Unraveling Helicobacter pylori: Insights into Pathogenesis, Immune Evasion, and Progress Toward Effective Vaccination
Abstract
1. Introduction
2. Biology and Clinical Relevance of H. pylori
2.1. Microbiology and Structure of H. pylori
2.2. Colonization and Survival Mechanisms
2.3. Host Interaction and Inflammatory Pathways
2.4. Associated Diseases and Clinical Outcomes
2.5. Epidemiology and Global Burden
2.6. Diagnostic Approaches for H. pylori
2.7. Treatment and Management of H. pylori Infection
2.8. Barriers to Vaccine Development and Translational Challenges
2.8.1. Immune Evasion and Mucosal Immunity Defects
2.8.2. Antigenic Diversity and Strain Variability
2.8.3. Technical Limitations of Mucosal Delivery
2.8.4. Translational Gaps Between Animal Models and Humans
Differences in the Immune Response
Genetic Diversity of H. pylori Strains
Limitations of Preclinical Models
Immune Modulation and Tolerance
Need for Advanced Preclinical Models
Clinical Trial Discrepancies
2.8.5. Regulatory, Logistical, and Economic Constraints
2.9. Current Progress and Emerging Strategies in H. pylori Vaccine Development
2.9.1. Subunit Vaccines
2.9.2. DNA and Vector-Based Vaccines
2.9.3. Live-Attenuated Vaccines
2.9.4. Epitope-Based and Multiepitope Vaccines
2.9.5. Novel Adjuvants and Delivery Technologies
2.9.6. Clinical Trial Landscape
2.10. Future Perspectives and Recommendations
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooi, J.K.; Lai, W.Y.; Ng, W.K.; Suen, M.M.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.; Wu, J.C. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef]
- IARC Working Group on the Identification of Carcinogenic Hazards to Humans. Aspartame, methyleugenol, and isoeugenol. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; International Agency for Research on Cancer: Lyon, France, 2024; Volume 134, pp. 1–402. [Google Scholar]
- Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in World Health Organization regions. Gastroenterology 2018, 155, 1372–1382.e17. [Google Scholar] [CrossRef] [PubMed]
- Thung, I.; Aramin, H.; Vavinskaya, V.; Gupta, S.; Park, J.; Crowe, S.; Valasek, M. The global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther. 2016, 43, 514–533. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Dore, M.P.; Graham, D.Y. Diagnosis and treatment of Helicobacter pylori infection. Annu. Rev. Med. 2022, 73, 183–195. [Google Scholar] [CrossRef]
- Salahi-Niri, A.; Nabavi-Rad, A.; Monaghan, T.M.; Rokkas, T.; Doulberis, M.; Sadeghi, A.; Zali, M.R.; Yamaoka, Y.; Tacconelli, E.; Yadegar, A. Global prevalence of Helicobacter pylori antibiotic resistance among children in the world health organization regions between 2000 and 2023: A systematic review and meta-analysis. BMC Med. 2024, 22, 598. [Google Scholar] [CrossRef]
- Mégraud, F.; Graham, D.Y.; Howden, C.W.; Trevino, E.; Weissfeld, A.; Hunt, B.; Smith, N.; Leifke, E.; Chey, W.D. Rates of antimicrobial resistance in Helicobacter pylori isolates from clinical trial patients across the US and Europe. Off. J. Am. Coll. Gastroenterol. 2023, 118, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Bakleh, M.Z.; Kohailan, M.; Marwan, M.; Alhaj Sulaiman, A. A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. Antibiotics 2024, 13, 958. [Google Scholar] [CrossRef]
- Backert, S.; Tegtmeyer, N. Type IV secretion and signal transduction of Helicobacter pylori CagA through interactions with host cell receptors. Toxins 2017, 9, 115. [Google Scholar] [CrossRef]
- Sutton, P.; Chionh, Y.T. Why can’t we make an effective vaccine against Helicobacter pylori? Expert Rev. Vaccines 2013, 12, 433–441. [Google Scholar] [CrossRef]
- Tu, Z.; Wang, Y.; Liang, J.; Liu, J. Helicobacter pylori-targeted AI-driven vaccines: A paradigm shift in gastric cancer prevention. Front. Immunol. 2024, 15, 1500921. [Google Scholar] [CrossRef]
- Yunle, K.; Tong, W.; Jiyang, L.; Guojun, W. Advances in Helicobacter pylori vaccine research: From candidate antigens to adjuvants—A review. Helicobacter 2024, 29, e13034. [Google Scholar] [CrossRef] [PubMed]
- Kusters, J.G.; Van Vliet, A.H.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [PubMed]
- Celli, J.P.; Turner, B.S.; Afdhal, N.H.; Keates, S.; Ghiran, I.; Kelly, C.P.; Ewoldt, R.H.; McKinley, G.H.; Therefore, P.; Erramilli, S. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl. Acad. Sci. USA 2009, 106, 14321–14326. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.R.; Marcus, E.A.; Wen, Y.; Oh, J.; Sachs, G. Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc. Natl. Acad. Sci. USA 2007, 104, 7235–7240. [Google Scholar] [CrossRef]
- Matsuo, Y.; Kido, Y.; Yamaoka, Y. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins 2017, 9, 101. [Google Scholar] [CrossRef]
- Hatakeyama, M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad. Ser. B 2017, 93, 196–219. [Google Scholar] [CrossRef]
- Ansari, S.; Yamaoka, Y. Helicobacter pylori infection, its laboratory diagnosis, and antimicrobial resistance: A perspective of clinical relevance. Clin. Microbiol. Rev. 2022, 35, e00258-21. [Google Scholar] [CrossRef]
- Bonis, M.; Ecobichon, C.; Guadagnini, S.; Prévost, M.C.; Boneca, I.G. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol. Microbiol. 2010, 78, 809–819. [Google Scholar] [CrossRef]
- Bik, E.M.; Eckburg, P.B.; Gill, S.R.; Nelson, K.E.; Purdom, E.A.; Francois, F.; Perez-Perez, G.; Blaser, M.J.; Relman, D.A. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. USA 2006, 103, 732–737. [Google Scholar] [CrossRef]
- Delgado, S.; Cabrera-Rubio, R.; Mira, A.; Suárez, A.; Mayo, B. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb. Ecol. 2013, 65, 763–772. [Google Scholar] [CrossRef]
- Vale, F.; Vítor, J. Transmission pathway of Helicobacter pylori: Does food play a role in rural and urban areas? Int. J. Food Microbiol. 2010, 138, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, Y.; Dieye, Y.; Poh, B.H.; Ng, C.G.; Loke, M.F.; Goh, K.L.; Vadivelu, J. Culturable bacterial microbiota of the stomach of Helicobacter pylori positive and negative gastric disease patients. Sci. World J. 2014, 2014, 610421. [Google Scholar] [CrossRef]
- Oleastro, M.; Ménard, A. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology 2013, 2, 1110–1134. [Google Scholar] [CrossRef] [PubMed]
- Moonens, K.; Hamway, Y.; Neddermann, M.; Reschke, M.; Tegtmeyer, N.; Kruse, T.; Kammerer, R.; Mejías-Luque, R.; Singer, B.B.; Backert, S. Helicobacter pylori adhesin HopQ disrupts trans dimerization in human CEACAM s. EMBO J. 2018, 37, e98665. [Google Scholar] [CrossRef] [PubMed]
- Mobley, H.L. Urease. In Helicobacter pylori: Physiology and Genetics; ASM Press: Washington, DC, USA, 2001; pp. 177–191. [Google Scholar]
- Olbermann, P.; Josenhans, C.; Moodley, Y.; Uhr, M.; Stamer, C.; Vauterin, M.; Suerbaum, S.; Achtman, M.; Linz, B. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 2010, 6, e1001069. [Google Scholar] [CrossRef]
- Li, L.; Ren, Y.; Wang, Z.; Niu, Y.; Zhao, Y.; Aihaiti, X.; Ji, Y.; Li, M. Association of Helicobacter pylori Infection with Depression and Anxiety: A Systematic Review and Meta-Analysis. Int. J. Clin. Pract. 2024, 2024, 9247586. [Google Scholar] [CrossRef]
- Krzyżek, P.; Grande, R.; Migdał, P.; Paluch, E.; Gościniak, G. Biofilm formation as a complex result of virulence and adaptive responses of Helicobacter pylori. Pathogens 2020, 9, 1062. [Google Scholar] [CrossRef]
- Xu, C.; Soyfoo, D.M.; Wu, Y.; Xu, S. Virulence of Helicobacter pylori outer membrane proteins: An updated review. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1821–1830. [Google Scholar] [CrossRef]
- Ahmed, A.A.Q.; Besio, R.; Xiao, L.; Forlino, A. Outer membrane vesicles (OMVs) as biomedical tools and their relevance as immune-modulating agents against H. pylori infections: Current status and future prospects. Int. J. Mol. Sci. 2023, 24, 8542. [Google Scholar] [CrossRef]
- Salama, N.R.; Hartung, M.L.; Müller, A. Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 2013, 11, 385–399. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Z.; Wang, C.; Zhang, Y. The TLR/MyD88 signaling cascade in inflammation and gastric cancer: The immune regulatory network of Helicobacter pylori. J. Mol. Med. 2023, 101, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Korona-Głowniak, I.; Forma, A.; Maani, A.; Sitarz, E.; Rahnama-Hezavah, M.; Radzikowska, E.; Portincasa, P. Mechanisms of the epithelial–mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer. Cells 2020, 9, 1055. [Google Scholar] [CrossRef]
- Foegeding, N.J.; Caston, R.R.; McClain, M.S.; Ohi, M.D.; Cover, T.L. An overview of Helicobacter pylori VacA toxin biology. Toxins 2016, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Tay, A.C.Y.; Marshall, B.J.; Jain, U. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: An overview. Helicobacter 2019, 24, e12544. [Google Scholar] [CrossRef]
- Amieva, M.; Peek Jr, R.M. Pathobiology of Helicobacter pylori–induced gastric cancer. Gastroenterology 2016, 150, 64–78. [Google Scholar] [CrossRef]
- Franco, A.T.; Johnston, E.; Krishna, U.; Yamaoka, Y.; Israel, D.A.; Nagy, T.A.; Wroblewski, L.E.; Piazuelo, M.B.; Correa, P.; Peek Jr, R.M. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008, 68, 379–387. [Google Scholar] [CrossRef]
- Backert, S.; Blaser, M.J. The role of CagA in the gastric biology of Helicobacter pylori. Cancer Res. 2016, 76, 4028–4031. [Google Scholar] [CrossRef] [PubMed]
- Wroblewski, L.E.; Peek Jr, R.M.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef]
- de Sablet, T.; Piazuelo, M.B.; Shaffer, C.L.; Schneider, B.G.; Asim, M.; Chaturvedi, R.; Bravo, L.E.; Sicinschi, L.A.; Delgado, A.G.; Mera, R.M. Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 2011, 60, 1189–1195. [Google Scholar] [CrossRef]
- Noto, J.M.; Peek Jr, R.M. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog. 2017, 13, e1006573. [Google Scholar] [CrossRef]
- Liu, A.-R.; Yan, Z.-W.; Jiang, L.-Y.; Lv, Z.; Li, Y.-K.; Wang, B.-G. The role of noncoding RNA in the diagnosis and treatment of Helicobacter pylori-related gastric cancer, with a focus on inflammation and immune response. Front. Med. 2022, 9, 1009021. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, K.; Shi, M.; Gong, H.; Han, M.; Tian, W.; Wang, X.; Zhang, D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol. Res. 2024, 205, 107216. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Zhao, J. The role and mechanisms of Helicobacter pylori outer membrane vesicles in the pathogenesis of extragastrointestinal diseases. Microb. Pathog. 2025, 200, 107312. [Google Scholar] [CrossRef]
- Fiorani, M.; Tohumcu, E.; Del Vecchio, L.E.; Porcari, S.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The influence of Helicobacter pylori on human gastric and gut microbiota. Antibiotics 2023, 12, 765. [Google Scholar] [CrossRef]
- Nabavi-Rad, A.; Sadeghi, A.; Asadzadeh Aghdaei, H.; Yadegar, A.; Smith, S.M.; Zali, M.R. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 2022, 14, 2108655. [Google Scholar] [CrossRef]
- Xie, S.; Wang, S.; Xue, L.; Middleton, D.R.; Guan, C.; Hao, C.; Wang, J.; Li, B.; Chen, R.; Li, X. Helicobacter pylori is associated with precancerous and cancerous lesions of the gastric cardia mucosa: Results of a large population-based study in China. Front. Oncol. 2020, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-C.; Yang, Y.-J.; Yang, H.-B.; Tsai, Y.-C.; Chang, W.-L.; Wu, C.-T.; Kuo, H.-Y.; Yu, Y.-T.; Yang, E.-H.; Cheng, W.-C. Evolution of the Correa’s cascade steps: A long-term endoscopic surveillance among nonulcer dyspepsia and gastric ulcer after H. pylori eradication. J. Formos. Med. Assoc. 2023, 122, 400–410. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chiang, T.-H.; Chou, C.-K.; Tu, Y.-K.; Liao, W.-C.; Wu, M.-S.; Graham, D.Y. Association between Helicobacter pylori eradication and gastric cancer incidence: A systematic review and meta-analysis. Gastroenterology 2016, 150, 1113–1124.e5. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K.; Tack, J.; Kuipers, E.J.; Graham, D.Y.; El-Omar, E.M.; Miura, S.; Haruma, K.; Asaka, M.; Uemura, N.; Malfertheiner, P. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015, 64, 1353–1367. [Google Scholar] [CrossRef]
- Ali, A.; AlHussaini, K.I. Helicobacter pylori: A contemporary perspective on pathogenesis, diagnosis and treatment strategies. Microorganisms 2024, 12, 222. [Google Scholar] [CrossRef]
- Lemos, F.F.B.; de Castro, C.T.; Calmon, M.S.; Luz, M.S.; Pinheiro, S.L.R.; Dos Santos, C.F.S.M.; Santos, G.L.C.; Marques, H.S.; Delgado, H.A.; Teixeira, K.N. Effectiveness of Helicobacter pylori eradication in the treatment of early-stage gastric mucosa-associated lymphoid tissue lymphoma: An up-to-date meta-analysis. World J. Gastroenterol. 2023, 29, 2202. [Google Scholar] [CrossRef] [PubMed]
- Matysiak-Budnik, T.; Priadko, K.; Bossard, C.; Chapelle, N.; Ruskoné-Fourmestraux, A. Clinical management of patients with gastric MALT lymphoma: A gastroenterologist’s point of view. Cancers 2023, 15, 3811. [Google Scholar] [CrossRef]
- Ford, A.C.; Yuan, Y.; Moayyedi, P. Helicobacter pylori eradication therapy to prevent gastric cancer: Systematic review and meta-analysis. Gut 2020, 69, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Gold, B.D.; Kato, A. Helicobacter pylori-associated iron deficiency anemia in childhood and adolescence-pathogenesis and clinical management strategy. J. Clin. Med. 2022, 11, 7351. [Google Scholar] [CrossRef] [PubMed]
- Hershko, C.; Camaschella, C. How I treat unexplained refractory iron deficiency anemia. Blood J. Am. Soc. Hematol. 2014, 123, 326–333. [Google Scholar] [CrossRef]
- Săsăran, M.O.; Mărginean, C.O.; Koller, A.M. Impact of Helicobacter pylori Infection upon the Evolution and Outcome of Pediatric Immune Thrombocytopenic Purpura: A Comprehensive Review. Diagnostics 2023, 13, 3205. [Google Scholar] [CrossRef]
- Sulashvili, N.; Patsia, L.; El-Hakeem, A.; Ayaan, S.; Hizomi, A.; Agarwal, S.; Sulashvili, M. Exploring the Gut-Brain Axis: The Role of the Microbiome in Modulating Brain Function and Its Implications in Neurodegenerative Disorders Like Parkinson’s and Alzheimer’s and Pharmacotherapy Treatment Strategies. Georgian Sci. 2025, 7, 329–353. [Google Scholar] [CrossRef]
- Azami, M.; Baradaran, H.R.; Dehghanbanadaki, H.; Kohnepoushi, P.; Saed, L.; Moradkhani, A.; Moradpour, F.; Moradi, Y. Association of Helicobacter pylori infection with the risk of metabolic syndrome and insulin resistance: An updated systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 145. [Google Scholar] [CrossRef]
- Xie, Q.; He, Y.; Zhou, D.; Jiang, Y.; Deng, Y.; Li, R. Recent research progress on the correlation between metabolic syndrome and Helicobacter pylori infection. PeerJ 2023, 11, e15755. [Google Scholar] [CrossRef]
- Magahis, P.T.; Maron, S.B.; Cowzer, D.; King, S.; Schattner, M.; Janjigian, Y.; Faleck, D.; Laszkowska, M. Impact of Helicobacter pylori infection status on outcomes among patients with advanced gastric cancer treated with immune checkpoint inhibitors. J. Immunother. Cancer 2023, 11, e007699. [Google Scholar] [CrossRef]
- Hassan, M.N.; Arif, A.; Shahzad, M.S.; Ibrahim, M.; Rahman, H.A.; Razaq, M.A.; Ahmed, R. 88. Global prevalence of Helicobacter pylori and its effect on human health. Pure Appl. Biol. 2020, 9, 936–948. [Google Scholar] [CrossRef]
- Magalhães Queiroz, D.M.; Luzza, F. Epidemiology of Helicobacter pylori infection. Helicobacter 2006, 11, 1–5. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [PubMed]
- Tshibangu-Kabamba, E.; Yamaoka, Y. Helicobacter pylori infection and antibiotic resistance—From biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 613–629. [Google Scholar] [CrossRef]
- Rocha, G.R.; Lemos, F.F.B.; de Oliveira Silva, L.G.; Luz, M.S.; Santos, G.L.C.; Pinheiro, S.L.R.; Calmon, M.S.; de Melo, F.F. Overcoming antibiotic-resistant Helicobacter pylori infection: Current challenges and emerging approaches. World J. Gastroenterol. 2025, 31, 102289. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Aldubaib, M.; Abalkhail, A.; Anagrayyah, S.; Anajirih, N.; Almuzaini, A.M.; Rawway, M.; Alfadhel, A.; Draz, A. Helicobacter pylori infection: Current status and future prospects on diagnostic, therapeutic and control challenges. Antibiotics 2023, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Abalkhail, A.; Anajirih, N.; Alkhamisi, F.; Aldamegh, M.; Alramzi, A.; AlShaqi, R.; Alotaibi, N.; Aljuaid, A.; Alzahrani, H. Helicobacter pylori: Routes of Infection, Antimicrobial Resistance, and Alternative Therapies as a Means to Develop Infection Control. Diseases 2024, 12, 311. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Sindi, W.; Alzahrani, Y.; Alhifani, S.; Alshehri, T.; Anajirih, N.A.; ALMutairi, T.; Alsaedi, A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front. Med. 2025, 11, 1523991. [Google Scholar] [CrossRef]
- Umar, Z.; Tang, J.-W.; Marshall, B.J.; Tay, A.C.Y.; Wang, L. Rapid diagnosis and precision treatment of Helicobacter pylori infection in clinical settings. Crit. Rev. Microbiol. 2025, 51, 369–398. [Google Scholar] [CrossRef]
- Sousa, C.; Ferreira, R.; Santos, S.B.; Azevedo, N.F.; Melo, L.D. Advances on diagnosis of Helicobacter pylori infections. Crit. Rev. Microbiol. 2023, 49, 671–692. [Google Scholar] [CrossRef]
- Said, Z.N.A.; El-Nasser, A.M. Evaluation of urea breath test as a diagnostic tool for Helicobacter pylori infection in adult dyspeptic patients. World J. Gastroenterol. 2024, 30, 2302. [Google Scholar] [CrossRef] [PubMed]
- Cardos, A.I.; Maghiar, A.; Zaha, D.C.; Pop, O.; Fritea, L.; Miere, F.; Cavalu, S. Evolution of diagnostic methods for Helicobacter pylori infections: From traditional tests to high technology, advanced sensitivity and discrimination tools. Diagnostics 2022, 12, 508. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.-M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Artificial intelligence for the prediction of Helicobacter pylori infection in endoscopic images: Systematic review and meta-analysis of diagnostic test accuracy. J. Med. Internet Res. 2020, 22, e21983. [Google Scholar] [CrossRef]
- Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J. Gastroenterol. 2019, 25, 4629. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Ebrahimi, A.; Sahebkar, A. Helicobacter pylori infection: Conventional and molecular strategies for bacterial diagnosis and antibiotic resistance testing. Curr. Pharm. Biotechnol. 2023, 24, 647–664. [Google Scholar] [CrossRef]
- Best, L.M.; Takwoingi, Y.; Siddique, S.; Selladurai, A.; Gandhi, A.; Low, B.; Yaghoobi, M.; Gurusamy, K.S. Non-invasive diagnostic tests for Helicobacter pylori infection. Cochrane Database Syst. Rev. 2018, CD012080. [Google Scholar] [CrossRef]
- Gisbert, J.; De la Morena, F.; Abraira, V. Accuracy of Monoclonal Stool Antigen Test for the Diagnosis of Helicobacter pylori Infection: A Systematic Review and Meta-analysisAbstract no.: 10·02. Helicobacter 2006, 11, 380. [Google Scholar]
- Zhang, M.-M.; Qian, W.; Qin, Y.-Y.; He, J.; Zhou, Y.-H. Probiotics in Helicobacter pylori eradication therapy: A systematic review and meta-analysis. World J. Gastroenterol. 2015, 21, 4345. [Google Scholar] [CrossRef]
- Ford, A.C.; Delaney, B.; Forman, D.; Moayyedi, P. Eradication therapy for peptic ulcer disease in Helicobacter pylori positive patients. Cochrane Database Syst. Rev. 2006, 19, CD003840. [Google Scholar]
- Furuta, T.; Yamade, M.; Kagami, T.; Uotani, T.; Suzuki, T.; Higuchi, T.; Tani, S.; Hamaya, Y.; Iwaizumi, M.; Miyajima, H. Dual therapy with vonoprazan and amoxicillin is as effective as triple therapy with vonoprazan, amoxicillin and clarithromycin for eradication of Helicobacter pylori. Digestion 2020, 101, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-Z.; Threapleton, D.E.; Wang, J.-Y.; Xu, J.-M.; Yuan, J.-Q.; Zhang, C.; Li, P.; Ye, Q.-L.; Guo, B.; Mao, C. Comparative effectiveness and tolerance of treatments for Helicobacter pylori: Systematic review and network meta-analysis. BMJ 2015, 351, h4052. [Google Scholar] [CrossRef]
- Gatta, L.; Nyssen, O.P.; Fiorini, G.; Saracino, I.M.; Pavoni, M.; Romano, M.; Gravina, A.G.; Granata, L.; Pellicano, R.; Gasbarrini, A. Effectiveness of first and second-line empirical treatment in Italy: Results of the European registry on Helicobacter pylori management. United Eur. Gastroenterol. J. 2023, 11, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Khamri, W.; Walker, M.M.; Clark, P.; Atherton, J.C.; Thursz, M.R.; Bamford, K.B.; Lechler, R.I.; Lombardi, G. Helicobacter pylori stimulates dendritic cells to induce interleukin-17 expression from CD4+ T lymphocytes. Infect. Immun. 2010, 78, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Smythies, L.E.; Waites, K.B.; Lindsey, J.R.; Harris, P.R.; Ghiara, P.; Smith, P.D. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-γ, gene-deficient mice. J. Immunol. 2000, 165, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, A.; Suri-Payer, E.; Enarsson, K.; Svennerholm, A.-M.; Lundin, B.S. Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect. Immun. 2003, 71, 1755–1762. [Google Scholar] [CrossRef]
- Rad, R.; Schmid, R.M.; Prinz, C. Helicobacter pylori, iron deficiency, and gastric autoimmunity. Blood 2006, 107, 4969–4970. [Google Scholar] [CrossRef]
- Winter, J.; Letley, D.; Rhead, J.; Atherton, J.; Robinson, K. Helicobacter pylori membrane vesicles stimulate innate pro-and anti-inflammatory responses and induce apoptosis in Jurkat T cells. Infect. Immun. 2014, 82, 1372–1381. [Google Scholar] [CrossRef]
- Fan, J.; Zhu, J.; Xu, H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: Insights and prospects for therapeutic targeting. Front. Cell. Infect. Microbiol. 2024, 14, 1342913. [Google Scholar] [CrossRef]
- Yamaoka, Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 629–641. [Google Scholar] [CrossRef]
- Thorell, K.; Yahara, K.; Berthenet, E.; Lawson, D.J.; Mikhail, J.; Kato, I.; Mendez, A.; Rizzato, C.; Bravo, M.M.; Suzuki, R. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genet. 2017, 13, e1006546. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, G.; Covacci, A.; Telford, J.L.; Montecucco, C.; Rappuoli, R. The design of vaccines against Helicobacter pylori and their development. Annu. Rev. Immunol. 2001, 19, 523–563. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, W.; Liu, H.; Li, C.; Zhang, Y.; Meng, X.; Tang, T.; Xi, T.; Xing, Y. Oral Helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur. J. Pharm. Biopharm. 2017, 111, 33–43. [Google Scholar] [CrossRef]
- Francis, J.E.; Skakic, I.; Majumdar, D.; Taki, A.C.; Shukla, R.; Walduck, A.; Smooker, P.M. Solid lipid nanoparticles delivering a DNA vaccine encoding Helicobacter pylori Urease A Subunit: Immune analyses before and after a mouse model of infection. Int. J. Mol. Sci. 2024, 25, 1076. [Google Scholar] [CrossRef]
- Corthésy, B.; Bioley, G. Lipid-based particles: Versatile delivery systems for mucosal vaccination against infection. Front. Immunol. 2018, 9, 431. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Ostberg, A.K.; Flach, C.-F.; Ekman, A.; Blomquist, M.; Czerkinsky, C.; Holmgren, J. Sublingual immunization protects against Helicobacter pylori infection and induces T and B-cell responses in the stomach. Infect. Immun. 2010, 78, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Anggraeni, R.; Ana, I.D.; Wihadmadyatami, H. Development of mucosal vaccine delivery: An overview on the mucosal vaccines and their adjuvants. Clin. Exp. Vaccine Res. 2022, 11, 235. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Q.; Chen, X.; Lu, J. Helicobacter pylori Vaccine: Mechanism of Pathogenesis, Immune Evasion and Analysis of Vaccine Types. Vaccines 2025, 13, 526. [Google Scholar] [CrossRef]
- Czinn, S.J.; Blanchard, T. Vaccinating against Helicobacter pylori infection. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 133–140. [Google Scholar] [CrossRef]
- Graham, D.; Opekun, A.; Osato, M.; El-Zimaity, H.; Lee, C.; Yamaoka, Y.; Qureshi, W.; Cadoz, M.; Monath, T. Challenge model for Helicobacter pylori infection in human volunteers. Gut 2004, 53, 1235–1243. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Huang, X.; Liu, Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024, 29, e13119. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.H.; Menbari, S.; Mohammadzadeh, R.; Pishdadian, A.; Farsiani, H. Developing a potent vaccine against Helicobacter pylori: Critical considerations and challenges. Expert Rev. Mol. Med. 2024, 27, 1–61. [Google Scholar]
- Malfertheiner, P.; Mégraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y. Management of Helicobacter pylori infection—The Maastricht V/Florence consensus report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef]
- de Vries, R.; Klok, R.M.; Brouwers, J.R.; Postma, M.J. Cost-effectiveness of a potential future Helicobacter pylori vaccine in the Netherlands: The impact of varying the discount rate for health. Vaccine 2009, 27, 846–852. [Google Scholar] [CrossRef]
- Cui, M.; Ji, X.; Guan, F.; Su, G.; Du, L. Design of a Helicobacter pylori multiepitope vaccine based on immunoinformatics. Front. Immunol. 2024, 15, 1432968. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Liu, X.; Du, Q.; Li, Y. Bibliometric analysis of Helicobacter pylori vaccine development from 1993 to 2023. Front. Microbiol. 2025, 16, 1479195. [Google Scholar] [CrossRef] [PubMed]
- Isanaka, S.; Guindo, O.; Langendorf, C.; Matar Seck, A.; Plikaytis, B.D.; Sayinzoga-Makombe, N.; McNeal, M.M.; Meyer, N.; Adehossi, E.; Djibo, A. Efficacy of a low-cost, heat-stable oral rotavirus vaccine in Niger. N. Engl. J. Med. 2017, 376, 1121–1130. [Google Scholar] [CrossRef]
- Chen, W.H.; Cohen, M.B.; Kirkpatrick, B.D.; Brady, R.C.; Galloway, D.; Gurwith, M.; Hall, R.H.; Kessler, R.A.; Lock, M.; Haney, D. Single-dose live oral cholera vaccine CVD 103-HgR protects against human experimental infection with Vibrio cholerae O1 El Tor. Clin. Infect. Dis. 2016, 62, 1329–1335. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.-Q.; Zhang, Y.-T.; Zhao, S.-G. Evaluating the immune responses of mice to subcutaneous immunization with Helicobacter pylori urease B subunit. J. Anim. Sci. Biotechnol. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yang, F.; Wu, W.; Sun, H.; Xie, Q.; Si, W.; Zou, Q.; Yang, Z. Immunization with heat shock protein A and γ-glutamyl transpeptidase induces reduction on the Helicobacter pylori colonization in mice. PLoS ONE 2015, 10, e0130391. [Google Scholar] [CrossRef]
- Corthésy-Theulaz, I.; Porta, N.; Glauser, M.; Saraga, E.; Vaney, A.-C.; Haas, R.; Kraehenbuhl, J.-P.; Blum, A.; Michetti, P. Oral immunization with Helicobacter pylori urease B subunit as a treatment against Helicobacter infection in mice. Gastroenterology 1995, 109, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, H.; Tang, F.; Yin, R.; Liu, H.; Gong, X.; Wei, J.; Zhang, Y.; Xu, G.; Liu, K. Oral immunization with a multivalent epitope-based vaccine, based on NAP, urease, HSP60, and HpaA, provides therapeutic effect on H. pylori infection in Mongolian gerbils. Front. Cell. Infect. Microbiol. 2017, 7, 349. [Google Scholar] [CrossRef]
- Bégué, R.E.; Cruz, A.R.; Ramgoolam, A.; Breslin, M.B. Immunogenicity of Helicobacter pylori urease B protein and DNA vaccines in a mouse model. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Spinetti, L.; Breslin, M.B.; Correa, H.; Bégué, R.E. Development and evaluation of a DNA vaccine based on Helicobacter pylori urease B: Failure to prevent experimental infection in the mouse model. Helicobacter 2006, 11, 517–522. [Google Scholar] [CrossRef]
- Hatzifoti, C.; Roussel, Y.; Harris, A.G.; Wren, B.W.; Morrow, J.W.; Bajaj-Elliott, M. Mucosal immunization with a urease B DNA vaccine induces innate and cellular immune responses against Helicobacter pylori. Helicobacter 2006, 11, 113–122. [Google Scholar] [CrossRef]
- Nikzad-Chaleshtori, M.; Asgari, M.; Rezaeizadeh, G.; Aali, F.; Doosti, A. The urease E subunit vaccine stimulate the immune response versus Helicobacter pylori in animal model. Immunol. Res. 2025, 73, 74. [Google Scholar] [CrossRef]
- Ghasemi, A.; Wang, S.; Sahay, B.; Abbott, J.R.; Curtiss III, R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front. Immunol. 2022, 13, 1034683. [Google Scholar] [CrossRef]
- Nie, L.; Huang, Y.; Cheng, Z.; Luo, H.; Zhan, Y.; Dou, K.; Ma, C.; Yu, C.; Luo, C.; Liu, Z. An intranasal influenza virus vector vaccine protects against Helicobacter pylori in mice. J. Virol. 2024, 98, e01923-23. [Google Scholar] [CrossRef] [PubMed]
- Angelakopoulos, H.; Hohmann, E.L. Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect. Immun. 2000, 68, 2135–2141. [Google Scholar] [CrossRef]
- DiPetrillo, M.D.; Tibbetts, T.; Kleanthous, H.; Killeen, K.P.; Hohmann, E.L. Safety and immunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacter pylori urease in adult volunteers. Vaccine 1999, 18, 449–459. [Google Scholar] [CrossRef]
- Bumann, D.; Metzger, W.G.; Mansouri, E.; Palme, O.; Wendland, M.; Hurwitz, R.; Haas, G.; Aebischer, T.; Von Specht, B.-U.; Meyer, T.F. Safety and immunogenicity of live recombinant Salmonella enterica serovar Typhi Ty21a expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine 2001, 20, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Jebali, A.; Esmaeilzadeh, A.; Esmaeilzadeh, M.K.; Shabani, S. Immunoinformatics design and synthesis of a multiepitope vaccine against Helicobacter pylori based on lipid nanoparticles. Sci. Rep. 2024, 14, 17910. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Pan, X.; Wang, H.; Zhou, Y.; Zhu, J.; Yang, J.; Li, W. Immunological response of recombinant H. pylori multiepitope vaccine with different vaccination strategies. Int. J. Clin. Exp. Pathol. 2014, 7, 6559. [Google Scholar]
- Urrutia-Baca, V.H.; Gomez-Flores, R.; De La Garza-Ramos, M.A.; Tamez-Guerra, P.; Lucio-Sauceda, D.G.; Rodríguez-Padilla, M.C. Immunoinformatics approach to design a novel epitope-based oral vaccine against Helicobacter pylori. J. Comput. Biol. 2019, 26, 1177–1190. [Google Scholar] [CrossRef]
- Ghosh, P.; Bhakta, S.; Bhattacharya, M.; Sharma, A.R.; Sharma, G.; Lee, S.-S.; Chakraborty, C. A novel multiepitopic peptide vaccine candidate against Helicobacter pylori: In-silico identification, design, cloning and validation through molecular dynamics. Int. J. Pept. Res. Ther. 2021, 27, 1149–1166. [Google Scholar] [CrossRef]
- Jiang, W.; Baker, H.J.; Smith, B.F. Mucosal immunization with helicobacter, CpG DNA, and cholera toxin is protective. Infect. Immun. 2003, 71, 40–46. [Google Scholar] [CrossRef]
- Amaral, R.; Concha, T.; Vítor, J.; Almeida, A.J.; Calado, C.; Gonçalves, L.M. Chitosan Nanoparticles for Enhanced Immune Response and Delivery of Multi-Epitope Helicobacter pylori Vaccines in a BALB/c Mouse Model. Pharmaceutics 2025, 17, 132. [Google Scholar] [CrossRef]
- Zeng, M.; Mao, X.-H.; Li, J.-X.; Tong, W.-D.; Wang, B.; Zhang, Y.-J.; Guo, G.; Zhao, Z.-J.; Li, L.; Wu, D.-L. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: A randomized, double-blind, placebo-controlled, phase 3 trial. Lancet 2015, 386, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Michetti, P.; Kreiss, C.; Kotloff, K.L.; Porta, N.; Blanco, J.L.; Bachmann, D.; Herranz, M.; Saldinger, P.F.; Corthésy–Theulaz, I.; Losonsky, G. Oral immunization with urease and Escherichia coli heat-labile enterotoxin is safe and immunogenic in Helicobacter pylori–infected adults. Gastroenterology 1999, 116, 804–812. [Google Scholar] [CrossRef]
- Ru, Z.; Yu, M.; Zhu, Y.; Chen, Z.; Zhang, F.; Zhang, Z.; Ding, J. Immmunoinformatics-based design of a multi-epitope vaccine with CTLA-4 extracellular domain to combat Helicobacter pylori. FASEB J. 2022, 36, e22252. [Google Scholar] [CrossRef]
- Huang, T.-T.; Cao, Y.-X.; Cao, L. Novel therapeutic regimens against Helicobacter pylori: An updated systematic review. Front. Microbiol. 2024, 15, 1418129. [Google Scholar] [CrossRef] [PubMed]
- Bergin, I.L.; Sheppard, B.J.; Fox, J.G. Helicobacter pylori infection and high dietary salt independently induce atrophic gastritis and intestinal metaplasia in commercially available outbred Mongolian gerbils. Dig. Dis. Sci. 2003, 48, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Idowu, S.; Bertrand, P.P.; Walduck, A.K. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter 2022, 27, e12891. [Google Scholar] [CrossRef] [PubMed]
- Kickbusch, I.; Szabo, M.M.C. A new governance space for health. Glob. Health Action 2014, 7, 23507. [Google Scholar] [CrossRef]
Diagnostic Method | Type | Detects Active Infection | Sensitivity (%) | Specificity (%) | Advantages | Limitations | Key Reference(s) |
---|---|---|---|---|---|---|---|
UBT | Noninvasive | Yes | 90–95 | 95–98 | High accuracy, reliable for pre- and post-treatment | Affected by PPIs, antibiotics; requires patient preparation | [75] |
SAT | Noninvasive | Yes | 90–94 | 92–97 | Simple, cost-effective, suitable for screening and follow-up | Affected by PPIs, antibiotics; may have false negatives | [79,80] |
IgG ELISA | Noninvasive | No | 80–85 | 75–80 | Useful in epidemiological studies, widely available | Cannot distinguish active vs past infection | [75] |
Histology | Invasive | Yes | 92–98 | 95–99 | Gold standard with mucosal assessment, detects pathology | Requires endoscopy and trained histopathologist | [75] |
RUT | Invasive | Yes | 85–95 | 95–98 | Rapid, inexpensive, commonly available in endoscopy | Sensitivity reduced by recent antibiotics or PPIs | [75] |
Culture | Invasive | Yes | 70–90 | 100 | Allows antibiotic susceptibility testing | Technically demanding, not routinely available | [3] |
PCR | Invasive | Yes | 95–99 | 98–100 | Detects resistance mutations and genotype information | Expensive, requires advanced lab infrastructure | [52] |
Regimen | Duration (Days) | Components | Efficacy (ITT/PP) | Resistance Impact | Recommended Use | Common Adverse Effects | Reference |
---|---|---|---|---|---|---|---|
BQT | 10–14 | PPI + Bismuth + Tetracycline + Metronidazole | 80–85%/85–90% | Effective against clarithromycin-resistant strains | First-line in high clarithromycin resistance areas | GI upset, metallic taste | [75] |
Concomitant Quadruple Therapy | 10–14 | PPI + Amoxicillin + Clarithromycin + Metronidazole | 80–86%/85–91% | Reduced efficacy in dual resistance | First-line in low dual resistance areas | Diarrhea, taste alteration | [84] |
Levofloxacin-based Triple Therapy | 10–14 | PPI + Amoxicillin + Levofloxacin | 72–78%/78–84% | Impaired by fluoroquinolone resistance | Second-line if BQT not used | Tendonitis, GI upset | [3] |
Rifabutin-based Triple Therapy | 10–14 | PPI + Amoxicillin + Rifabutin | 76–82%/80–87% | Low cross-resistance | Third-line rescue therapy | Myelotoxicity, nausea | [75] |
Vonoprazan + Amoxicillin Dual Therapy | 7–14 | Vonoprazan + Amoxicillin | 85–90%/90–94% | Highly effective in CLA-resistant strains | First- or third-line in CLA-resistant areas | Minimal, well tolerated | [83] |
BQT + Probiotics (Adjunct) | 10–14 | BQT + Lactobacillus/Bifidobacterium/S. boulardii | Modest increase (2–5%) | Adjunct only, not affected by resistance | To reduce side effects, improve compliance | Rare; mild GI symptoms | [85] |
Barrier Category | Description | Implications for Vaccine Design | Key References |
---|---|---|---|
Immune Evasion and Mucosal Immunity | H. pylori suppresses dendritic cells and Tregs; downregulates pro-inflammatory responses |
| [86,87,89,90] |
Antigenic Diversity and Strain Variability | High polymorphism in virulence genes (cagA, vacA, hpaA) with regional diversity |
| [13,93] |
Mucosal Delivery Limitations | Low gastric pH and absence of inductive sites (MALT) hinder delivery |
| [28,105] |
Translational Gaps: Animal to Human Models | Limited model reproducibility; species differences in infection clearance |
| [101,102] |
Regulatory, Logistical and Economic Constraints | Limited funding, infrastructure, and lack of surrogate endpoints |
| [10,106,107,108] |
Vaccine Type | Key Antigens/Constructs | Delivery Route | Adjuvant | Clinical Status | Key Notes |
---|---|---|---|---|---|
Live-Attenuated | Urease-deficient Salmonella expressing H. pylori antigens | Oral | None or mucosal adjuvant (e.g., CTB) | Phase I completed | Preliminary safety and immunogenicity shown in Phase I trials; no conclusive protective efficacy demonstrated in humans |
Inactivated Whole-Cell | Formalin-killed H. pylori cells | Oral | Mucosal adjuvants (e.g., LT, CTB) | Preclinical | Requires high-dose delivery and potent adjuvants for mucosal immunity |
Protein Subunit | ureB, vacA, cagA, napA, hpaA | Subcutaneous or intramuscular | Aluminum hydroxide, MF59, or Freund’s adjuvant | Phase I/II (some completed) | Requires subcutaneous or intramuscular delivery in preclinical models with purified antigens and strong systemic adjuvants; oral mucosal delivery remains challenging; moderate immunogenicity; acceptable safety in early trials |
DNA-Based | Plasmid-encoded urease, cagA | Intramuscular | None or CpG ODN | Preclinical | Induces systemic and mucosal immunity in animals; no human trials yet |
Epitope-Based/Peptide | In silico-designed multiepitope constructs | Intranasal or oral | Mucosal adjuvants or delivery systems | Preclinical/computational | Confined to computational design or small animal studies; no human efficacy demonstrated to date; emerging strategy |
Virus-like Particles (VLPs) | Recombinant hpaA-VLPs, cagA-VLPs | Intranasal or oral | Chitosan, MPLA | Preclinical | Emerging delivery strategy; favorable immunogenicity in murine models |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbehiry, A.; Marzouk, E.; Abalkhail, A. Unraveling Helicobacter pylori: Insights into Pathogenesis, Immune Evasion, and Progress Toward Effective Vaccination. Vaccines 2025, 13, 725. https://doi.org/10.3390/vaccines13070725
Elbehiry A, Marzouk E, Abalkhail A. Unraveling Helicobacter pylori: Insights into Pathogenesis, Immune Evasion, and Progress Toward Effective Vaccination. Vaccines. 2025; 13(7):725. https://doi.org/10.3390/vaccines13070725
Chicago/Turabian StyleElbehiry, Ayman, Eman Marzouk, and Adil Abalkhail. 2025. "Unraveling Helicobacter pylori: Insights into Pathogenesis, Immune Evasion, and Progress Toward Effective Vaccination" Vaccines 13, no. 7: 725. https://doi.org/10.3390/vaccines13070725
APA StyleElbehiry, A., Marzouk, E., & Abalkhail, A. (2025). Unraveling Helicobacter pylori: Insights into Pathogenesis, Immune Evasion, and Progress Toward Effective Vaccination. Vaccines, 13(7), 725. https://doi.org/10.3390/vaccines13070725