mRNA and DNA-Based Vaccines in Genitourinary Cancers: A New Frontier in Personalized Immunotherapy
Abstract
1. Introduction
2. Immunological Basis of Cancer Vaccination
2.1. Tumor Antigens and Neoantigen Targeting
2.2. Mechanisms of Antigen Presentation
2.3. Role of CD8+ and CD4+ T Cells in Antitumor Immunity
3. mRNA and DNA Vaccines: Platforms and Mechanisms
3.1. mRNA Vaccine Design and Delivery
3.2. DNA Vaccine Mechanisms
Features | mRNA Vaccines | DNA Vaccines |
---|---|---|
Delivery System | Lipid nanoparticles (LNPs) [19] | Electroporation, gene gun [22,23] |
Site of Expression | Cytoplasm [6,19] | Nucleus (transcription) → Cytoplasm (translation) [22,23] |
Manufacturing Speed | Rapid (within weeks) [19] | Moderate (weeks to months) [22,23] |
Stability | Low (cold-chain required, −80 °C) [19] | High (room temperature possible) [23] |
Integration Risk | None [6,19] | Very low [23] |
Innate Immunogenicity | High (can be modulated with modifications) [19,20] | Low to moderate (requires adjuvants) [22,23] |
Storage | Sensitive to temperature [19] | Stable at ambient conditions [23] |
Exploratory or investigational stages in GU Cancers * | Under early-phase clinical trials [5,7,15,16,24] | Advanced to Phase II in prostate cancer [15,16,24] |
Limitations | Requires ultra-cold chain; relatively low long-term stability; potential for high reactogenicity without modification; scalability challenges in resource-limited settings. | Requires nuclear entry for expression; generally lower immunogenicity without adjuvants; electroporation can cause local discomfort; slower manufacturing timelines. |
3.3. Comparative Advantages and Limitations
4. Applications in Genitourinary Cancers
4.1. Prostate Cancer
4.2. Bladder Cancer
4.3. Renal Cell Carcinoma (RCC)
Vaccine Type | Target Antigen(s) | Cancer Type | Delivery Platform | Trial Phase | Key Findings | References |
---|---|---|---|---|---|---|
mRNA (BNT112) | PSA, PSMA, PAP, STEAP1 | Prostate | Lipid nanoparticles | Phase I | CD8+ and CD4+ T-cell activation; early PSA reductions; good safety profile in mCRPC and localized cases | [26,27] |
DNA (INO-5150) | PSA, PAP | Prostate | Electroporation | Phase I | Antigen-specific T-cell responses in >70% of patients; minimal adverse effects | [28] |
mRNA (Neo-Ag Combo) | Patient-specific neoantigens | Bladder | Lipid nanoparticles | Phase I | Ongoing; preclinical synergy with PD-L1 blockade; durable responses in MIBC models | [30,31] |
DNA (CAIX/Survivin) | CAIX, Survivin | Renal cell carcinoma | Electroporation | Preclinical | Tumor regression; enhanced CD8+ infiltration; improved survival in murine models | [33,34,35] |
5. Integration with Combination Therapies
5.1. Immune Checkpoint Inhibitors
5.2. Cytokine and Adjuvant Synergy
5.3. Radiotherapy and Chemotherapy Combinations
6. Technological Innovations Driving Personalized Vaccines
6.1. Next-Generation Sequencing (NGS)
6.2. Artificial Intelligence (AI) in Epitope Prediction
6.3. Nanotechnology-Based Delivery Systems
7. Challenges and Future Perspectives
7.1. Tumor Microenvironment and Immune Evasion
7.2. Regulatory and Manufacturing Hurdles
7.3. Clinical Trial Design and Biomarker Development
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Thana, M.; Wood, L. Immune Checkpoint Inhibitors in Genitourinary Malignancies. Curr. Oncol. 2020, 27, 69–77. [Google Scholar] [CrossRef]
- Banchereau, R.; Hong, S.; Cantarel, B.; Baldwin, N.; Baisch, J.; Edens, M.; Cepika, A.M.; Acs, P.; Turner, J.; Anguiano, E.; et al. Personalized Immunomonitoring Uncovers Molecular Networks That Stratify Lupus Patients. Cell 2016, 165, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. The Future of Immune Checkpoint Therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA Delivery to Dendritic Cells Exploits Antiviral Defence for Cancer Immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö. Personalized Vaccines for Cancer Immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef]
- Yao, R.; Xie, C.; Xia, X. Recent Progress in MRNA Cancer Vaccines. Hum. Vaccines Immunother. 2024, 20, 2307187. [Google Scholar] [CrossRef]
- Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanović, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; et al. Actively Personalized Vaccination Trial for Newly Diagnosed Glioblastoma. Nature 2019, 565, 240–245. [Google Scholar] [CrossRef]
- Becker, J.T.; Olson, B.M.; Johnson, L.E.; Davies, J.G.; Dunphy, E.J.; McNeel, D.G. DNA Vaccine Encoding Prostatic Acid Phosphatase (PAP) Elicits Long-Term T-Cell Responses in Patients with Recurrent Prostate Cancer. J. Immunother. 2010, 33, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Vohra, J.; Barbosa, G.; Pascoal, L.B.; Reis, L.O. Advances in Genitourinary Tumor Genomics and Immunotherapy. Genes 2025, 16, 667. [Google Scholar] [CrossRef] [PubMed]
- Cheever, M.A.; Allison, J.P.; Ferris, A.S.; Finn, O.J.; Hastings, B.M.; Hecht, T.T.; Mellman, I.; Prindiville, S.A.; Viner, J.L.; Weiner, L.M.; et al. The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clin. Cancer Res. 2009, 15, 5323–5337. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An Immunogenic Personal Neoantigen Vaccine for Patients with Melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in Patients with Locally Advanced and Metastatic Urothelial Carcinoma Who Have Progressed Following Treatment with Platinum-Based Chemotherapy: A Single-Arm, Multicentre, Phase 2 Trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.-P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; et al. Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. MRNA Vaccines—A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- McNeel, D.G.; Dunphy, E.J.; Davies, J.G.; Frye, T.; Johnson, L.E.; Staab, M.J.; Horvath, D.; Straus, J.; Alberti, D.; Marnocha, R.; et al. Safety and Immunological Efficacy of a DNA Vaccine Encoding Prostatic Acid Phosphatase in Patients with Stage D0 Prostate Cancer. J. Clin. Oncol. 2009, 27, 4047–4054. [Google Scholar] [CrossRef]
- Walter, S.; Weinschenk, T.; Stenzl, A.; Zdrojowy, R.; Pluzanska, A.; Szczylik, C.; Staehler, M.; Brugger, W.; Dietrich, P.-Y.; Mendrzyk, R.; et al. Multipeptide Immune Response to Cancer Vaccine IMA901 after Single-Dose Cyclophosphamide Associates with Longer Patient Survival. Nat. Med. 2012, 18, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, B.; Li, B.; Wu, H.; Jiang, M. Cold and Hot Tumors: From Molecular Mechanisms to Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 274. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid Nanoparticles for MRNA Delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Casmil, I.C.; Jin, J.; Won, E.-J.; Huang, C.; Liao, S.; Cha-Molstad, H.; Blakney, A.K. The Advent of Clinical Self-Amplifying RNA Vaccines. Mol. Ther. 2025, 33, 2565–2582. [Google Scholar] [CrossRef] [PubMed]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, Efficacy, and Immunogenicity of VGX-3100, a Therapeutic Synthetic DNA Vaccine Targeting Human Papillomavirus 16 and 18 E6 and E7 Proteins for Cervical Intraepithelial Neoplasia 2/3: A Randomised, Double-Blind, Placebo-Controlled Phase 2b Trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef]
- Sardesai, N.Y.; Weiner, D.B. Electroporation Delivery of DNA Vaccines: Prospects for Success. Curr. Opin. Immunol. 2011, 23, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Jahanafrooz, Z.; Baradaran, B.; Mosafer, J.; Hashemzaei, M.; Rezaei, T.; Mokhtarzadeh, A.; Hamblin, M.R. Comparison of DNA and MRNA Vaccines against Cancer. Drug Discov. Today 2020, 25, 552–560. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Linch, M.; Papai, Z.; Takacs, I.; Imedio, E.R.; Kühnle, M.-C.; Derhovanessian, E.; Vogler, I.; Renken, S.; Graham, P.; Sahin, U.; et al. 421 A First-In-Human (FIH) Phase I/IIa Clinical Trial Assessing a Ribonucleic Acid Lipoplex (RNA-LPX) Encoding Shared Tumor Antigens for Immunotherapy of Prostate Cancer; Preliminary Analysis of PRO-MERIT. J. Immunother. Cancer 2021, 9. [Google Scholar] [CrossRef]
- Shore, N.D.; Heath, E.; Nordquist, L.; Cheng, H.; Bhatt, K.; Morrow, M.; McMullan, T.; Kraynyak, K.; Lee, J.; Sacchetta, B.; et al. Evaluation of an immunotherapeutic DNA-vaccine in biochemically relapsed prostate cancer. J. Clin. Oncol. 2018, 36, 5078. [Google Scholar] [CrossRef]
- Shore, N.D.; Heath, E.; Nordquist, L.; Cheng, H.; Bhatt, K.; Morrow, M.; McMullan, T.; Kraynyak, K.; Lee, J.; Sacchetta, B.; et al. Safety and Immunogenicity of a DNA-Vaccine Immunotherapy in Men with Biochemically (PSA) Relapsed Prostate Cancer. Ann. Oncol. 2017, 28, v272. [Google Scholar] [CrossRef]
- Collins, J.M.; Redman, J.M.; Gulley, J.L. Combining Vaccines and Immune Checkpoint Inhibitors to Prime, Expand, and Facilitate Effective Tumor Immunotherapy. Expert Rev. Vaccines 2018, 17, 697–705. [Google Scholar] [CrossRef]
- Saxena, M.; Anker, J.F.; Kodysh, J.; O’Donnell, T.; Kaminska, A.M.; Meseck, M.; Hapanowicz, O.; Niglio, S.A.; Salazar, A.M.; Shah, H.R.; et al. Atezolizumab plus personalized neoantigen vaccination in urothelial cancer: A phase 1 trial. Nat. Cancer 2025, 6, 988–999. [Google Scholar] [CrossRef]
- Lv, R.; Liu, Z.; Lv, M.; Song, Y.; Wang, J.; Mu, H.; Zhang, Y.; Wang, X. Neoantigen Immunotherapy: A Novel Treatment for Bladder Cancer. Explor. Target. Anti-Tumor Ther. 2025, 6, 1002288. [Google Scholar] [CrossRef]
- Li, X.; You, J.; Hong, L.; Liu, W.; Guo, P.; Hao, X. Neoantigen Cancer Vaccines: A New Star on the Horizon. Cancer Biol. Med. 2023, 21, 274–311. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Zheng, A.; Xie, F.; Kesse, S.; Yang, Y.; Peng, J.; Xu, Y. Enhanced Anti-Tumor Efficacy of Electroporation (EP)-Mediated DNA Vaccine Boosted by Allogeneic Lymphocytes in Pre-Established Tumor Models. Cancer Immunol. Immunother. 2024, 73, 248. [Google Scholar] [CrossRef] [PubMed]
- Lladser, A.; Ljungberg, K.; Tufvesson, H.; Tazzari, M.; Roos, A.-K.; Quest, A.F.G.; Kiessling, R. Intradermal DNA Electroporation Induces Survivin-Specific CTLs, Suppresses Angiogenesis and Confers Protection against Mouse Melanoma. Cancer Immunol. Immunother. CII 2010, 59, 81–92. [Google Scholar] [CrossRef]
- Wang, Y.; Suarez, E.R.; Kastrunes, G.; Pacheco, S.; Abbas, R.; Pivetta, R.S.; Murugan, N.; Chalbatani, G.M.; D’Andrea, V.; Marasco, W.A. Evolution of Cell Therapy for Renal Cell Carcinoma. Mol. Cancer 2024, 23, 8. [Google Scholar] [CrossRef]
- Tonelli, T.P.; Eickhoff, J.C.; Johnson, L.E.; Liu, G.; McNeel, D.G. Long-Term Follow up of Patients Treated with a DNA Vaccine (PTVG-Hp) for PSA-Recurrent Prostate Cancer. Hum. Vaccines Immunother. 2024, 20, 2395680. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Nguyen, B.; Mukhopadhyay, A.; Han, M.; Zhang, J.; Gujar, R.; Salazar, J.; Hermiz, R.; Svenson, L.; Browning, E.; et al. Amplification of the CXCR3/CXCL9 Axis via Intratumoral Electroporation of Plasmid CXCL9 Synergizes with Plasmid IL-12 Therapy to Elicit Robust Anti-Tumor Immunity. Mol. Ther.-Oncolytics 2022, 25, 174–188. [Google Scholar] [CrossRef]
- Zhao, Q.; Hu, J.; Mitra, A.; Cutrera, J.; Zhang, W.; Zhang, Z.; Yan, J.; Xia, X.; Mahadeo, K.M.; Livingston, J.A.; et al. Tumor-Targeted IL-12 Combined with Tumor Resection Yields a Survival-Favorable Immune Profile. J. Immunother. Cancer 2019, 7, 154. [Google Scholar] [CrossRef]
- Yadollahvandmiandoab, R.; Jalalizadeh, M.; Buosi, K.; Garcia-Perdomo, H.A.; Reis, L.O. Immunogenic Cell Death Role in Urothelial Cancer Therapy. Curr. Oncol. 2022, 29, 6700–6713. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, H.; He, R.; Song, X.; Chen, S.; Yu, N.; Li, W.; Li, F.; Jiang, Q. Exposure to Low-Dose Radiation Enhanced the Antitumor Effect of a Dendritic Cell Vaccine. Dose-Response 2019, 17, 1559325819832144. [Google Scholar] [CrossRef] [PubMed]
- Langroudi, L.; Hassan, Z.M.; Ebtekar, M.; Mahdavi, M.; Pakravan, N.; Noori, S. A Comparison of Low-Dose Cyclophosphamide Treatment with Artemisinin Treatment in Reducing the Number of Regulatory T Cells in Murine Breast Cancer Model. Int. Immunopharmacol. 2010, 10, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.G.; Li, F.; Roszik, J.; Lizée, G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov. 2021, 11, 1024–1039. [Google Scholar] [CrossRef]
- Mukheja, Y.; Pal, K.; Ahuja, A.; Sarkar, A.; Kumar, B.; Kuhad, A.; Chopra, K.; Jain, M. Nanotechnology and Artificial Intelligence in Cancer Treatment. Next Res. 2025, 2, 100179. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Besser, H.; Yunger, S.; Merhavi-Shoham, E.; Cohen, C.J.; Louzoun, Y. Level of Neo-Epitope Predecessor and Mutation Type Determine T Cell Activation of MHC Binding Peptides. J. Immunother. Cancer 2019, 7, 135. [Google Scholar] [CrossRef]
- Hundal, J.; Kiwala, S.; McMichael, J.; Miller, C.A.; Xia, H.; Wollam, A.T.; Liu, C.J.; Zhao, S.; Feng, Y.-Y.; Graubert, A.P.; et al. pVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens. Cancer Immunol. Res. 2020, 8, 409–420. [Google Scholar] [CrossRef]
- Wang, H.-L.; Wang, Z.-G.; Liu, S.-L. Lipid Nanoparticles for MRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022, 27, 5607. [Google Scholar] [CrossRef]
- He, S.; Zheng, L.; Qi, C. Myeloid-Derived Suppressor Cells (MDSCs) in the Tumor Microenvironment and Their Targeting in Cancer Therapy. Mol. Cancer 2025, 24, 5. [Google Scholar] [CrossRef]
- Tomassetti, C.; Insinga, G.; Gimigliano, F.; Morrione, A.; Giordano, A.; Giurisato, E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024, 12, 2381. [Google Scholar] [CrossRef]
- Sánchez-León, M.L.; Jiménez-Cortegana, C.; Cabrera, G.; Vermeulen, E.M.; de la Cruz-Merino, L.; Sánchez-Margalet, V. The Effects of Dendritic Cell-Based Vaccines in the Tumor Microenvironment: Impact on Myeloid-Derived Suppressor Cells. Front. Immunol. 2022, 13, 1050484. [Google Scholar] [CrossRef]
- Diaz-Montero, C.M.; Finke, J.; Montero, A.J. Myeloid-Derived Suppressor Cells in Cancer: Therapeutic, Predictive, and Prognostic Implications. Semin. Oncol. 2014, 41, 174–184. [Google Scholar] [CrossRef]
- Perez-Penco, M.; Weis-Banke, S.E.; Schina, A.; Siersbæk, M.; Hübbe, M.L.; Jørgensen, M.A.; Lecoq, I.; de la Torre, L.L.; Bendtsen, S.K.; Martinenaite, E.; et al. TGFβ-Derived Immune Modulatory Vaccine: Targeting the Immunosuppressive and Fibrotic Tumor Microenvironment in a Murine Model of Pancreatic Cancer. J. Immunother. Cancer 2022, 10, e005491. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, A.Z.; Dallos, M.C.; Zahurak, M.L.; Partin, A.W.; Schaeffer, E.M.; Ross, A.E.; Allaf, M.E.; Nirschl, T.R.; Liu, D.; Chapman, C.G.; et al. T-Cell Infiltration and Adaptive Treg Resistance in Response to Androgen Deprivation with or without Vaccination in Localized Prostate Cancer. Clin. Cancer Res. 2020, 26, 3182–3192. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; Xu, K.; Luo, Z. Targeting the CSF1/CSF1R Signaling Pathway: An Innovative Strategy for Ultrasound Combined with Macrophage Exhaustion in Pancreatic Cancer Therapy. Front. Immunol. 2024, 15, 1582305. [Google Scholar] [CrossRef]
- Tousian, B.; Khosravi, A.R.; Ghasemi, M.H.; Kadkhodaie, M. Biomimetic Functionalized Metal Organic Frameworks as Multifunctional Agents: Paving the Way for Cancer Vaccine Advances. Mater. Today Bio 2024, 27, 101134. [Google Scholar] [CrossRef]
- Rahman, M. Editorial: Design Considerations for Future Personalized Vaccination Approaches. Nanomedicine 2024, 20, 329–334. [Google Scholar] [CrossRef]
- Lowdell, M.W. Considerations for Manufacturing of Cell and Gene Medicines for Clinical Development. Cytotherapy 2024, 27, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Webb, C.; Ip, S.; Bathula, N.V.; Popova, P.; Soriano, S.K.V.; Ly, H.H.; Eryilmaz, B.; Nguyen Huu, V.A.; Broadhead, R.; Rabel, M.; et al. Current Status and Future Perspectives on MRNA Drug Manufacturing. Mol. Pharm. 2022, 19, 1047–1058. [Google Scholar] [CrossRef]
- Al Fayez, N.; Nassar, M.S.; Alshehri, A.A.; Alnefaie, M.K.; Almughem, F.A.; Alshehri, B.Y.; Alawad, A.O.; Tawfik, E.A. Recent Advancement in MRNA Vaccine Development and Applications. Pharmaceutics 2023, 15, 1972. [Google Scholar] [CrossRef]
- Niazi, S.K. Regulatory Perspectives for AI/ML Implementation in Pharmaceutical GMP Environments. Pharmaceuticals 2025, 18, 901. [Google Scholar] [CrossRef] [PubMed]
- Hargrave, A.; Mustafa, A.S.; Hanif, A.; Tunio, J.H.; Hanif, S.N.M. Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines. Vaccines 2023, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in Cancer Immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Chiffelle, J.; Genolet, R.; Perez, M.A.; Coukos, G.; Zoete, V.; Harari, A. T-Cell Repertoire Analysis and Metrics of Diversity and Clonality. Curr. Opin. Biotechnol. 2020, 65, 284–295. [Google Scholar] [CrossRef]
Therapy | Mechanism | Impact on Vaccine Efficacy |
---|---|---|
Anti-PD-1 | Blocks T-cell exhaustion | Enhances CTL activity |
IL-12 | Promotes Th1 differentiation | Increases IFN-γ production |
GM-CSF | Matures dendritic cells | Boosts antigen presentation |
Radiotherapy | Releases tumor antigens | Improves MHC expression and T-cell priming |
Cyclophosphamide | Depletes regulatory T cells | Reduces immune suppression |
Challenge | Description | Potential Solutions |
---|---|---|
Immune Suppression | Tregs, MDSCs, TGF-β in TME | Checkpoint blockade, TME-modifying adjuvants |
Manufacturing | Time-sensitive, complex GMP demands | AI-driven modular GMP systems |
Delivery | Inefficient targeting of APCs | Dendritic cell-specific nanoparticles |
Regulatory Approval | Fixed-process constraints on personalization | Adaptive regulatory pathways, fast-track models |
Biomarker Deficiency | Lack of response-predictive indicators | Neoantigen burden, T-cell clonality assays |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vohra, J.; Barbosa, G.R.; Reis, L.O. mRNA and DNA-Based Vaccines in Genitourinary Cancers: A New Frontier in Personalized Immunotherapy. Vaccines 2025, 13, 899. https://doi.org/10.3390/vaccines13090899
Vohra J, Barbosa GR, Reis LO. mRNA and DNA-Based Vaccines in Genitourinary Cancers: A New Frontier in Personalized Immunotherapy. Vaccines. 2025; 13(9):899. https://doi.org/10.3390/vaccines13090899
Chicago/Turabian StyleVohra, Jasmine, Gabriela Rodrigues Barbosa, and Leonardo O. Reis. 2025. "mRNA and DNA-Based Vaccines in Genitourinary Cancers: A New Frontier in Personalized Immunotherapy" Vaccines 13, no. 9: 899. https://doi.org/10.3390/vaccines13090899
APA StyleVohra, J., Barbosa, G. R., & Reis, L. O. (2025). mRNA and DNA-Based Vaccines in Genitourinary Cancers: A New Frontier in Personalized Immunotherapy. Vaccines, 13(9), 899. https://doi.org/10.3390/vaccines13090899