microbiol. [Publ. Braz. Soc. Microbiol.] 2020, 51, 665–672. [Google Scholar] [CrossRef]
- Klugman, K.P.; Black, S. Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects. Proc. Natl. Acad. Sci. USA 2018, 115, 12896–12901. [Google Scholar] [CrossRef]
- Andrejko, K.; Ratnasiri, B.; Lewnard, J.A. Association of Pneumococcal Serotype With Susceptibility to Antimicrobial Drugs: A Systematic Review and Meta-analysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 75, 131–140. [Google Scholar] [CrossRef]
- Kobayashi, M.; Farrar, J.L.; Gierke, R.; Leidner, A.J.; Campos-Outcalt, D.; Morgan, R.L.; Long, S.S.; Poehling, K.A.; Cohen, A.L. Use of 15-Valent Pneumococcal Conjugate Vaccine Among, U.S. Children: Updated Recommendations of the Advisory Committee on Immunization Practices-United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Grant, L.R.; E Slack, M.P.; Theilacker, C.; Vojicic, J.; Dion, S.; Reinert, R.R.; Jodar, L.; Gessner, B.D. Distribution of Serotypes Causing Invasive Pneumococcal Disease in Children From High-Income Countries and the Impact of Pediatric Pneumococcal Vaccination. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2023, 76, e1062–e1070. [Google Scholar] [CrossRef]
- Tali-Maamar, H.; Laliam, R.; Bentchouala, C.; Touati, D.; Sababou, K.; Azrou, S.; Azzam, M.; Amhis, W.; Oussadou, L.; Belouni, R.; et al. Serotyping and antibiotic susceptibility of Streptococcus pneumoniae strains isolated in Algeria from 2001 to 2010. Med. Et Mal. Infect. 2012, 42, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Hecini-Hannachi, A.; Bentchouala, C.; Lezzar, A.; Belabed, K.; Laouar, H.; Smati, F. Serotypes and antimicrobial resistance of invasive Streptococcus pneumoniae isolates from East Algeria (2005–2011). Afr. J. Microbiol. Res. 2014, 8, 167–177. [Google Scholar]
- Ramdani-Bouguessa, N.; Ziane, H.; Bekhoucha, S.; Guechi, Z.; Azzam, A.; Touati, D.; Naim, M.; Azrou, S.; Hamidi, M.; Mertani, A.; et al. Evolution of antimicrobial resistance and serotype distribution of Streptococcus pneumoniae isolated from children with invasive and noninvasive pneumococcal diseases in Algeria from 2005 to 2012. New Microbes New Infect. 2015, 6, 42–48. [Google Scholar] [CrossRef]
- Ziane, H.; Manageiro, V.; Ferreira, E.; Moura, I.B.; Bektache, S.; Tazir, M.; Caniça, M. Serotypes and Antibiotic Susceptibility of Streptococcus pneumoniae Isolates from Invasive Pneumococcal Disease and Asymptomatic Carriage in a Pre-vaccination Period, in Algeria. Front. Microbiol. 2016, 7, 803. [Google Scholar] [CrossRef]
- Guirguis, N.; Hafez, K.; El Kholy, M.A. Bacterial meningitis in Egypt: Analysis of CSF isolates from hospital patients in Cairo, 1977–1978. Bull. World Health Organ. 1983, 61, 517–524. [Google Scholar] [PubMed]
- Wasfy, M.O.; Pimentel, G.; Abdel-Maksoud, M.; Russell, K.L.; Barrozo, C.P.; Klena, J.D.; Earhart, K.; Hajjeh, R. Antimicrobial susceptibility and serotype distribution of Streptococcus pneumoniae causing meningitis in Egypt, 1998–2003. J. Antimicrob. Chemother. 2005, 55, 958–964. [Google Scholar] [CrossRef]
- Saadi, A.T.; Garjees, N.A.; Rasool, A.H. Antibiogram profile of septic meningitis among children in Duhok, Iraq. Saudi Med. J. 2017, 38, 517–520. [Google Scholar] [CrossRef]
- Tavana, A.M.; Ataee, R.A. Invasive pneumococcal disease (IPD) serotype frequency in Iranian patients. Iran. Red Crescent Med. J. 2013, 15, 740–742. [Google Scholar] [CrossRef]
- Talebi, M.; Azadegan, A.; Sadeghi, J.; Ahmadi, A.; Ghanei, M.; Katouli, M.; Owlia, P.; Pourshafie, M.R.; Chang, Y.-F. Determination of Characteristics of Erythromycin Resistant Streptococcus pneumoniae with Preferred PCV Usage in Iran. PLoS ONE 2016, 11, e0167803. [Google Scholar] [CrossRef] [PubMed]
- Houri, H.; Fallah, F.; Saee, Y.; Karimi, A.; Rahbar, M.; Rafiei Tabatabaei, S. Distribution of capsular types and drug resistance patterns of invasive pediatric Streptococcus pneumoniae isolates in Teheran, Iran. Int. J. Infect. Dis. 2017, 57, 21–26. [Google Scholar] [CrossRef]
- Abdoli, S.; Safamanesh, S.; Khosrojerdi, M.; Azimian, A. Molecular Detection and Serotyping of Streptococcus pneumoniae in Children with Suspected Meningitis in Northeast Iran. Iran. J. Med. Sci. 2020, 45, 125–133. [Google Scholar] [PubMed]
- Ghahfarokhi, S.H.; Mosadegh, M.; Ahmadi, A.; Pourmand, M.R.; Azarsa, M.; Rahbar, M.; Nikmanesh, B. Serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae isolates in Tehran, Iran: A surveillance study. Infect. Drug Resist. 2020, 13, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Azimian, A.; Khosrojerdi, M.; Kebriaei, A.; Namdarahmadabad, H.; Besharati, R. Characterization of blood-isolated, penicillin-nonsusceptible Streptococcus pneumoniae from children between 2014 and 2018 in Bojnurd, Iran. Jundishapur J. Microbiol. 2020, 13, e111147. [Google Scholar] [CrossRef]
- Beheshti, M.; Jabalameli, F.; Feizabadi, M.M.; Hahsemi, F.B.; Beigverdi, R.; Emaneini, M. Molecular characterization, antibiotic resistance pattern and capsular types of invasive Streptococcus pneumoniae isolated from clinical samples in Tehran, Iran. BMC Microbiol. 2020, 20, 167. [Google Scholar] [CrossRef]
- Esteghamati, A.; Nazari-Alam, A.; Badamchi, A.; Faramarzi, M.; Alipoor, M.; Moghaddam, A.B.; Tavakoli, A.; Rahbar, M.; Aghmiyuni, Z.F.; Sayyahfar, S. Determination of Streptococcus pneumonia serotypes isolated from clinical specimens: A step toward the production of a native vaccine in Iran. Arch. Clin. Infect. Dis. 2021, 16, e112897. [Google Scholar] [CrossRef]
- Tabatabaei, S.R.; Karimi, A.; Rahbar, M.; Shirvani, F.; Azimi, L.; Shirdoost, M.; Fallah, F. Profile of Streptococcus pneumoniae serotypes of children with invasive disease in Tehran, Iran. An implication for vaccine coverage. Iran. J. Pediatr. 2021, 31, e106086. [Google Scholar] [CrossRef]
- Mosadegh, M.; Ghahfarokhi, S.H.; Ahmadi, A.; Pourmand, M.R.; Erfani, Y.; Mashhadi, R. Identification and molecular characterization of penicillin-nonsusceptible Streptococcus pneumoniae isolates recovered from invasive infections in a pre-pneumococcal vaccine era. J. Clin. Lab. Anal. 2022, 36, e24566. [Google Scholar] [CrossRef]
- Kohanteb, J.; Sadeghi, E. Penicillin-resistant Streptococcus pneumoniae in Iran. Med Princ Pract 2006, 16, 29–33. [Google Scholar] [CrossRef]
- Alam, A.N.; Tabatabaii, S.R.; Hashemi, A.; Yousefi, M.; Alfatemi, S.M.H. Characterization of 5 episodes of vancomycin nonsusceptible Streptococcus pneumoniae from clinical isolates in Tehran, Iran. Arch. Clin. Infect. Dis. 2017, 12, e57285. [Google Scholar]
- Azarsa, M.; Ohadian Moghadam, S.; Rahbar, M.; Baseri, Z.; Pourmand, M.R. Molecular serotyping and genotyping of penicillin non-susceptible pneumococci: The introduction of new sequence types, Tehran, Iran. New Microbes New Infect. 2019, 32, 100597. [Google Scholar] [CrossRef] [PubMed]
- Mokaddas, E.; Albert, M.J. Impact of pneumococcal conjugate vaccines on burden of invasive pneumococcal disease and serotype distribution of Streptococcus pneumoniae isolates: An overview from Kuwait. Vaccine 2012, 30 (Suppl. S6), G37–G40. [Google Scholar] [CrossRef]
- Mokaddas, E.M.; Rotimi, V.O.; Albert, M.J. Implications of Streptococcus pneumoniae penicillin resistance and serotype distribution in Kuwait for disease treatment and prevention. Clin. Vaccine Immunol. CVI 2008, 15, 203–207. [Google Scholar] [CrossRef]
- Mokaddas, E.M.; Rotimi, V.O.; Albert, M.J. Increasing prevalence of antimicrobial resistance in Streptococcus pneumoniae in Kuwait: Implications for therapy. Microb. Drug Resist.-Mech. Epidemiol. Dis. 2007, 13, 227–233. [Google Scholar] [CrossRef]
- Araj, G.F.; Bey, H.A.; Itani, L.Y.; Kanj, S.S. Drug-resistant Streptococcus pneumoniae in the Lebanon: Implications for presumptive therapy. Int. J. Antimicrob. Agents 1999, 12, 349–354. [Google Scholar] [CrossRef]
- Benbachir, M.; Elmdaghri, N.; Belabbes, H.; Haddioui, G.; Benzaid, H.; Zaki, B. Eleven-year surveillance of antibiotic resistance in Streptococcus pneumoniae in Casablanca (Morocco). Microb. Drug Resist.-Mech. Epidemiol. Dis. 2012, 18, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Elmdaghri, N.; Benbachir, M.; Belabbes, H.; Zaki, B.; Benzaid, H. Changing epidemiology of pediatric Streptococcus pneumoniae isolates before vaccine introduction in Casablanca (Morocco). Vaccine 2012, 30 (Suppl. S6), G46–G50. [Google Scholar] [CrossRef] [PubMed]
- El Mdaghri, N.; Jilali, N.; Belabbes, H.; Jouhadi, Z.; Lahssoune, M.; Zaid, S. Epidemiological profile of invasive bacterial diseases in children in Casablanca, Morocco: Antimicrobial susceptibilities and serotype distribution. East. Mediterr. Health J. 2012, 18, 1097–1101. [Google Scholar] [CrossRef]
- Al-Yaqoubi, M.M.; Elhag, K.M. Serotype prevalence and penicillin-susceptibility of Streptococcus pneumoniae in Oman. Oman Med. J. 2011, 26, 43–47. [Google Scholar] [CrossRef]
- Mastro, T.D.; Ghafoor, A.; Nomani, N.K.; Ishaq, Z.; Anwar, F.; Granoff, D.M.; Spika, J.S.; Thornsberry, C.; Facklam, R.R. Antimicrobial resistance of pneumococci in children with acute lower respiratory tract infection in Pakistan. Lancet 1991, 337, 156–159. [Google Scholar] [CrossRef]
- Shakoor, S.; Kabir, F.; Khowaja, A.R.; Qureshi, S.M.; Jehan, F.; Qamar, F.; Whitney, C.G.; Zaidi, A.K. Pneumococcal serotypes and serogroups causing invasive disease in Pakistan, 2005–2013. PLoS ONE 2014, 9, e98796. [Google Scholar] [CrossRef]
- Zafar, A.; Lalani, F.K.; Longi, A.A.; Jajja, M.R.; Haider, M.; Hashmi, S.; Khan, E.; Irfan, S.; Hussain, T.; Hussain, F.R.; et al. Increase in Penicillin and multidrug resistance in Streptococcus pneumoniae (1993–2016): Report from a tertiary care hospital laboratory, Pakistan. JPMA J. Pak. Med. Assoc. 2021, 71, 2726–2730. [Google Scholar] [CrossRef]
- Kattan, R.; Rayyan, A.A.; Zheiman, I.; Idkeidek, S.; Baraghithi, S.; Rishmawi, N.; Turkuman, S.; Abu-Diab, A.; Ghneim, R.; Zoughbi, M.; et al. Serotype distribution and drug resistance in Streptococcus pneumoniae, Palestinian Territories. Emerg. Infect. Dis. 2011, 17, 94–96. [Google Scholar] [CrossRef]
- Elshafie, S.; Taj-Aldeen, S.J. Emerging resistant serotypes of invasive Streptococcus pneumoniae. Infect. Drug Resist. 2016, 9, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Balkhy, H.H.; Shibl, A.M.; Barrozo, C.P.; Gray, G.C. Streptococcus pneumoniae in Saudi Arabia: Antibiotic resistance and serotypes of recent clinical isolates. Int. J. Antimicrob. Agents 2004, 23, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Al-Mazrou, A.; Twum-Danso, K.; Al-Zamil, F.; Abdelmageed, K. Streptococcus pneumoniae serotypes/serogroups causing invasive disease in Riyadh, Saudi Arabia: Extent of coverage by pneumococcal vaccines. Ann. Saudi Med. 2005, 25, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A. Antibiotic resistance of pediatric isolates of Streptococcus pneumoniae in a Saudi Arabian hospital from 1999 to 2004. Med. Sci. Monit. 2006, 12, CR471–CR475. [Google Scholar]
- Al-Tawfiq, J.A. Pattern of antibiotic resistance of Streptococcus pneumoniae in a hospital in the Eastern Province of Saudi Arabia. J. Chemother. 2004, 16, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Shibl, A.M.; Memish, Z.A.; Al-Kattan, K.M. Antibiotic resistance and serotype distribution of invasive pneumococcal diseases before and after introduction of pneumococcal conjugate vaccine in the Kingdom of Saudi Arabia (KSA). Vaccine 2012, 30 (Suppl. S6), G32–G36. [Google Scholar] [CrossRef]
- Shibl, A.M. Distribution of serotypes and antibiotic resistance of invasive pneumococcal disease isolates among children aged 5 years and under in Saudi Arabia (2000–2004). Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008, 14, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, M.; Ferjani, A.; Bouafia, N.; Harb, H.; Ben Salem, Y.; Boukadida, J. Serotype distribution and antimicrobial resistance of invasive and noninvasive pneumococcal isolates in Tunisia. Microb. Drug Resist.-Mech. Epidemiol. Dis. 2015, 21, 85–89. [Google Scholar] [CrossRef]
- Smaoui, H.; Amri, J.; Hajji, N.; Kechrid, A. [Antimicrobial susceptibility and serotype distribution of Streptococcus pneumoniae isolates in children in Tunis]. Arch. Pediatr. 2009, 16, 220–226. [Google Scholar] [CrossRef]
- Charfi, F.; Smaoui, H.; Kechrid, A. Non-susceptibility trends and serotype coverage by conjugate pneumococcal vaccines in a Tunisian paediatric population: A 10-year study. Vaccine 2012, 30 (Suppl. S6), G18–G24. [Google Scholar] [CrossRef]
- Ceyhan, M.; Yildirim, I.; Sheppard, C.L.; George, R.C. Pneumococcal serotypes causing pediatric meningitis in Turkey: Application of a new technology in the investigation of cases negative by conventional culture. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 289–293. [Google Scholar] [CrossRef]
- Altun, H.U.; Hascelİk, G.; Gür, D.; Eser, Ö.K. Invasive pneumococci before the introduction of pneumococcal conjugate vaccine in Turkey: Antimicrobial susceptibility, serotype distribution, and molecular identification of macrolide resistance. J. Chemother. 2015, 27, 74–79. [Google Scholar] [CrossRef]
- Gür, D.; Güçiz, B.; Hasçelik, G.; Esel, D.; Sümerkan, B.; Över, U.; Söyletir, G.; Öngen, B.; Kaygusuz, A.; Töreci, K. Streptococcus pneumoniae penicillin resistance in Turkey. J. Chemother. 2001, 13, 541–545. [Google Scholar] [CrossRef]
- Ikken, Y.; Charof, R.; Benaouda, A.; Hilali, F.; Akkaoui, S.; Elouennass, M.; Sekhsokh, Y. Epidemiology and antibiotic resistance profile of bacterial meningitis in Morocco from 2015 to 2018. Acta Microbiol. Et Immunol. Hung. 2020, 67, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Mokaddas, E.; Albert, M.J. Serotype distribution and penicillin-non-susceptibility of Streptococcus pneumoniae causing invasive diseases in Kuwait: A 10-year study of impact of pneumococcal conjugate vaccines. Expert Rev. Vaccines 2016, 15, 1337–1345. [Google Scholar] [CrossRef]
- Al-Waili, B.R.; Al-Thawadi, S.; Al Hajjar, S. Impact of the revised penicillin susceptibility breakpoints for Streptococcus pneumoniae on antimicrobial resistance rates of meningeal and non-meningeal pneumococcal strains. Ann. Saudi Med. 2013, 33, 111–115. [Google Scholar] [CrossRef]
- Ceyhan, M.; Ozsurekci, Y.; Gürler, N.; Ozkan, S.; Sensoy, G.; Belet, N.; Hacimustafaoglu, M.; Celebi, S.; Keser, M.; Dinleyici, E.C.; et al. Distribution of Streptococcus pneumoniae serotypes that cause parapneumonic empyema in Turkey. Clin. Vaccine Immunol. 2013, 20, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Al-Musawi, M. A retrospective epidemiological study of invasive pneumococcal infections in children aged 0-5 years in Bahrain from 1 January 1999 to 31 December 2003. Vaccine 2012, 30 (Suppl. S6), G2–G6. [Google Scholar] [CrossRef] [PubMed]
- Ostroff, S.M.; Harrison, L.H.; Khallaf, N.; Assaad, M.T.; Guirguis, N.I.; Harrington, S.; el-Alamy, M. Resistance patterns of Streptococcus pneumoniae and Haemophilus influenzae isolates recovered in Egypt from children with pneumonia. Clin. Infect. Dis. 1996, 23, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, S.R.; Shamshiri, A.; Azimi, L.; Nazari-Alam, A.; Karimi, A.; Mirjavadi, S.A.; Tariverdi, M. Co-infection with dual Streptococcus pneumoniae serotypes as a cause of pediatric bacterial meningitis in Iran: A multi-center cross-sectional study. BMC Infect. Dis. 2022, 22, 625. [Google Scholar] [CrossRef]
- Tabatabaei, S.R.; Rahbar, M.; Alam, A.N.; Fallah, F.; Hashemi, A.; Yousefi, M.; Houri, H.; Karimi, A. Detection of Pbp2B gene and antimicrobial susceptibility pattern of Streptococcus pneumoniae isolates in Tehran hospitals, Iran. Arch. Pediatr. Infect. Dis. 2017, 5, e38891. [Google Scholar] [CrossRef]
- Abu-Helalah, M.; Al-Mnayyis, A.; Alzoubi, H.; Al-Abdallah, R.; Jdaitawi, H.; Nafi, O.; Abu-Sal, K.; Altawalbeh, A.; Khlaifat, A.; Al-Zayadneh, E.; et al. Epidemiology of Streptococcus pneumoniae serotypes in Jordan amongst children younger than the age of 5: A national cross-sectional study. Vaccines 2023, 11, 1396. [Google Scholar] [CrossRef]
- Hanna-Wakim, R.; Chehab, H.; Mahfouz, I.; Nassar, F.; Baroud, M.; Shehab, M.; Pimentel, G.; Wasfy, M.; House, B.; Araj, G.; et al. Epidemiologic characteristics, serotypes, and antimicrobial susceptibilities of invasive Streptococcus pneumoniae isolates in a nationwide surveillance study in Lebanon. Vaccine 2012, 30 (Suppl. S6), G11–G17. [Google Scholar] [CrossRef]
- Moghnieh, R.; Tamim, H.; Awad, L.; Abdallah, D.; Sleiman, R.; Jisr, T.; Al-Helou, M.; Ibrahim, A.; Mugharbil, A.; Droubi, N.; et al. Epidemiology of invasive and non-invasive pneumococcal infections in hospitalised adult patients in a Lebanese medical centre, 2006–2015. J. Infect. Public Health 2019, 13, 2092–2100. [Google Scholar] [CrossRef]
- Borg, M.A.; Tiemersma, E.; Scicluna, E.; van de Sande-Bruinsma, N.; de Kraker, M.; Monen, J.; Grundmann, H. Prevalence of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae isolates reported by laboratories in the southern and eastern Mediterranean region. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2009, 15, 232–237. [Google Scholar] [CrossRef]
- Riaz, A.; Mohiuddin, S.; Husain, S.; Yousafzai, M.T.; Sajid, M.; Kabir, F.; Rehman, N.U.; Mirza, W.; Salam, B.; Nadeem, N. Effectiveness of 10-valent pneumococcal conjugate vaccine against vaccine-type invasive pneumococcal disease in Pakistan. Int. J. Infect. Dis. 2019, 80, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.N.H.; Khaliq, M.R.A.; Kambal, A.M. Penicillin-resistant Streptococcus pneumoniae in Riyadh, Saudi Arabia. Int. J. Antimicrob. Agents 1995, 6, 37–41. [Google Scholar] [CrossRef]
- Kambal, A.M.; Abdullah, A.M.A. Childhood pneumococcal bacteraemia in Riyadh, Saudi Arabia. Ann. Trop. Paediatr. 1997, 17, 245–251. [Google Scholar] [CrossRef]
- Raddaoui, A.; Simões, A.S.; Baaboura, R.; Félix, S.; Achour, W.; Ben Othman, T.; Béjaoui, M.; Sá-Leão, R.; Ben Hassen, A.; Robinson, D.A. Serotype Distribution, Antibiotic Resistance and Clonality of Streptococcus pneumoniae Isolated from Immunocompromised Patients in Tunisia. PLoS ONE 2015, 10, e0140390. [Google Scholar] [CrossRef]
- Ktari, S.; Ben Ayed, N.; Ben Rbeh, I.; Garbi, N.; Maalej, S.; Mnif, B.; Rhimi, F.; Hammami, A. Antibiotic resistance pattern, capsular types, and molecular characterization of invasive isolates of Streptococcus pneumoniae in the south of Tunisia from 2012 to 2018. BMC Microbiol. 2023, 23, 36. [Google Scholar] [CrossRef]
- Percin, D.; Ay Altintop, Y.; Sumerkan, B. Ten-year surveillance of invasive Streptococcus pneumoniae isolates in central Turkey prior to the introduction of a conjugate vaccine. J. Infect. Dev. Ctries. 2010, 4, 560–565. [Google Scholar] [CrossRef]
- Altun, B.; Gur, D.; Kocagoz, S.; Hascelık, G.; Unal, S. Molecular epidemiology of penicillin resistant Streptococcus pneumoniae strains in Turkey. A multicenter study. Ann. Microbiol. 2006, 56, 185–190. [Google Scholar] [CrossRef]
- Chikhaoui, A.; Nzoyikorera, N.; Diawara, I.; Jouhadi, Z.; Zerouali, K. Burden of invasive pneumococcal disease in children in Casablanca, Morocco four years after the introduction of pneumococcal vaccination. Pan Afr. Med. J. 2022, 41, 2. [Google Scholar] [CrossRef]
- Al-Jardani, A.; Al Rashdi, A.; Al Jaaidi, A.; Al Bulushi, M.; Al Mahrouqi, S.; Al-Abri, S.; Al-Maani, A.; Kumar, R. Serotype distribution and antibiotic resistance among invasive Streptococcus pneumoniae from Oman post 13-valent vaccine introduction. Int. J. Infect. Dis. 2019, 85, 135–140. [Google Scholar] [CrossRef]
- Özdemir, H.; Yıldız, C.; Ötgün, S.N.; Erkol, H.; Karbuz, A.; Kocabaş, B.A.; Kara, T.T.; Gözalan, A.; Durmaz, R.; Çiftçi, E.; et al. The effects of pneumococcal conjugate vaccine (PCV7 and PCV13) on Turkish children with invasive pneumococcal disease: A single center experience. Arch. Argent. Pediatr. 2017, 115, 316–322. [Google Scholar]
- Hascelik, G.; Soyletir, G.; Gulay, Z.; Sancak, B.; Yaman, A.; Gurler, N.; Aydemir, S.S.; Bayramoglu, G.; Aydin, F.; Cekin, Y.; et al. Serotype distribution of Streptococcus pneumoniae and pneumococcal vaccine coverage in adults in Turkey between 2015 and 2018. Ann. Med. 2023, 55, 266–275. [Google Scholar] [CrossRef]
- Kİttana, F.N.A.; Mustak, I.B.; Hascelİk, G.; Sarİcam, S.; Gurler, N.; Dİker, K.S. Erythromycin-resistant Streptococcus pneumoniae: Phenotypes, genotypes, transposons and pneumococcal vaccine coverage rates. J. Med. Microbiol. 2019, 68, 000995. [Google Scholar]
- Ceyhan, M.; Aykac, K.; Gurler, N.; Ozsurekci, Y.; Öksüz, L.; Akısoglu, Ö.A.; Öz, F.N.; Emiroglu, M.; TurkDagi, H.; Yaman, A.; et al. Serotype distribution of Streptococcus pneumonia in children with invasive disease in Turkey: 2015–2018. Hum. Vaccines Immunother. 2020, 16, 2773–2778. [Google Scholar] [CrossRef] [PubMed]
- Nzoyikorera, N.; Diawara, I.; Katfy, M.; Katfy, K.; Maaloum, F.; Nyandwi, J.; Belabbes, H.; Elmdaghri, N.; Zerouali, K. Serotype distribution and antimicrobial susceptibility of invasive Streptococcus pneumoniae isolates among adult and elderly population before and after introduction of pneumococcal conjugate vaccine in Casablanca, Morocco. BMC Infect. Dis. 2023, 23, 24. [Google Scholar] [CrossRef]
- Ceyhan, M.; Ozsurekci, Y.; Gürler, N.; Öksüz, L.; Aydemir, S.; Ozkan, S.; Yuksekkaya, S.; Emiroglu, M.K.; Gültekin, M.; Yaman, A.; et al. Serotype distribution of Streptococcus pneumoniae in children with invasive diseases in Turkey: 2008–2014. Hum. Vaccines Immunother. 2016, 12, 308–313. [Google Scholar] [CrossRef]
- Haifa Al-Muhtaresh, A.; Bindayna, K.M. The prevalence of antimicrobial resistance and serotypes of Streptococcus pneumoniae in the Kingdom of Bahrain. J. Pure Appl. Microbiol. 2020, 14, 133–140. [Google Scholar] [CrossRef]
- Johny, M.; Narayanan, S.; Murad, M.A. Rising incidence of beta-lactam resistance among pneumococci in Kuwait: Failure of cefotaxime therapy in pneumococcal meningitis. Med. Princ. Pract. 1998, 7, 215–222. [Google Scholar] [CrossRef]
- Ahmed, K.; Martinez, G.; Wilson, S.; Yoshida, R.; Dhar, R.; Mokaddas, E.; Kohno, S.; Rotimi, V.O.; Nagatake, T. The prevalence and clonal diversity of penicillin-resistant Streptococcus pneumoniae in Kuwait. Epidemiol. Infect. 2000, 125, 573–581. [Google Scholar] [CrossRef]
- Uwaydah, M.; Jradeh, M.; Shihab, Z. Antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Lebanon. J. Antimicrob. Chemother. 1996, 38, 283–286. [Google Scholar] [CrossRef]
- Marwan, U.; Mokhbat, J.E.; Karam-Sarkis, D.; Baroud-Nassif, R.; Rohban, T. Penicillin-resistant Streptococcus pneumoniae in Lebanon: The first nationwide study. Int. J. Antimicrob. Agents 2006, 27, 242–246. [Google Scholar] [CrossRef]
- Diawara, I.; Barguigua, A.; Katfy, K.; Nayme, K.; Belabbes, H.; Timinouni, M.; Zerouali, K.; Elmdaghri, N. Molecular characterization of penicillin non-susceptible Streptococcus pneumoniae isolated before and after pneumococcal conjugate vaccine implementation in Casablanca, Morocco. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 23. [Google Scholar] [CrossRef]
- Al Khal, A.L.; El Shafie, S.S.; Al Kuwari, J.; Bener, A. Streptococcus pneumonia serotypes in newly developed state of Qatar: Consideration for conjugate vaccine. Qatar Med. J. 2007, 16, 25–28. [Google Scholar] [CrossRef]
- al-Swailem, A.M.; Kadry, A.A.; Fouda, S.I.; Shibl, A.M.; Shair, O.H. Phenotypic and genotypic characterization of invasive Streptococcus pneumoniae clinical isolates. Curr. Ther. Res. 2004, 65, 423–432. [Google Scholar] [CrossRef]
- Hussain Qadri, S.M.; Kroschinsky, R. Prevalence of pneumococci with increased resistance to penicillin in Saudi Arabia. Ann. Trop. Med. Parasitol. 1991, 85, 259–262. [Google Scholar] [CrossRef]
- Al-Aqeeli, A.A.; Guy, M.L.; Al-Jumaah, S.A. Streptococcus pneumoniae resistance to penicillin and ceftriaxone in a tertiary care center in Saudi Arabia. Saudi Med. J. 2002, 23, 400–404. [Google Scholar]
- Fouda, S.I.; Kadry, A.A.; Shibl, A.M. Beta-lactam and macrolide resistance and serotype distribution among Streptococcus pneumoniae isolates from Saudi Arabia. J. Chemother. 2004, 16, 517–523. [Google Scholar] [CrossRef]
- Al-Sherikh, Y.A.; Gowda, L.K.; Marie, M.A.M.; John, J.; Dabwan, K.H.M.; Shashidhar, P.C. Distribution of serotypes and antibiotic susceptibility patterns among invasive pneumococcal diseases in Saudi Arabia. Ann. Lab. Med. 2014, 34, 210–215. [Google Scholar] [CrossRef]
- Ktari, S.; Jmal, I.; Mroua, M.; Maalej, S.; Ben Ayed, N.E.; Mnif, B.; Rhimi, F.; Hammami, A. Serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae strains in the south of Tunisia: A five-year study (2012–2016) of pediatric and adult populations. Int. J. Infect. Dis. 2017, 65, 110–115. [Google Scholar] [CrossRef]
- Haddad-Boubaker, S.; Lakhal, M.; Fathallah, C.; Mhimdi, S.; Bouafsoun, A.; Kechrid, A.; Smaoui, H. Epidemiological study of bacterial meningitis in Tunisian children, beyond neonatal age, using molecular methods: 2014–2017. Afr. Health Sci. 2020, 20, 1124–1132. [Google Scholar] [CrossRef]
- Ceyhan, M.; Gurler, N.; Yaman, A.; Ozturk, C.; Oksuz, L.; Ozkan, S.; Keser, M.; Salman, N.; Alhan, E.; Esel, D.; et al. Serotypes of Streptococcus pneumoniae isolates from children with invasive pneumococcal disease in Turkey: Baseline evaluation of the introduction of the pneumococcal conjugate vaccine nationwide. Clin. Vaccine Immunol. 2011, 18, 1028–1030. [Google Scholar] [CrossRef]
- Johny, M.; Babelly, M.; Al-Obaid, I.; Al-Benwan, K.; Udo, E.E. Antimicrobial resistance in clinical isolates of Streptococcus pneumoniae in a tertiary hospital in Kuwait, 1997–2007: Implications for empiric therapy. J. Infect. Public Health 2010, 3, 60–66. [Google Scholar] [CrossRef]
- Ugrekhelidze, D.; Anis, S.; Sępek, J.; Grys, M.; Zalewska, M.; Pieniążek, I. Pneumococcal disease in children in the Middle East and Northern Africa: A systematic literature review of clinical burden, serotype distribution, and vaccination programs. Hum. Vaccines Immunother. 2024, 20, 2421630. [Google Scholar] [CrossRef]
- Fletcher, M.A.; Daigle, D.; Siapka, M.; Baay, M.; Hanquet, G.; Del Carmen Morales, G. Serotype distribution of invasive pneumococcal disease from countries of the WHO Africa, Americas, Eastern Mediterranean, South-East Asia, and Western Pacific regions: A systematic literature review from 2010 to 2021. Front. Public Health 2024, 12, 1402795. [Google Scholar] [CrossRef]
- Pilishvili, T.; Gierke, R.; Farley, M.M.; Schaffner, W.; Thomas, A.; Reingold, A.; Harrison, L.; Holtzman, C.; Burzlaff, K.; Petit, S.; et al. 1470. Epidemiology of Invasive Pneumococcal Disease (IPD) Following 18 years of Pneumococcal Conjugate Vaccine (PCV) Use in the United States. Open Forum Infect. Dis. 2020, 7 (Suppl. S1), S736–S737. [Google Scholar] [CrossRef]
- Grant, L.R.; Slack, M.P.; Theilacker, C.; Vojicic, J.; Dion, S.; Reinert, R.R.; Jodar, L.; Gessner, B.D. Distribution of serotypes causing invasive pneumococcal disease in older adults from high-income countries and impact of pediatric and adult vaccination policies. Vaccine 2023, 41, 5662–5669. [Google Scholar] [CrossRef]
- Tiley, K.S.; Ratcliffe, H.; Voysey, M.; Jefferies, K.; Sinclair, G.; Carr, M.; Colin-Jones, R.; Smith, D.; Bowman, J.; Hart, T.; et al. Nasopharyngeal Carriage of Pneumococcus in Children in England up to 10 Years After 13-Valent Pneumococcal Conjugate Vaccine Introduction: Persistence of Serotypes 3 and 19A and Emergence of 7C. J. Infect. Dis. 2023, 227, 610–621. [Google Scholar] [CrossRef]
- McFarland, M.; Szasz, T.P.; Zhou, J.Y.; Motley, K.; Sivapalan, J.S.; Isaacson-Schmid, M.; Todd, E.M.; Hogan, P.G.; Fritz, S.A.; Burnham, C.D.; et al. Colonization with 19F and other pneumococcal conjugate vaccine serotypes in children in St. Louis, Missouri, USA. Vaccine 2017, 35, 4389–4395. [Google Scholar] [CrossRef] [PubMed]
- Gounder, P.P.; Bruden, D.; Rudolph, K.; Zulz, T.; Hurlburt, D.; Thompson, G.; Bruce, M.G.; Hennessy, T.W. Re-emergence of pneumococcal colonization by vaccine serotype 19F in persons aged ≥5 years after 13-valent pneumococcal conjugate vaccine introduction-Alaska, 2008–2013. Vaccine 2018, 36, 691–697. [Google Scholar] [CrossRef]
- Azarian, T.; Mitchell, P.K.; Georgieva, M.; Thompson, C.M.; Ghouila, A.; Pollard, A.J.; von Gottberg, A.; du Plessis, M.; Antonio, M.; Kwambana-Adams, B.A.; et al. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog. 2018, 14, e1007438. [Google Scholar] [CrossRef]
- Groves, N.; Sheppard, C.L.; Litt, D.; Rose, S.; Silva, A.; Njoku, N.; Rodrigues, S.; Amin-Chowdhury, Z.; Andrews, N.; Ladhani, S.; et al. Evolution of Streptococcus pneumoniae Serotype 3 in England and Wales: A Major Vaccine Evader. Genes 2019, 10, 845. [Google Scholar] [CrossRef]
- Yoon, J.G.; Jang, A.-Y.; Kim, M.J.; Bin Seo, Y.; Lee, J.; Choi, Y.H.; Kim, Y.K.; Jeong, E.J.; Kim, H.S.; Kwon, K.T.; et al. Persistent serotype 3 and 19A invasive pneumococcal diseases in adults in vaccine era: Serotype-dependent difference in ceftriaxone susceptibility. Vaccine 2022, 40, 2258–2265. [Google Scholar] [CrossRef]
- Luck, J.N.; Tettelin, H.; Orihuela, C.J. Sugar-Coated Killer: Serotype 3 Pneumococcal Disease. Front. Cell. Infect. Microbiol. 2020, 10, 613287. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.J.; A Waight, P.; Burbidge, P.; Pearce, E.; Roalfe, L.; Zancolli, M.; Slack, M.; Ladhani, S.N.; Miller, E.; Goldblatt, D. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: A postlicensure indirect cohort study. Lancet Infect. Dis. 2014, 14, 839–846. [Google Scholar] [CrossRef]
- Isturiz, R.; Sings, H.L.; Hilton, B.; Arguedas, A.; Reinert, R.R.; Jodar, L. Streptococcus pneumoniae serotype 19A: Worldwide epidemiology. Expert Rev. Vaccines 2017, 16, 1007–1027. [Google Scholar] [CrossRef]
- Yeh, S.H.; Gurtman, A.; Hurley, D.C.; Block, S.L.; Schwartz, R.H.; Patterson, S.; Jansen, K.U.; Love, J.; Gruber, W.C.; Emini, E.A.; et al. Immunogenicity and safety of 13-valent pneumococcal conjugate vaccine in infants and toddlers. Pediatrics 2010, 126, e493–e505. [Google Scholar] [CrossRef]
- Chaguza, C.; Yang, M.; Jacques, L.C.; Bentley, S.D.; Kadioglu, A. Serotype 1 pneumococcus: Epidemiology, genomics, and disease mechanisms. Trends Microbiol. 2022, 30, 581–592. [Google Scholar] [CrossRef]
- Hanquet, G.; Krizova, P.; Dalby, T.; Ladhani, S.N.; Nuorti, J.P.; Danis, K.; Mereckiene, J.; Knol, M.J.; Winje, B.A.; Ciruela, P.; et al. Serotype Replacement after Introduction of 10-Valent and 13-Valent Pneumococcal Conjugate Vaccines in 10 Countries, Europe. Emerg. Infect. Dis. 2022, 28, 137–138. [Google Scholar] [CrossRef]
- Ladhani, S.N.; Collins, S.; Djennad, A.; Sheppard, C.L.; Borrow, R.; Fry, N.K.; Andrews, N.J.; Miller, E.; Ramsay, M.E. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–2017: A prospective national observational cohort study. Lancet Infect. Dis. 2018, 18, 441–451. [Google Scholar] [CrossRef]
- Levy, C.; Ouldali, N.; Caeymaex, L.; Angoulvant, F.; Varon, E.; Cohen, R. Diversity of Serotype Replacement After Pneumococcal Conjugate Vaccine Implementation in Europe. J. Pediatr. 2019, 213, 252–253.e3. [Google Scholar] [CrossRef]
- Méroc, E.; Fletcher, M.A.; Hanquet, G.; Slack, M.P.E.; Baay, M.; Hayford, K.; Gessner, B.D.; Grant, L.R. Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine. Microorganisms 2023, 11, 1816. [Google Scholar] [CrossRef] [PubMed]
- Janssens, E.; Flamaing, J.; Vandermeulen, C.; Peetermans, W.E.; Desmet, S.; De Munter, P. The 20-valent pneumococcal conjugate vaccine (PCV20): Expected added value. Acta Clin. Belg. 2023, 78, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Tvedskov, E.S.F.; Hovmand, N.; Benfield, T.; Tinggaard, M. Pneumococcal carriage among children in low and lower-middle-income countries: A systematic review. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2022, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Galanis, I.; Lindstrand, A.; Darenberg, J.; Browall, S.; Nannapaneni, P.; Sjöström, K.; Morfeldt, E.; Naucler, P.; Blennow, M.; Örtqvist, Å.; et al. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur. Respir. J. 2016, 47, 1208–1218. [Google Scholar] [CrossRef]
- Khalifeh, M.M.; Moore, N.D.; Salameh, P.R. Self-medication misuse in the Middle East: A systematic literature review. Pharmacol. Res. Perspect. 2017, 5, e00323. [Google Scholar] [CrossRef]
- Alhomoud, F.; Aljamea, Z.; Almahasnah, R.; Alkhalifah, K.; Basalelah, L.; Alhomoud, F.K. Self-medication and self-prescription with antibiotics in the Middle East-do they really happen? A systematic review of the prevalence, possible reasons, and outcomes. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2017, 57, 3–12. [Google Scholar] [CrossRef]
- Denis, F.A.; Greenwood, B.D.; Rey, J.L. Multicentre study of pneumococcal serotypes in Africa. Bull. World Health Organ. 1983, 61, 661–669. [Google Scholar]
- Eldholm, V.; Osnes, M.N.; Bjørnstad, M.L.; Straume, D.; Gladstone, R.A. A genome-based survey of invasive pneumococci in Norway over four decades reveals lineage-specific responses to vaccination. Genome Med. 2024, 16, 123. [Google Scholar] [CrossRef]
- Lo, S.W.; A Gladstone, R.; van Tonder, A.J.; A Lees, J.; du Plessis, M.; Benisty, R.; Givon-Lavi, N.; A Hawkins, P.; E Cornick, J.; Kwambana-Adams, B.; et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: An international whole-genome sequencing study. Lancet Infect. Dis. 2019, 19, 759–769. [Google Scholar] [CrossRef]
Author, Year | Country | Total Number of IPD Isolates with Documented Serotypes | Population | Period | Age Distribution | Number of Isolates /Age Group | PCV7 Serotypes | PCV13/Non-PCV7 Serotypes | PCV15 Serotypes | PCV20 Serotypes | Non- Typeable | Other Serotypes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-PCV13 introduction | ||||||||||||
[21] | Algeria | 80 | Pediatric | 2010–2014 (pre-PCV7 introduction) | <1 y | 44 | 20 | 19 | 1 | 35F (1), 35B (1), 24F (1), 20 (1) | ||
1–2 y | 20 | 12 | 6 | 1 | 9N/9L (1) | |||||||
3–5 y | 16 | 12 | 3 | 6C (1) | ||||||||
[22] | Egypt | 99 | All age groups | 1977–1978 (pre-PCV7 introduction) | <1 y | 24 | 1 | 5 | 2 (2), 6 (1), 7 (2); 9 (1); 12 (1); 18 (1), 20 (2); 33 (1); 34 (2); 35 (1); 36 (1); 45 (1); 46 (2) | |||
1–4 y | 16 | 1 | 8 | 6 (2), 7A (1), 9 (1); 12 (1); 23 (1); 39 (1) | ||||||||
5–9 y | 12 | 2 | 7 | 9 (1);19 (1);46 (1) | ||||||||
10–14 y | 20 | 6 | 6 (2); 9 (1); 10 (1); 15 (1); 18 (1); 19 (2); 20 (1); 24 (1); 36 (1); 38 (1); 45 (2) | |||||||||
15–34 y | 17 | 1 | 7 | 2 (1); 9 (2); 9N (1); 10 (1); 12 (1); 20 (1); 29 (1); 29, 35, 42 (1) | ||||||||
≥35 y | 10 | 3 | 1 | 7 (1); 9N (2); 12 (1); 45 (1); 29, 42 (1) | ||||||||
[27] | Iran | 53 | Pediatric | 2013–2016 (pre-PCV13 introduction) | 0–3 months | 9 | 6 | 1 | 1 | 15A (1) | ||
4–24 months | 25 | 18 | 2 | 1 | 6 (2), 35B (1), 31 (1) | |||||||
25–60 months | 19 | 9 | 4 | 3 | 1 | 15A (1), 34 (1) | ||||||
[33] | Iran | 19 | Pediatrics | 2016–2017 (post-PCV introduction) | ≤1 y | 1 | 1 | 3 & 5A (1); 3 & 11A (1) | ||||
2–4 y | 1 | 1 | 1 | 2 | 3 & 11A (2); 6A & 7C (1); 19F & 23B (1) | |||||||
5–10 y | 1 | 1 | 1 | 3 & 11A (2); 7C & 14 (1) | ||||||||
[71] | Jordan | 23 | Pediatrics | 2021–2022 (pre-PCV introduction) | ≤6 m | 12 | 8 | 3 | 28 (1) | |||
7 m–12 m | 4 | 3 | 1 | |||||||||
13 m–24 m | 2 | 1 | Other unspecified serotype (1) | |||||||||
25 m–53 m | 5 | 3 | 2 | |||||||||
[38] | Kuwait | 129 | All age groups | 2006–2011 (Post PCV7 introduction) | <2 y | 26 | The predominant serotypes in children ≤5 years were 19F, 19A, 6A, 8 and 15B. However, the predominant serotypes in adults >50 years were 14, 3, 1, 19F and 8. | 9 | ||||
2–5 y | 19 | |||||||||||
6–50 y | 36 | |||||||||||
51–65 y | 24 | |||||||||||
>65 y | 24 | |||||||||||
[47] | Pakistan | 111 | All age groups | 2005–2013 (pre-and post-PCV13 introduction) (Pre PCV10 introduction) | 0–59 months | 85 | 20 | 12 | 3 | 5 | 6A/6B/6C (2), 9V/9A (3), 9N/9L (1), 10F/10C (1), 10F/10C/33 (1), 11A/11D (2), 12F/A/44/46 (6), 15B/15C (2), 18A/18B/18C/18F (13), 22A/22F (1), 23A (2), 23B (6), 33F/A/37 (1), 35B (2), 24A/B/F (1), 17 (1) | |
5–15 y | 9 | 3 | 1 | 1 | 7F/7A (1), 11A/11D (1), 18A/18B/18C/18F (1), 24A/B/F (1) | |||||||
18–70 y | 17 | 7 | 4 | 1 | 13 (2), 15B/15C (1), 22A/22F (1), 38/25F/25A (1) | |||||||
[50] | Qatar | 134 | All age groups | 2005–2009 (Post PCV7/pre-PCV13 introduction) | <2 y | 23 | 8 | 10 | 2 | 35B (2), 24F (1) | ||
2–5 y | 28 | 14 | 7 | 1 | 2 | 9A (1), 12F/A/44/46 (1), 18 (1), 35B (1) | ||||||
6–64 y | 58 | 16 | 22 | 2 | 2 | 7 | 6C (1), 7C (1), 12F/A/44/46 (2), 18 (1), 18F (1), 31 (1), 34 (2) | |||||
>64 y | 25 | 6 | 10 | 1 | G (1),6A/6B (2), 7C (1), 12F/A/44/46 (1), 15A (1), 18F (1), 23A (1) | |||||||
[52] | Saudi Arabia | 71 | All age groups | 2000–2001 (pre-PCV7 introduction) | <15 y | 51 | 7 | 3 | 6 (10), 7 (2), 15 (5), 18 (3), 19 (4), 23 (6) | |||
≥15 y | 20 | 5 | 6 (1), 15 (3), 19 (6), 22 (2) | |||||||||
Children (<2 y): 27 isolates included in the 51 isolates for children <15 y | 27 isolates included in the 51 isolates for children <15 y | Serotypes 23 and 14 causing 6 (22%) cases. Serogroups/serotypes 3, 4, 6, 14 and 23 were the most common. | ||||||||||
[56] | Saudi Arabia | 350 | Pediatric | 2000–2004 (pre-PCV13 pre-PCV7 introduction) | <2 y | 159 | 132 | 7 | 11 | 7 (1), 11 (1), 15 (2), 22 (1), 23A (1), 23B (1), 24 (2) | ||
2–<5 y | 106 | 66 | 8 | 1 | 15 | 7 (2), 11 (4), 12 (1), 22 (3), 23A (2), 23B (1), 24 (3) | ||||||
5 y | 85 | 19 | 14 | 5 | 25 | 7 (3), 11 (1), 12 (6), 15 (4), 23A (3), 23B (3), 24 (2) | ||||||
[58] | Tunisia | 58 | Pediatrics | 1998–2004 (pre-PCV7 introduction) | <2 y | 38 | 38 | |||||
2–16 y | 20 | 20 | ||||||||||
[102] | Tunisia | 73 | All age groups | 2012–2016 (Pre PCV introduction) | <2 y | 25 | 18 | 4 | 1 | 9V/A (2) | ||
2–4 y | 5 | 3 | 2 | |||||||||
5–17 y | 5 | 2 | 1 | 1 | 1 | |||||||
18–65 y | 24 | 10 | 6 | 6C (1); 7C (1); 9V/A (2); 17F (1); 34 (1); 35B (1); 35F (1) | ||||||||
>65 y | 14 | 7 | 3 | 1 | 9V/A (1); 17F (1); 35B (1) | |||||||
[60] | Turkey | 27 | Pediatric | 2005–2007 (pre-PCV13 introduction) | <2 y | 14 | 10 | 4 | ||||
>2 y | 13 | 2 | 9 | 1 | 18 (1) | |||||||
Post- PCV13 introduction | ||||||||||||
[85] | Turkey | 252 | Adults ≥18 years | 2015–2018 (Post-PCV13 introduction) | <65 years | 108 | 5 | 10 | 5 other unknown serotypes covered by PPV23; unknown number of NVT cases (35F, 15A, and 18F) | |||
≥ 65 years | 58 | 2 | 8 | Unknown number of NVT cases (35F, 15A, and 11C) | ||||||||
Pre- and post-PCV13 introduction | ||||||||||||
[64] | Kuwait | 212 | All age groups | Pre-PCV7 vaccination 2003–2006 | <2 y | 9 | 5 | 1 | 1 | 1 | 33D (1) | |
2–5 y | 7 | 4 | 2 | 1 | ||||||||
6–50 y | 13 | 5 | 2 | 3 | 1 | 2 (2) | ||||||
51–65 y | 25 | 13 | 6 | 1 | 1 | 7C (1), 9A (1), 22A (2) | ||||||
>65 y | 9 | 6 | 1 | 1 | 9N (1) | |||||||
Post-PCV7 vaccination 2006–2010 | <2 y | 18 | 7 | 5 | 4 | 15C (1), 15F (1) | ||||||
2–5 y | 14 | 8 | 4 | 1 | 15C (1) | |||||||
6–50 y | 31 | 6 | 10 | 6 | 2 (1), 9L (1), 12B (1), 15C (1), 15F (2), 19C (1), 23A (2) | |||||||
51–65 y | 21 | 9 | 6 | 2 | 2 | 15A (1), 18A (1) | ||||||
>65 y | 23 | 6 | 7 | 1 | 5 | 1 | 15F (1), 20 (1), 33D (1) | |||||
Post-PCV13 vaccination 2010–2013 | <2 y | 4 | 1 | 1 | 1 | 1 | ||||||
2–5 y | 6 | 2 | 1 | 1 | 12B (1), 20 (1) | |||||||
6–50 y | 12 | 3 | 2 | 9L (2), 17F (1), 20 (1), 33D (3) | ||||||||
51–65 y | 9 | 1 | 2 | 5 | 15F (1) | |||||||
>65 y | 11 | 2 | 1 | 2 | 15A (1), 17F (1), 20 (1), 23A (1), 33A (1) | |||||||
[6] | Lebanon | 543 | All age groups | 2005–2009 (PCV7 era) | ≤5 y | 68 | 38 | 13 | 2 | 3 | 6 | 9N (1); 16F (1); 24F (1); 28A (1); 31 (1); 42 (1) |
6–60 y | 48 | 18 | 12 | 3 | 6 | 2 | 9N (2); 15A/A5F (2); 16F (1); 29 (1); 38/25 (1) | |||||
>60 y | 56 | 19 | 18 | 7 | 6 | 1 | 9N (2); 16F (1); 29 (1); 34 (1) | |||||
2010–2015 (post-PCV7/pre-PCV13 era) | ≤5 y | 76 | 34 | 24 | 1 | 5 | 2 | 2 (3); 9N (1); 10F/10C/33C (2); 16F (1); 23A (1); 24F (1); 35F/47 (1) | ||||
6–60 y | 64 | 21 | 24 | 4 | 2 (1); 6C (1); 9N (1); 10B (1); 13 (2); 15A/15F (1); 16F (1); 17F (1); 21 (2); 23A (2); 35B (1); 38/25 (1) | |||||||
>60 y | 61 | 21 | 20 | 5 | 1 | 3 | 2 (1); 6C (1); 9N (1); 10B (1); 16F (2); 20 (1); 23A (1); 31 (1); 38/25 (1); 39 (1) | |||||
2016–2020 (PCV13 era) | ≤5 y | 63 | 13 | 20 | 2 | 5 | 9 | 9N (2); 16F (1); 23A (2); 23B (1); 24F (5); 34 (1); 35B (1); 35F/47 (1) | ||||
6–60 y | 52 | 6 | 15 | 1 | 8 | 2 | 7C/7B/40F (2); 9N (1); 13 (1); 16F (1); 17F (1); 23A (1); 23B (2); 24F (4); 31 (2); 34 (2); 35A/35C/42 (2); 35F/47 (1) | |||||
>60 y | 55 | 12 | 18 | 4 | 6 | 6 | 2 (1); 9N (1); 10F/10C/33C (1); 15A/15F (1); 23A (1); 23B (2); 24F (1); 31 (1) | |||||
[5] | Morocco | 136 | Pediatrics | Pre-PCV13 introduction (2007–2010) | ≤2 y | 79 | 41 | 26 | 1 | 1 | 6 | 11A/11E (1), 18F (1), 10F (1), 24F (1) |
>2–5 y | 12 | 6 | 5 | 1 | ||||||||
Post-PCV13 introduction and PCV10 (2011–2014) | ≤2 y | 32 | 11 | 5 | 2 | 6 | 2 (3); 15A (1), 18F (2), 10F (1), 7A (1) | |||||
>2–5 y | 13 | 4 | 5 | 3 | 23B (1) | |||||||
[88] | Morocco | 239 | Adults | 2007–2010 (Pre-vaccine period) | 15–59 y | 71 | 14 | 19 | 10 | 2 (1); 7A (1); 7C (1); 10 (2); 23A (2); 34 (3); NVT (18) | ||
≥60 years | 15 | 3 | 6 | 1 | 2 | 9N (1)|; 20 (1); NVT (1) | ||||||
2011–2014 (Early post-vaccine period) | 15–59 y | 57 | 13 | 12 | 1 | 6 | 7A (2); 10 (1); 11 (2); 17F (2); 33 (1); 34 (1); 35F (1); NVT (15) | |||||
≥60 years | 26 | 5 | 9 | 5 | 17F (1); NVT (6) | |||||||
2015–2019 (Mature post-vaccine period) | 15–59 y | 58 | 2 | 13 | 1 | 4 | 9N (1); 11 (1); 17F (3); 23A (1); 33 (3); 34 (1); NVT (28) | |||||
≥60 years | 12 | 2 | 1 | 9N (1); 23A (1); NVT (7) | ||||||||
[89] | Turkey | 335 | Pediatric | 2008–2010 (pre-PCV7 introduction) | ≤5 y | 146 | 84 | 29 | 2 | 6 | 2 (2), 7A (1), 10 (1), 15 (2), 15C (2), 16F (1), 23A (1), 15 other serotypes | |
≥5–≤18 y | 56 | 12 | 9 | 3 | 7 | 6 (1), 7A (4), 10 (1), 15 (3), 15C (3), 17F (1), 12 other serotypes | ||||||
2011–2012 (Post-PCV7/During PCV13 introduction) | ≤5 y | 31 | 15 | 7 | 15C (1), 23A (1), 7 other serotypes | |||||||
≥5–≤18 y | 36 | 7 | 9 | 1 | 2 | 10 (1), 15 (2), 15C (2), 23A (1), 11 other serotypes | ||||||
2013–2014 (post-PCV13 introduction) | ≤5 y | 38 | 14 | 9 | 1 | 4 | 2 (1), 9 other serotypes | |||||
≥5–≤18 y | 28 | 6 | 7 | 1 | 3 | 10 (1), 15C (1), 9 other serotypes |
Author, Year | Country | Total Number of Tested Invasive Isolates | Specific Classification | Penicillin | Erythromycin | TMP/SMX | Ceftriaxone | Clindamycin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | R | S | I | R | S | I | R | S | I | R | S | I | R | ||||
Pre-PCV13 introduction | ||||||||||||||||||
[19] | Algeria | 100 | Blood (N = 22) | 46 | 11 | 22 | 51 | |||||||||||
CSF (N = 75) | ||||||||||||||||||
Pleural fluid (N = 3) | ||||||||||||||||||
<17 y (N = 46) | 37 | |||||||||||||||||
≥18 y (N = 54) | 16 | 4 | ||||||||||||||||
[20] | Algeria | 97 | 49 | 10 | 38 | 46 | ||||||||||||
[21] | Algeria | 80 | Meningitis (N = 39) | 26 | ||||||||||||||
Non-Meningitis (N = 25) | 20 | |||||||||||||||||
[74] | Algeria | Tested isolates: 216 for penicillin 181 for erythromycin | Proportion 41 (35–48) CI95 | 19 (14–26) | ||||||||||||||
Egypt | Tested isolates: 347 for penicillin 317 for erythromycin | 25 (21–30) | 23 (19–28) | |||||||||||||||
Jordan | Tested isolates: 57 for penicillin 46 for erythromycin | 33 (22–47) | 24 (13–39) | |||||||||||||||
Lebanon | Tested isolates: 16 for penicillin 16 for erythromycin | 50 (26–74) | 25 (8–53) | |||||||||||||||
Morocco | Tested isolates: 110 for penicillin 91 for erythromycin | 16 (10–25) | 12 (6–21) | |||||||||||||||
Tunisia | Tested isolates: 117 for penicillin 116 for erythromycin | 29 (21–38) | 33 (25–42) | |||||||||||||||
Turkey | Tested isolates: 369 for penicillin 342 for erythromycin | 20 (16–25) | 9 (6–12) | |||||||||||||||
[67] | Bahrain | 371 | Blood, CSF, and other invasive body fluids | 52 | 42 | |||||||||||||
[68] | Egypt | 52 | 12 | 40 | 52 | 39 | 13 | |||||||||||
[30] | Iran | 51 | 2014–2015 | 10 | 4 | 8 | ||||||||||||
2015–2016 | 11 | 11 | 14 | |||||||||||||||
2016–2017 | 10 | 14 | 9 | |||||||||||||||
2017–2018 | 14 | 14 | 13 | |||||||||||||||
Blood (PNSP isolates) | 45 | 43 | 44 | |||||||||||||||
[35] | Iran | 28 | Blood (N = 10) | 3 | 1 | 6 | ||||||||||||
CSF (N = 15) | 7 | 1 | 7 | |||||||||||||||
Pleural Fluid (N = 3) | 2 | 1 | ||||||||||||||||
[27] | Iran | 53 | Meningitis (N = 32) | 27 | 5 | 30 | 0 | 2 | ||||||||||
Non-meningitis (N = 21) | 15 | 2 | 4 | 5 | 1 | 15 | 7 | 2 | 12 | 19 | 0 | 2 | ||||||
[33] | Iran | 34 | Blood (N = 13) | 8 | ||||||||||||||
CSF (N = 15) | 4 | |||||||||||||||||
BAL (N = 6) | ||||||||||||||||||
[36] | Iran | 4 | BAL (N = 2) | 1 | 1 | 2 | 1 | 1 | 1 | 1 | ||||||||
Blood (N = 1) | 1 | 1 | 1 | 1 | ||||||||||||||
CSF (N = 1) | 1 | 1 | 1 | 1 | ||||||||||||||
[37] | Iran | 4 | CSF (meningitis cases) (N = 4) | 2 | ||||||||||||||
[31] | Iran | 44 | Blood | 7 | 32 | 38 | 19 | |||||||||||
[24] | Iraq | 18 | CSF (N = 18) | 8/17 (47%) | 9/17 (53%) | 2/12 (16.7%) | 10/12 (83%) | 2/18 (11%) | 16/18 (89%) | 2/15 (13%) | 13/15 (87%) | 7/17 (41%) | 10/17 (59%) | |||||
[91] | Kuwait | 24 | Blood | 9 | ||||||||||||||
[92] | Kuwait | 49 | Blood:25 isolates | Among the 11 isolates PRSP: 11% blood, 9% ET secretion, 4% CSF | ||||||||||||||
CSF:7 isolates | ||||||||||||||||||
Other invasive isolates:17 isolates | ||||||||||||||||||
[40] | Kuwait | 122 | Bronchial aspirates (N = 3) | 1 | 1 | 1 | 1 | 1 | ||||||||||
Pleural Fluid (N = 2) | 1 | 1 | 2 | 1 | ||||||||||||||
Tracheal secretions (N = 46) | 30 | 5 | 17 | 5 | 35 | |||||||||||||
Blood (N = 68) | 30 | 2 | 1 | 29 | 6 | 8 | 20 | 6 | ||||||||||
CSF (N = 3) | 3 | 2 | 1 | 2 | ||||||||||||||
[39] | Kuwait | 44 | Blood (N = 42) | 19 | ||||||||||||||
CSF (N = 2) | 2 | |||||||||||||||||
[38] | Kuwait | 129 | Blood (N = 116) | 0 | ||||||||||||||
CSF (N = 13) | 2 | |||||||||||||||||
[93] | Lebanon | 24 | Blood:17 isolates | 8 | 8 | 1 | ||||||||||||
CSF:7 isolates | 4 | 3 | 0 | |||||||||||||||
[41] | Lebanon | 27 | Blood (N = 20) | 11 | 5 | 4 | ||||||||||||
CSF (N = 5) | 2 | 3 | ||||||||||||||||
Abscess (N = 1) | 1 | |||||||||||||||||
Pleural Fluid (N = 1) | 1 | |||||||||||||||||
[94] | Lebanon | 22 | Blood (N = 16) | 6 | 10 | 0 | ||||||||||||
CSF (N = 6) | 2 | 3 | 1 | |||||||||||||||
[73] | Lebanon | 37 | 25 | 10 | 2 | |||||||||||||
[42] | Morocco | 531 | All ages (N = 531) | 105 | ||||||||||||||
Children (N = 252) (age ≤ 14 y) | 75 | |||||||||||||||||
Adults (N = 279) | 30 | |||||||||||||||||
[44] | Morocco | 24 | 15 | 4 | 8 | 24 | ||||||||||||
[43] | Morocco | 187 | 1994–2001 (pre-PCV7 introduction) | 19 | 15 | 6 | ||||||||||||
2006–2010 (pre-PCV13 introduction) | 50 | 17 | 7 | |||||||||||||||
[45] | Oman | 34 | Blood (N = 32) | 9 | ||||||||||||||
CSF (N = 2) | 2 | |||||||||||||||||
[46] | Pakistan | 87 | 8 | 54 | 27 | |||||||||||||
[48] | Pakistan | 267 | CSF (N = 267) | |||||||||||||||
Pre-2008 (N = 209) | 183 | 20 | 6 | |||||||||||||||
Post-2008 (N = 58) | 37 | 21 | ||||||||||||||||
[49] | Palestinian Territories | 120 | Blood | 120 | 82 | 5 | 33 | 46 | 21 | 53 | ||||||||
[50] | Qatar | 118 | 60 | 40 | 12 | 90 | 1 | 27 | 39 | 12 | 67 | |||||||
[98] | Saudi Arabia | 52 | Blood (N = 49) | 16 | ||||||||||||||
CSF (N = 3) | 3 | |||||||||||||||||
[76] | Saudi Arabia | 27 | Blood (N = 22) | 5 | 2 | |||||||||||||
CSF (N = 3) | 1 | 1 | ||||||||||||||||
Joint Fluid (N = 2) | 0 | 0 | ||||||||||||||||
[77] | Saudi Arabia | 49 | 10 | 4 | 5 | |||||||||||||
[99] | Saudi Arabia | 172 | 82 | 88 | 152/164 (93%) | 12/164 (7%) | ||||||||||||
[54] | Saudi Arabia | 62 | Blood (N = 58) | 31 | 22 | 5 | 46 | 12 | 35 | 1 | 22 | |||||||
CSF (N = 4) | ||||||||||||||||||
[51] | Saudi Arabia | 51 | Blood (N = 27) | 21 | ||||||||||||||
CSF (N = 24) | 16 | |||||||||||||||||
[100] | Saudi Arabia | 107 | Blood and CSF | 85 | 4 | 18 | 8 | 4 | 15 | |||||||||
[53] | Saudi Arabia | 50 | Blood | 29 | 17 | 4 | 19 | |||||||||||
[56] | Saudi Arabia | 350 | Blood (N = 287) | 161 | 147 | 42 | 91 | |||||||||||
CSF and other (N = 63) | ||||||||||||||||||
[58] | Tunisia | 106 | Blood (N = 40) | LR: 17, HR: 4 | ||||||||||||||
CSF (N = 52) | LR: 20, HR: 1 | |||||||||||||||||
Other invasive samples (joints, pleural and intraabdominal) (N = 14) | LR: 10, HR: 1 | |||||||||||||||||
[59] | Tunisia | 200 | Blood (N = 73) | LLR:25 HLR:14 | ||||||||||||||
CSF (N = 99) | LLR: 34 HLR: 3 | |||||||||||||||||
Pleural Punction, arthritis, osteomyelitis (N = 28) | LLR: 12 HLR:2 | |||||||||||||||||
[78] | Tunisia | 9 | Blood | 6 | 6 | 5 | ||||||||||||
[57] | Tunisia | 108 | 25 | |||||||||||||||
[79] | Tunisia | 106 | 72 | |||||||||||||||
Meningococcal isolates (n = 31) | 21 | 17 | ||||||||||||||||
Non-meningococcal isolates (n = 75) | 51 | |||||||||||||||||
[62] | Turkey | 124 | Blood (N = 84) | 84 | 82 | 80 | ||||||||||||
CSF (N = 40) | 40 | 40 | 38 | |||||||||||||||
[81] | Turkey | 218 | Blood (N = 91) | 64 | 24 | 3 | ||||||||||||
CSF (N = 59) | 44 | 14 | 1 | |||||||||||||||
Pleural Fluid (N = 23) | 17 | 6 | 0 | |||||||||||||||
BAL (N = 17) | 12 | 4 | 1 | |||||||||||||||
Tracheal Aspirate (N = 20) | 13 | 5 | 2 | |||||||||||||||
Peritoneal fluid (N = 8) | 6 | 2 | 0 | |||||||||||||||
[80] | Turkey | 332 | <3 y (N = 64) | 2 had MDR for Penicillin G + bactrim//1 had MDR for Penicillin G + Bactrim + erythromycin+ chloramphenicol///1 had MDR for Penicillin G + Bactrim + chloremphenicol | ||||||||||||||
≥3 y (N = 268) | 10 had MDR for Penicillin G and Bactrim//3 had MDR for penicillin G + bactrim + erythromycin///1 had MDR for Penicillin G + cefttriaxone | |||||||||||||||||
[61] | Turkey | 182 | CSF (N = 32) (15 adults, 17 children) | 16 (7 adults, 9 children) | ||||||||||||||
Blood (N = 150) | ||||||||||||||||||
Total (N = 182) | 1 (pediatric patient) | 22 (13 adults, 9 children) | 14 | |||||||||||||||
Post-PCV13 introduction | ||||||||||||||||||
[63] | Morocco | 65 | CSF (N = 65) | 50 | 15 | 55 | 8 | 42 | 6 | 12 | 62 | 2 | 1 | |||||
[83] | Oman | 132 | Meningitis (N = 23) | 14 | 0 | 9 | 95 | 3 | 34 | 89 | 8 | 35 | 22 | 1 | 0 | 110 | 22 | |
Non-meningitis (N = 109) | 23 | 0 | 0 | 108 | 1 | 0 | ||||||||||||
[101] | Saudi Arabia | 78 | Meningitis (N = 32) | 0 | 32 | 0 | ||||||||||||
Non-meningitis (N = 46) | 46 | 0 | 0 | |||||||||||||||
All cases | 60 | 78 | ||||||||||||||||
[84] | Turkey | 33 | Meningitis | 16 | 3 | |||||||||||||
Non-meningitis | 1 | 0 | ||||||||||||||||
[86] | Turkey | 110 | Oral penicillin (5), Penicillin parenteral non-meningitidis (78) Penicillin parenteral meningitidis (2) | Oral penicillin (34), Penicillin parenteral non-meningitidis (17) | Oral penicillin (56), Penicillin parenteral meningitidis (13) | 8 | 0 | 102 | ||||||||||
[87] | Turkey | 167 | 55 | 141 | ||||||||||||||
Pre- and post-PCV13 introduction | ||||||||||||||||||
[6] | Lebanon | 537 | 2005–2009 (PCV7 era) | |||||||||||||||
≤5 y | 44 | 6 | 9 | 42 | 26 | 17 | 5 | 41 | 45 | 8 | 5 | 7 | 3 | |||||
6–60 y | 39 | 2 | 6 | 39 | 11 | 16 | 6 | 25 | 43 | 2 | 2 | 1 | 2 | |||||
>60 y | 44 | 4 | 2 | 45 | 12 | 18 | 10 | 25 | 45 | 6 | 2 | 8 | 5 | |||||
2010–2015 (Post-PCV7/pre-PCV13 era) | ||||||||||||||||||
≤5 y | 43 | 4 | 9 | 47 | 1 | 33 | 26 | 5 | 31 | 43 | 5 | 1 | 30 | 1 | 12 | |||
6–60 y | 44 | 1 | 5 | 41 | 2 | 19 | 26 | 3 | 30 | 42 | 1 | 1 | 28 | 0 | 11 | |||
>60 y | 45 | 3 | 2 | 42 | 0 | 23 | 32 | 1 | 26 | 41 | 1 | 2 | 23 | 1 | 6 | |||
2016–2020 (PCV13 era) | ||||||||||||||||||
≤5 y | 43 | 7 | 38 | 2 | 16 | 25 | 4 | 28 | 47 | 1 | 42 | 2 | 14 | |||||
6–60 y | 40 | 1 | 35 | 4 | 9 | 22 | 3 | 23 | 39 | 38 | 1 | 9 | ||||||
>60 y | 45 | 39 | 11 | 27 | 5 | 18 | 45 | 43 | 7 | |||||||||
[5] | Morocco | 136 | Period 1 (pre-PCV13 implementation): ≤2 y (N = 79) | 40 | 13 | 31 | ||||||||||||
Period 1 (pre-PCV13 implementation): 2 y–<5 y (N = 12) | 5 | 3 | 4 | |||||||||||||||
period 2 (post-PCV13 implantation): ≤2 y (N = 32) | 7 | 8 | 2 | |||||||||||||||
Period 2 (post-PCV13 implementation):2 y–<5 y (N = 13) | 4 | 2 | 2 | |||||||||||||||
[88] | Morocco | 239 | 2007–2010 (Pre-vaccine period) | |||||||||||||||
15–59 y | 17 | 5 | 1 | |||||||||||||||
≥60 years | 2 | 1 | ||||||||||||||||
2011–2014 (Early post-vaccine period) | ||||||||||||||||||
15–59 y | 5 | 6 | 1 | |||||||||||||||
≥60 years | 2 | 2 | ||||||||||||||||
2015–2019 (Mature post-vaccine period) | ||||||||||||||||||
15–59 y | 11 | 11 | 2 | |||||||||||||||
≥60 years | 2 | 1 | ||||||||||||||||
[65] | Saudi Arabia | 208 | Period 1 (2006–2008) (N = 76) (Before the revision of breakpoints for meningitis, non-meningitis intravenous and oral administration) | 47/72 | 5/72 | 15/76 | ||||||||||||
Period 2 (2008–2012) (N = 132) (After the revision of breakpoints for meningitis, non-meningitis intravenous and oral administration) | Oral penicillin (76/115) Penicillin non-meningitis (1/125) Penicillin meningitis (0/120) | Oral penicillin (10/115) Penicillin non-meningitis (2/125) Penicillin meningitis (90/120) | 93/132 | |||||||||||||||
[89] | Turkey | 335 | 2008–2010 (N = 202) | 68 | ||||||||||||||
2011–2014 (N = 133) | 22 | |||||||||||||||||
Unspecified period | ||||||||||||||||||
[90] | Kingdom of Bahrain | 22 | Blood (N = 21) | 4 | 9 | |||||||||||||
CSF (N = 1) | 1 | 1 |
Author, Year | Country | Total Number of Isolates | ATB | Antimicrobial Sensitivity | PCV7 Serotypes | PCV13/non-PCV7 Serotypes | PCV15 Serotype 33F | PCV20 Serotypes | Non-Typeable | Other Serotypes (N) |
---|---|---|---|---|---|---|---|---|---|---|
Pre-PCV13 introduction | ||||||||||
[19] | Algeria | 100 | Penicillin | R (N = 43) | 35 | 8 | 2 | |||
Erythromycin | R (N = 16) | 12 | 3 | 1 | ||||||
[23] | Egypt | 205 | Penicillin | I (N = 97) | 43 | 26 | 3 | 10 | 9A (1), 10B (1), 15A (4), 16F (1), 20 (2), 22A (2), 23B (1), 35 (2), Pool C (2), Pool E (1), Pool G (1), Pool I (2) | |
R (N = 3) | 3 | |||||||||
Erythromycin | I and R (N = 26) | 12 | 6 | 1 | 2 (1), 18A (1), 20 (1), Pool C (2), Pool H (1), Pool I (1) | |||||
TMP/SMX | I and R (N = 149) | 49 | 41 | 4 | 8 | 2 (2), 7A (1), 7B (1), 7C (1), 9A (2), 10B (1), 10F (1), 11C (1), 15A (3), 16F (5), 17F (1), 18A (1), 20 (2), 22A (1), 23B (4), 33C (1), 35 (2), 37 (1), Pool C (2), Pool D (2), Pool E (2), Pool F (1), Pool G (1), Pool H (1), Pool I (7) | ||||
Ceftriaxone | I (N = 10) | 8 | 1 | |||||||
R (N = 3) | 3 | |||||||||
Chloramphenicol | I and R (N = 21) | 8 | 3 | 2 | 2 (2), 7A (1), 15A (1), 31 (2), Pool I (2) | |||||
Tetracyclin | I and R (N = 109) | 34 | 36 | 5 | 5 | 2 (3), 7A (1), 10B (1), 12A (1), 15A (1), 15C (1), 15F (1), 17F (1), 18A (1), 20 (3), 23B (4), 31 (1), Pool C (3), Pool D (1), Pool E (2), Pool H (1), Pool I (3) | ||||
[30] | Iran | 51 | Chloramphenicol | R (N = 29) | 11 | 8 | 1 | 6A/B (5); 15A (1); 15B/C (3) | ||
TMP/SMX | R (N = 36) | 15 | 9 | 1 | 6A/B (7); 15B/C (4) | |||||
Clindamycin | R (N = 36) | 14 | 9 | 1 | 6A/B (7); 15A (1); 15B/C (4) | |||||
Erythromycin | R (N = 45) | 14 | 17 | 1 | 6A/B (8); 15A (1); 15B/C (4) | |||||
Oxacillin | R (N = 18) | 10 | 4 | 1 | 6A/B (1); 15A (1); 15B/C (1) | |||||
Cefotaxime | R (N = 6) | 2 | 4 | 0 | ||||||
Tetracycline | R (N = 43) | 13 | 17 | 1 | 6A/B (7); 15A (1); 15B/C (4) | |||||
[34] | Iran | 53 (All PNSP) | Ceftriaxone | I (N = 19) | 16 | 6A/6B (1); NVT (2) | ||||
R (N = 14) | 9 | 4 | NVT (1) | |||||||
Cefotaxime | I (N = 13) | 10 | 1 | NVT (2) | ||||||
R (N = 16) | 11 | 4 | NVT (1) | |||||||
[39] | Kuwait | 43 | Penicillin | S (n = 16) | 3 | 9 | 1 | 11C (1), 16F (1), 17F (1) | ||
I (N = 22) | 14 | 3 | 1 | 9A (1), 15A (3) | ||||||
R (N = 5) | 5 | 0 | 0 | |||||||
[38] | Kuwait | 129 | Penicillin | R (N = 2) | 1 | 1 | ||||
[43] | Morocco | 187 | Penicillin | I and R (N = 66) | 41 | 10 | 1 | 3 | 2 (1), 7 (2), 9 (1), 19 (3), 23 (4) | |
[45] | Oman | 54 | Penicillin | R (N = 11) | 7 | 1 | 1 | 1 | 9A (1) | |
[46] | Pakistan | 87 | Chloramphenicol | R (N = 14) | 9 | 5 | ||||
Tetracyclin | R (N = 29) | 18 | 1 | Serogroup 16 (10) | ||||||
MDR | 7 isolates with serotype 19F (tetracycline and penicillin)/4 (Chloramphenicol and tetracyclin) | 1isolate with serotype 5 (co-trimoxazole and tetracyclin); 1 isolate with serotype 19A (co-trimoxazole and penicillin and tetracycline)/9 (chloramphenicol and tetracycline) | serotype 31: 1 MDR to Chloramphenicol and tetracyclin/12 MDR to co-trimoxazole, chloromphenicol and tetracycline; 15C (4 MDR to chloramphenicol and tetracycline); Serogroup 16 (2 MDR- chloramphenicol and tetracyclin) | |||||||
[49] | Palestinian Territories | 120 | Penicillin | S (N = 120) | 44 | 32 | 2 | 6 | 3 | 6A/B (17), 16F (2), Sg18 (5), 17F (1), 35B (3), 38F (1) |
Erythromycin | S (N = 82) | 26 | 27 | 1 | 5 | 3 | 6A/B (8), 16F (2), Sg18 (5), 17F (1), 35B (3), 38F (1) | |||
I (N = 5) | 1 | 3 | 6A/B (1) | |||||||
R (N = 33) | 17 | 6 | 1 | 1 | 6A/B (8) | |||||
TMP/SMX | S (N = 46) | 14 | 6 | 2 | 3 | 6A/B (9), 16F (2), Sg18 (5), 17F (1), 35B (3), 38F (1) | ||||
I (N = 21) | 4 | 12 | 3 | 6A/B (2) | ||||||
R (N = 53) | 26 | 18 | 2 | 1 | 6A/B (6) | |||||
Vancomycin | S (N = 120) | 44 | 32 | 2 | 6 | 3 | 6A/B (17), 16F (2), Sg18 (5), 17F (1),35B (3), 38F (1) | |||
Cefotaxime | S (N = 120) | 44 | 32 | 2 | 6 | 3 | 6A/B (17), 16F (2), Sg18 (5), 17F (1),35B (3), 38F (1) | |||
Ofloxacin | S (N = 118) | 42 | 32 | 2 | 6 | 3 | 6A/B (17), 16F (2), Sg18 (5), 17F (1),35B (3), 38F (1) | |||
I (N = 2) | 2 | |||||||||
[56] | Saudi Arabia | 350 | Penicillin | S (N = 161) | 77 | 16 | 6 | 25 | Serogroup 7 (6), serogroup 11 (6), serogroup 12 (7), serogroup 15 (3), serogroup 22 (4), 23A (4), 23B (2), 24 (5) | |
I (N = 147) | 110 | 4 | 1 | serogroup 15 (2), 23A (1), 23B (2), 24 (2) | ||||||
R (N = 42) | 30 | 8 | 1 | serogroup 15 (1), 23A (1), 23B (1) | ||||||
Erythromycin | R (N = 91) | 70 | 10 | 5 | serogroup 15 (3), 23B (1), 24 (2) | |||||
Cefotaxime | R (N = 23) | 16 | 4 | 0 | 23A (1) | |||||
[79] | Tunisia | 106 | Penicillin | S (N = 35) | 11 | 15 | 7C (1); 9N (1), 13 (1); 16F (2); 17F (2); 24F (1); 34 (1) | |||
I (N = 59) | 38 | 11 | 6C (1); 9A (2); 9N (2); 17F (1); 35B (3); 35F (1) | |||||||
R (N = 12) | 10 | 1 | 9A (1) | |||||||
Cefotaxime | S (N = 89) | 44 | 26 | 6C (1); 7C (1); 9A (3); 9N (3); 13 (1); 16F (2); 17F (3); 24F (1); 34 (1); 35B (2); 35F (1) | ||||||
I (N = 17) | 15 | 1 | 35B (1) | |||||||
Tetracycline | S (N = 66) | 34 | 19 | 7C (1); 9N (1); 13 (1); 16F (2); 17F (3); 34 (1); 35B (3); 35F (1) | ||||||
I (N = 5) | 3 | 2 | ||||||||
R (N = 35) | 22 | 6 | 6C (1); 9A (3); 9N (2); 24F (1) | |||||||
Erythromycin | S (N = 39) | 16 | 13 | 7C (1); 9N (1); 13 (1); 16F (2); 17F (2); 34 (1); 35B (1); 35F (1) | ||||||
I (N = 1) | 1 | |||||||||
R (N = 66) | 43 | 13 | 6C (1); 9A (3); 9N (2); 17F (1); 24F (1); 35B (2) | |||||||
Pre- and post-PCV13 introduction | ||||||||||
[6] | Lebanon | 542 | Penicillin | S (N = 387) | 105 | 124 | 21 | 31 | 19 | 2 (4); 6C (2); 7C/7B/40F (2); 9N (7); 10B (2); 10F/10C/33C (2); 13 (3); 15A/15F (4); 16F (7); 17F (2); 20 (2); 21 (2); 23A (5); 23B (5); 23F (11); 24F (9); 28A (1); 29 (2); 31 (5); 34 (4); 35A/35C/42 (1); 35F/47 (2); 38/25 (2); 42 (1); |
I (N = 20) | 17 | 1 | 2 (1); 9N (1) | |||||||
R (N = 43) | 24 | 4 | 4 | 16F (1); 23F (3); 24F (1); 35B (2); 35F/47 (1); 38/25 (1); 9N (2); | ||||||
Ceftriaxone | S (N = 384) | 111 | 127 | 19 | 35 | 18 | 2 (3); 6C (1); 7C/7B/40F (1); 9N (8); 10B (2); 13 (3); 15A/15F (4); 16F (7); 17F (1); 20 (2); 21 (2); 23A (5); 23B (5); 24F (9); 28A (1); 29 (2); 31 (5); 34 (4); 35A/35C/42 (1); 35B (2); 35F/47 (3); 38/25 (3) | |||
I (N = 23) | 17 | 2 | 1 | 2 | 9N (1) | |||||
R (N = 13) | 12 | 1 | ||||||||
Tetracycline | S (N = 349) | 94 | 120 | 18 | 31 | 19 | 2 (5); 6C (2); 7C/7B/40F (2); 9N (7); 10B (1); 10F/10C/33C (2); 13 (3); 15A/15F (3); 16F (8); 17F (1); 20 (1); 21 (2); 23A (3); 23B (5); 24F (5); 28A (1); 29 (2); 31 (5); 34 (2); 35B (2); 35F/47 (3); 38/25 (1); 42 (1) | |||
I (N = 22) | 7 | 9 | 2 | 2 | 9N (2) | |||||
R (N = 125) | 66 | 25 | 1 | 9 | 6 | 2 (1); 10F/10C/33C (1); 15A/15F (1); 20 (1); 23A (2); 24F (6); 34 (2); 35A/35C/42 (1); 38/25 (1); 9N (2) | ||||
Erythromycin | S (N = 358) | 93 | 125 | 21 | 34 | 16 | 2 (4); 6C (1); 7C/7B/40F (2); 9N (10); 10B (2); 10F/10C/33C (1); 13 (4); 15A/15F (3); 16F (7); 17F (1); 20 (2); 21 (2); 23A (3); 23B (5); 24F (3); 28A (1); 29 (2); 31 (5); 34 (3); 35B (2); 35F/47 (3); 38/25 (2); 42 (1) | |||
I (N = 8) | 1 | 3 | 1 | 2 (1); 24F (1); 35A/35C/42 (1) | ||||||
R (N = 153) | 80 | 34 | 3 | 9 | 10 | 10F/10C/33C (2); 15A/15F (1); 16F (2); 2 (1); 23A (1); 24F (7); 38/25 (1); 6C (1); 9N (1) | ||||
Chloramphenicol | S (N = 409) | 135 | 127 | 15 | 37 | 22 | 2 (5); 6C (1); 7C/7B/40F (2); 9N (9); 10B (2); 10F/10C/33C (2); 13 (4); 15A/15F (3); 16F (7); 17F (1); 20 (1); 21 (2); 23A (4); 23B (4); 24F (10); 29 (2); 31 (5); 34 (1); 35A/35C/42 (1); 35B (2); 35F/47 (3); 38/25 (2) | |||
R (N = 40) | 13 | 10 | 4 | 1 | 1 | 2 (1); 6C (1); 16F (2); 23A (1); 23B (1); 34 (3); 9N (2) | ||||
Clindamycin | S (N = 212) | 52 | 71 | 9 | 14 | 16 | 2 (4); 6C (1); 7C/7B/40F (2); 9N (6); 10B (2); 10F/10C/33C (1); 13 (3); 15A/15F (1); 16F (6); 17F (1); 20 (1); 21 (2); 23A (3); 23B (4); 24F (3); 31 (4); 34 (1); 35B (2); 35F/47 (2); 38/25 (1) | |||
I (N = 5) | 2 | 1 | 23B (1); 34 (1) | |||||||
R (N = 64) | 21 | 18 | 7 | 4 | 2 (2); 10F/10C/33C (1); 15A/15F (1); 23A (1); 24F (7); 34 (1); 35A/35C/42 (1) | |||||
TMP/SMX | S (N = 201) | 41 | 77 | 14 | 12 | 14 | 2 (4); 7C/7B/40F (2); 9N (2); 10B (1); 10F/10C/33C (2); 13 (2); 15A/15F (3); 16F (2); 17F (1); 23A (2); 23B (2); 24F (3); 28A (1); 29 (2); 31 (4); 34 (1); 35A/35C/42 (1); 35B (2); 35F/47 (3); 38/25 (3) | |||
I (N = 43) | 11 | 18 | 6 | 4 | 24F (2); 34 (1); 9N (1) | |||||
R (N = 242) | 109 | 58 | 1 | 22 | 10 | 2 (2); 6C (2); 9N (8); 10B (1); 10F/10C/33C (1); 13 (2); 15A/15F (1); 16F (5); 20 (2); 21 (2); 23A (3); 23B (3); 24F (6); 31 (1); 34 (2); 42 (1) | ||||
Levofloxacin | S (N = 448) | 149 | 143 | 18 | 37 | 24 | 2 (5); 6C (2); 7C/7B/40F (2); 9N (8); 10B (2); 10F/10C/33C (3); 13 (3); 15A/15F (4); 16F (7); 17F (1); 20 (1); 21 (2); 23A (4); 23B (5); 24F (10); 28A (1); 29 (1); 31 (5); 34 (3); 35A/35C/42 (1); 35B (2); 35F/47 (3); 38/25 (2) | |||
I (N = 3) | 1 | 16F (2) | ||||||||
R (N = 14) | 3 | 5 | 3 | 1 | 23A (1); 24F (1) | |||||
Vancomycin | S (N = 504) | 169 | 158 | 24 | 38 | 24 | 2 (6); 6C (2); 7C/7B/40F (2); 9N (11); 10B (2); 10F/10C/33C (3); 13 (4); 15A/15F (4); 16F (9); 17F (1); 20 (2); 21 (2); 23A (5); 23B (5); 24F (11); 28A (1); 29 (2); 31 (5); 34 (4); 35A/35/42 (1); 35B (2); 35F/47 (3); 38/25 (3); 42 (1) | |||
R (N = 3) | 1 | 2 | ||||||||
Unspecified period | ||||||||||
[90] | Kingdom of Bahrain | 17 | Penicillin | S (N = 5) | 0 | 2 | 6 (2), 19 (1) | |||
I (N = 7) | 1 | 0 | 6 (5), 19 (1) | |||||||
R (N = 4) | 0 | 0 | 6 (1), 19 (2), 23 (1) | |||||||
Erythromycin | S (N = 8) | 0 | 2 | 6 (4), 19 (2) | ||||||
R (N = 8) | 1 | 0 | 6 (4), 19 (2), 23 (1) | |||||||
Tetracycline | S (N = 10) | 0 | 2 | 6 (6), 19 (2) | ||||||
R (N = 7) | 1 | 0 | 6 (3), 19 (2), 23 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Zein, Z.; Nasser, M.; Boutros, C.F.; Tfaily, N.; Reslan, L.; Faour, K.; Merhi, S.; Damaj, S.; Moumneh, M.B.; Bou Dargham, T.; et al. Changing Landscape of Invasive Pneumococcal Disease Serotypes and Antimicrobial Resistance Following Pneumococcal Conjugate Vaccine Introduction in the Middle East and North Africa Region: A Systematic Review. Vaccines 2025, 13, 923. https://doi.org/10.3390/vaccines13090923
El Zein Z, Nasser M, Boutros CF, Tfaily N, Reslan L, Faour K, Merhi S, Damaj S, Moumneh MB, Bou Dargham T, et al. Changing Landscape of Invasive Pneumococcal Disease Serotypes and Antimicrobial Resistance Following Pneumococcal Conjugate Vaccine Introduction in the Middle East and North Africa Region: A Systematic Review. Vaccines. 2025; 13(9):923. https://doi.org/10.3390/vaccines13090923
Chicago/Turabian StyleEl Zein, Zeinab, Mayse Nasser, Celina F. Boutros, Nadim Tfaily, Lina Reslan, Kawthar Faour, Sarah Merhi, Stephanie Damaj, Mohammad Bahij Moumneh, Tarek Bou Dargham, and et al. 2025. "Changing Landscape of Invasive Pneumococcal Disease Serotypes and Antimicrobial Resistance Following Pneumococcal Conjugate Vaccine Introduction in the Middle East and North Africa Region: A Systematic Review" Vaccines 13, no. 9: 923. https://doi.org/10.3390/vaccines13090923
APA StyleEl Zein, Z., Nasser, M., Boutros, C. F., Tfaily, N., Reslan, L., Faour, K., Merhi, S., Damaj, S., Moumneh, M. B., Bou Dargham, T., Youssef, N., Haj, M., Bou Karroum, S., Khafaja, S., Assaf Casals, A., Chamseddine, S., Hneiny, L., & Dbaibo, G. S. (2025). Changing Landscape of Invasive Pneumococcal Disease Serotypes and Antimicrobial Resistance Following Pneumococcal Conjugate Vaccine Introduction in the Middle East and North Africa Region: A Systematic Review. Vaccines, 13(9), 923. https://doi.org/10.3390/vaccines13090923