VITT Pathophysiology: An Update
Abstract
:1. Introduction
2. Terminology
3. The Pathogenesis of VITT
Vaccine | Anti-PF4 Abs | Pathogenetic Mechanism | Involved Receptors | Target Cells | References |
---|---|---|---|---|---|
AdV-basedanti-SARS-CoV-2 vaccine | Positive | Anti-PF4 antibodies | FcγRIIA | PlateletsNeutrophils | [8] |
AdV-basedanti-SARS-CoV-2 vaccine | Positive | Generation of soluble SARS-CoV-2 spike protein caused by unwanted splicing events | ACE-2 | Endothelial cells | [29,30] |
mRNA-basedanti-SARS-CoV-2 vaccine | Negative | Spike/anti-spike IgG complexes | FcγRIIA | Platelets | [14] |
mRNA-basedanti-SARS-CoV-2 vaccine | Negative | Histone/anti-histone IgG complexes | FcγRIIA | Platelets | [15] |
4. TTS Negative for Anti-PF4 Antibodies
5. Recent Acquisitions on VITT Pathogenesis
5.1. Anti-PF4 Antibodies
5.2. Genetic Predisposition to VITT
5.3. Cell Activation Pathways
5.3.1. Endothelial Cell Activation
5.3.2. Platelet-Neutrophil Aggregate Formation and Inflammasome Activation
5.3.3. Platelet Spleen Tyrosine Kinase (SYK)
5.3.4. Lipid Metabolism
6. New VITT-like Disorders
7. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Gresele, P.; Marietta, M.; Ageno, W.; Marcucci, R.; Contino, L.; Donadini, M.P.; Russo, L.; Tiscia, G.L.; Palareti, G.; Tripodi, A.; et al. Management of Cerebral and Splanchnic Vein Thrombosis Associated with Thrombocytopenia in Subjects Previously Vaccinated with Vaxzevria (AstraZeneca): A Position Statement from the Italian Society for the Study of Haemostasis and Thrombosis (SISET). Blood Transfus. 2021, 19, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Petito, E.; Gresele, P. Vaccine-Induced Immune Thrombotic Thrombocytopenia Two Years Later: Should It Still Be on the Scientific Agenda? Thromb. Haemost. 2025, 125, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Cines, D.B.; Greinacher, A. Vaccine-Induced Immune Thrombotic Thrombocytopenia. Blood 2023, 141, 1659–1665. [Google Scholar] [CrossRef]
- Krzywicka, K.; van de Munckhof, A.; Zimmermann, J.; Bode, F.J.; Frisullo, G.; Karapanayiotides, T.; Pötzsch, B.; Sánchez van Kammen, M.; Heldner, M.R.; Arnold, M.; et al. Cerebral Venous Thrombosis Due to Vaccine-Induced Immune Thrombotic Thrombocytopenia after a Second ChAdOx1 nCoV-19 Dose. Blood 2022, 139, 2720–2724. [Google Scholar] [CrossRef]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- Scully, M.; Singh, D.; Lown, R.; Poles, A.; Solomon, T.; Levi, M.; Goldblatt, D.; Kotoucek, P.; Thomas, W.; Lester, W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2202–2211. [Google Scholar] [CrossRef]
- Greinacher, A.; Selleng, K.; Palankar, R.; Wesche, J.; Handtke, S.; Wolff, M.; Aurich, K.; Lalk, M.; Methling, K.; Völker, U.; et al. Insights in ChAdOx1 nCoV-19 Vaccine-Induced Immune Thrombotic Thrombocytopenia. Blood 2021, 138, 2256–2268. [Google Scholar] [CrossRef]
- Dupuy, A.; Liu, X.; Kong, Y.X.; Qi, M.; Perdomo, J.; Fenwick, J.; Tieng, J.; Johnston, B.; Shi, Q.S.; Larance, M.; et al. Endothelial Cell Activation Enhances Thromboinflammation in Vaccine-Induced Immune Thrombotic Thrombocytopenia. Blood Adv. 2025, 9, 2891–2906. [Google Scholar] [CrossRef]
- Lovatt, C.; Frängsmyr, L.; Swift, E.A.; Mundy, R.M.; Parker, A.L. Investigating Endothelial Cell Transduction and Hexon:PF4 Binding of ChAdOx1 in the Context of VITT. bioRxiv 2025. [Google Scholar] [CrossRef]
- Greinacher, A.; Warkentin, T.E. Thrombotic Anti-PF4 Immune Disorders: HIT, VITT, and Beyond. Hematology 2023, 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pavord, S.; Scully, M.; Hunt, B.J.; Lester, W.; Bagot, C.; Craven, B.; Rampotas, A.; Ambler, G.; Makris, M. Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis. N. Engl. J. Med. 2021, 385, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Procter, T.D.; Ogasawara, H.; Spruin, S.; Wijayasri, S.; Abraham, N.; Blaser, C.; Hutchings, K.; Shaw, A.; Ogunnaike-Cooke, S. Thrombosis with Thrombocytopenia Syndrome (TTS) Following Adenovirus Vector COVID-19 Vaccination in Canada. Vaccine 2023, 41, 6802–6809. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, J.; Arnold, D.M.; Kelton, J.G.; Gernsheimer, T.; Jevtic, S.D.; Ivetic, N.; Smith, J.W.; Nazy, I. SARS-CoV-2 Spike-Dependent Platelet Activation in COVID-19 Vaccine-Induced Thrombocytopenia. Blood Adv. 2022, 6, 2250–2253. [Google Scholar] [CrossRef]
- Esefeld, M.; Handtke, S.; Kaiser, R.; Nicolai, L.; Di Fina, L.; Rossaro, D.; Wesche, J.; Rath, J.; Wienrich, A.-C.; Hoffmann, T.; et al. Platelet Activating Histone/Antihistone IgG Complexes in Anti-PF4 Negative Thrombosis and Thrombocytopenia Syndrome. Blood Adv. 2025. [Google Scholar] [CrossRef]
- Nicolson, P.L.R.; Montague, S.J.; Buka, R.J.; Calvert, A.; Sheppard, J.-A.I.; Zhang, Y.; Wang, J.J.; Sharman, J.; Hassan, E.; Harrison, J.; et al. Anti-PF4 Mediated Thrombocytopenia and Thrombosis Associated with Acute Cytomegalovirus Infection Displays Both HIT-like and VITT-like Characteristics. Br. J. Haematol. 2025, 206, 1737–1742. [Google Scholar] [CrossRef]
- Makris, M. PF4-Associated Immune Thrombocytopenia and Thrombosis (PITT)—More than Heparin and Vaccines. Br. J. Haematol. 2025, 206, 1877–1878. [Google Scholar] [CrossRef]
- Schönborn, L.; Pavord, S.; Chen, V.M.Y.; Pai, M.; Gwarzo, D.H.; Buttery, J.; Munoz, F.M.; Tran, H.; Greinacher, A.; Law, B. Thrombosis with Thrombocytopenia Syndrome (TTS) and Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT): Brighton Collaboration Case Definitions and Guidelines for Data Collection, Analysis, and Presentation of Immunisation Safety Data. Vaccine 2024, 42, 1799–1811. [Google Scholar] [CrossRef]
- Benemei, S.; Gatto, F.; Marcucci, R.; Gresele, P. Emerging Thrombotic Disorders Associated with Virus-Based Innovative Therapies: From VITT to AAV-Gene Therapy-Related Thrombotic Microangiopathy. Thromb. Haemost. 2025, 125, 513–522. [Google Scholar] [CrossRef]
- Huang, W.-T.; Law, B.; Tran, H.; Schönborn, L.; Huang, W.-I.; Buttery, J.; Chen, V.M.Y.; Greinacher, A.; Pavord, S. Validation of the Newly Proposed Brighton Collaboration Case Definition for Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Vaccine 2024, 42, 126131. [Google Scholar] [CrossRef]
- Huynh, A.; Kelton, J.G.; Arnold, D.M.; Daka, M.; Nazy, I. Antibody Epitopes in Vaccine-Induced Immune Thrombotic Thrombocytopaenia. Nature 2021, 596, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Schönborn, L.; Thiele, T.; Esefeld, M.; El Debuch, K.; Wesche, J.; Seck, S.E.; Kaderali, L.; Wolff, M.; Warkentin, T.E.; Greinacher, A. Quantitative Interpretation of PF4/Heparin-EIA Optical Densities in Predicting Platelet-Activating VITT Antibodies. J Thromb. Haemost. 2022, 20, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Huynh, A.; Arnold, D.M.; Michael, J.V.; Clare, R.; Smith, J.W.; Daka, M.; Ianosi-Irimie, M.; McKenzie, S.E.; Kelton, J.G.; Nazy, I. Characteristics of VITT Antibodies in Patients Vaccinated with Ad26.COV2.S. Blood Adv. 2023, 7, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Kanack, A.J.; Bayas, A.; George, G.; Abou-Ismail, M.Y.; Singh, B.; Kohlhagen, M.C.; Splinter, N.P.; Christ, M.; Naumann, M.; Moser, K.A.; et al. Monoclonal and Oligoclonal Anti-Platelet Factor 4 Antibodies Mediate VITT. Blood 2022, 140, 73–77. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Le, S.-H.; Ivanov, D.G.; Ivetic, N.; Nazy, I.; Kaltashov, I.A. Structural Characterization of a Pathogenic Antibody Underlying Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). Anal. Chem. 2024, 96, 6209–6217. [Google Scholar] [CrossRef]
- Wang, J.J.; Armour, B.; Chataway, T.; Troelnikov, A.; Colella, A.; Yacoub, O.; Hockley, S.; Tan, C.W.; Gordon, T.P. Vaccine-Induced Immune Thrombotic Thrombocytopenia Is Mediated by a Stereotyped Clonotypic Antibody. Blood 2022, 140, 1738–1742. [Google Scholar] [CrossRef]
- Baker, A.T.; Boyd, R.J.; Sarkar, D.; Teijeira-Crespo, A.; Chan, C.K.; Bates, E.; Waraich, K.; Vant, J.; Wilson, E.; Truong, C.D.; et al. ChAdOx1 Interacts with CAR and PF4 with Implications for Thrombosis with Thrombocytopenia Syndrome. Sci. Adv. 2021, 7, eabl8213. [Google Scholar] [CrossRef]
- van der Neut Kolfschoten, M.; Inganäs, H.; Perez-Peinado, C.; Calado da Silva Freire, J.; Melchers, J.M.; van Dijk, N.; Przeradzka, M.; Kourkouta, E.; van Manen, D.; Vellinga, J.; et al. Biophysical Studies Do Not Reveal Direct Interactions between Human PF4 and Ad26.COV2.S Vaccine. J. Thromb. Haemost. 2024, 22, 1046–1055. [Google Scholar] [CrossRef]
- Kowarz, E.; Krutzke, L.; Külp, M.; Streb, P.; Larghero, P.; Reis, J.; Bracharz, S.; Engler, T.; Kochanek, S.; Marschalek, R. Vaccine-Induced COVID-19 Mimicry Syndrome. Elife 2022, 11, e74974. [Google Scholar] [CrossRef]
- De Michele, M.; Piscopo, P.; Crestini, A.; Rivabene, R.; D’Amati, G.; Leopizzi, M.; Stefanini, L.; Pulcinelli, F.; Chistolini, A.; Iacobucci, M.; et al. Vaccine-Induced Immune Thrombotic Thrombocytopenia: A Possible Pathogenic Role of ChAdOx1 nCoV-19 Vaccine-Encoded Soluble SARS-CoV-2 Spike Protein. Haematologica 2022, 107, 1687–1692. [Google Scholar] [CrossRef]
- Almuqrin, A.; Davidson, A.D.; Williamson, M.K.; Lewis, P.A.; Heesom, K.J.; Morris, S.; Gilbert, S.C.; Matthews, D.A. SARS-CoV-2 Vaccine ChAdOx1 nCoV-19 Infection of Human Cell Lines Reveals Low Levels of Viral Backbone Gene Transcription alongside Very High Levels of SARS-CoV-2 S Glycoprotein Gene Transcription. Genome Med. 2021, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Gresele, P.; Momi, S.; Marcucci, R.; Ramundo, F.; De Stefano, V.; Tripodi, A. Interactions of Adenoviruses with Platelets and Coagulation and the Vaccine-Induced Immune Thrombotic Thrombocytopenia Syndrome. Haematologica 2021, 106, 3034–3045. [Google Scholar] [CrossRef] [PubMed]
- Platton, S.; Bartlett, A.; MacCallum, P.; Makris, M.; McDonald, V.; Singh, D.; Scully, M.; Pavord, S. Evaluation of Laboratory Assays for Anti-Platelet Factor 4 Antibodies after ChAdOx1 nCOV-19 Vaccination. J. Thromb. Haemost. 2021, 19, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Craven, B.; Lester, W.; Boyce, S.; Thomas, W.; Kanny, A.; Davies, C.; Pavord, S.; Hermans, J.; Makris, M.; Bart-Smith, E.; et al. Natural History of PF4 Antibodies in Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Blood 2022, 139, 2553–2560. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Clifford, J.; Leitinger, E.; Parker, M.; Sung, P.; Chunilal, S.; Tran, H.; Kershaw, G.; Fu, S.; Passam, F.; et al. Assessment of Immunological Anti-Platelet Factor 4 Antibodies for Vaccine-Induced Thrombotic Thrombocytopenia (VITT) in a Large Australian Cohort: A Multicenter Study Comprising 1284 Patients. J. Thromb. Haemost. 2022, 20, 2896–2908. [Google Scholar] [CrossRef]
- Wang, J.J.; van der Neut Kolfschoten, M.; Rutten, L.; Armour, B.; Tan, C.W.; Chataway, T.; Bos, R.; Koornneef, A.; Abeywickrema, P.; Kapur, R.; et al. Characterization of Reverse-Engineered Anti-PF4 Stereotypic Antibodies Derived from Serum of Patients with VITT. Blood 2024, 143, 370–374. [Google Scholar] [CrossRef]
- Müller, L.; Dabbiru, V.A.S.; Rutten, L.; Bos, R.; Zahn, R.; Handtke, S.; Thiele, T.; Palicio, M.; Esteban, O.; Broto, M.; et al. Recombinant Anti-PF4 Antibodies Derived from Patients with Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT) Facilitate Research and Laboratory Diagnosis of VITT. Vaccines 2024, 13, 3. [Google Scholar] [CrossRef]
- Giusti, B.; Sticchi, E.; Capezzuoli, T.; Orsi, R.; Squillantini, L.; Giannini, M.; Suraci, S.; Rogolino, A.A.; Cesari, F.; Berteotti, M.; et al. Whole Exome Sequencing in Vaccine-Induced Thrombotic Thrombocytopenia (VITT). Biomed. Res. Int. 2024, 2024, 2860547. [Google Scholar] [CrossRef]
- Petito, E.; Bury, L.; Antunes Heck, L.; Sadler, B.; De Candia, E.; Podda, G.M.; Falanga, A.; Stefanini, L.; Boccatonda, A.; Sciancalepore, P.; et al. Association of Human Leucocyte Antigen Loci with Vaccine-Induced Immune Thrombotic Thrombocytopenia: Potential Role of the Interaction between Platelet Factor 4-Derived Peptides and MHC-II. Br. J. Haematol. 2025, 206, 290–295. [Google Scholar] [CrossRef]
- Pombal, R.; Silva, L.; Ferreira, D. Genetic Predisposition to Vaccine-Induced Immune Thrombotic Thrombocytopenia: Is There a Family Link? Eur. J. Case Rep. Intern. Med. 2024, 11, 004546. [Google Scholar] [CrossRef]
- Mendes-de-Almeida, D.P.; Kehdy, F.S.G.; Martins-Gonçalves, R.; Bokel, J.; Grinsztejn, E.; Mouta Nunes de Oliveira, P.; de Lourdes de Sousa Maia, M.; Hoagland, B.; Wagner Cardoso, S.; Grinsztejn, B.; et al. A Case Report of Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) with Genetic Analysis. Front. Cardiovasc. Med. 2023, 10, 1189320. [Google Scholar] [CrossRef] [PubMed]
- Fousse, M.; Schub, D.; Merzou, F.; Fassbender, K.; Sester, M.; Kettner, M.; Lochner, P.; Schmidt, T.; Goi Júnior, J.R. Case Report: Cerebral Sinus Vein Thrombosis in Two Patients with AstraZeneca SARS-CoV-2 Vaccination. J. Neurol. 2022, 269, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Castelli, G.P.; Pognani, C.; Sozzi, C.; Franchini, M.; Vivona, L. Cerebral Venous Sinus Thrombosis Associated with Thrombocytopenia Post-Vaccination for COVID-19. Crit. Care 2021, 25, 137. [Google Scholar] [CrossRef] [PubMed]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Amin Asnafi, A.; Jalali, M.T.; Pezeshki, S.M.S.; Jaseb, K.; Saki, N. The Association Between Human Leukocyte Antigens and ITP, TTP, and HIT. J. Pediatr. Hematol. Oncol. 2019, 41, 81–86. [Google Scholar] [CrossRef]
- Zhang, R.; Duffy, B.F.; Lange, V.; Eby, C.S.; Liu, C. Association between the HLA-DRB1*03:01-DQB1*02:01 Haplotype and PF4/Heparin Antibodies. Blood Adv. 2019, 3, 3136–3142. [Google Scholar] [CrossRef]
- Sakai, K.; Kuwana, M.; Tanaka, H.; Hosomichi, K.; Hasegawa, A.; Uyama, H.; Nishio, K.; Omae, T.; Hishizawa, M.; Matsui, M.; et al. HLA Loci Predisposing to Immune TTP in Japanese: Potential Role of the Shared ADAMTS13 Peptide Bound to Different HLA-DR. Blood 2020, 135, 2413–2419. [Google Scholar] [CrossRef]
- Arnold, D.M.; Paré, G.; Nazy, I. Genetic Predisposition to Vaccine-Induced Immune Thrombotic Thrombocytopenia. Br. J. Haematol. 2025, 206, 387–388. [Google Scholar] [CrossRef]
- Pomara, C.; Sessa, F.; Ciaccio, M.; Dieli, F.; Esposito, M.; Garozzo, S.F.; Giarratano, A.; Prati, D.; Rappa, F.; Salerno, M.; et al. Post-Mortem Findings in Vaccine-Induced Thrombotic Thombocytopenia. Haematologica 2021, 106, 2291–2293. [Google Scholar] [CrossRef]
- Potere, N.; Garrad, E.; Kanthi, Y.; Di Nisio, M.; Kaplanski, G.; Bonaventura, A.; Connors, J.M.; De Caterina, R.; Abbate, A. NLRP3 Inflammasome and Interleukin-1 Contributions to COVID-19-Associated Coagulopathy and Immunothrombosis. Cardiovasc. Res. 2023, 119, 2046–2060. [Google Scholar] [CrossRef]
- Leung, H.H.L.; Perdomo, J.; Ahmadi, Z.; Zheng, S.S.; Rashid, F.N.; Enjeti, A.; Ting, S.B.; Chong, J.J.H.; Chong, B.H. NETosis and Thrombosis in Vaccine-Induced Immune Thrombotic Thrombocytopenia. Nat. Commun. 2022, 13, 5206. [Google Scholar] [CrossRef] [PubMed]
- Martins-Gonçalves, R.; Rozini, S.V.; Mendes-de-Almeida, D.P.; Palhinha, L.; Sacramento, C.Q.; Pereira-Silva, G.C.; Campos, M.M.; de Oliveira, D.M.; e Souza, C.A.L.-C.; de Jesus, B.d.B.G.; et al. Platelet-Neutrophil Aggregate Formation Induces NLRP3 Inflammasome Activation in Vaccine-Induced Thrombotic Thrombocytopenia. J. Thromb. Haemost. 2025, 23, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Zlamal, J.; Ripoll, V.M.; Lee, C.S.M.; Toma, F.; Althaus, K.; Rigoni, F.; Witzemann, A.; Whittaker, S.; Capraro, D.; Uzun, G.; et al. Platelet Spleen Tyrosine Kinase Is a Key Regulator of Anti-PF4 Antibody–Induced Immunothrombosis. Blood Adv. 2024, 9, 1772–1785. [Google Scholar] [CrossRef] [PubMed]
- Goracci, L.; Petito, E.; Di Veroli, A.; Falcinelli, E.; Bencivenga, C.; Giglio, E.; Becattini, C.; De Robertis, E.; Vaudo, G.; Gresele, P. A Platelet Lipidomics Signature in Patients with COVID-19. Platelets 2023, 34, 2200847. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Murphy, R.C.; Watson, S.P. Platelet Lipidomics: Modern Day Perspective on Lipid Discovery and Characterization in Platelets. Circ. Res. 2014, 114, 1185–1203. [Google Scholar] [CrossRef]
- Deguchi, H.; Elias, D.J.; Griffin, J.H. Minor Plasma Lipids Modulate Clotting Factor Activities and May Affect Thrombosis Risk. Res. Pract. Thromb. Haemost. 2017, 1, 93–102. [Google Scholar] [CrossRef]
- Paciullo, F.; Petito, E.; Falcinelli, E.; Gresele, P.; Momi, S. Pleiotropic Effects of PCSK9-Inhibition on Hemostasis: Anti-PCSK9 Reduce FVIII Levels by Enhancing LRP1 Expression. Thromb. Res. 2022, 213, 170–172. [Google Scholar] [CrossRef]
- Stevens, H.; McFadyen, J.D.; Mellett, N.A.; Lynn, D.J.; Duong, T.; Giles, C.; James, J.; Botten, R.; Eden, G.; Lynn, M.; et al. Beyond Platelet Activation: Dysregulated Lipid Metabolism in Defining Risk and Pathophysiology of VITT. Res. Pract. Thromb. Haemost. 2025, 9, 102677. [Google Scholar] [CrossRef]
- Johansen, S.; Lægreid, I.J.; Ernstsen, S.L.; Azrakhsh, N.A.; Kittang, A.O.; Lindås, R.; Gjertsen, B.T.; Vetti, N.; Mørtberg, T.V.; Sørvoll, I.H.; et al. Thrombosis and Thrombocytopenia after HPV Vaccination. J. Thromb. Haemost. 2022, 20, 700. [Google Scholar] [CrossRef]
- Kanack, A.J.; Laegreid, I.J.; Johansen, S.; Reikvam, H.; Ahlen, M.T.; Padmanabhan, A. Human Papilloma Virus Vaccine and VITT Antibody Induction. Am. J. Hematol. 2022, 97, E363–E364. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Kanack, A.J.; Kaplan, R.B.; Sangli, S. COVID-19 mRNA-1273 Vaccine Induces Production of Vaccine-Induced Immune Thrombotic Thrombocytopenia Antibodies. Am. J. Hematol. 2022, 97, E223–E225. [Google Scholar] [CrossRef] [PubMed]
- Sangli, S.; Virani, A.; Cheronis, N.; Vannatter, B.; Minich, C.; Noronha, S.; Bhagavatula, R.; Speredelozzi, D.; Sareen, M.; Kaplan, R.B. Thrombosis With Thrombocytopenia After the Messenger RNA-1273 Vaccine. Ann. Intern. Med. 2021, 174, 1480–1482. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-C.; Fu, P.-A.; Hsu, Y.-T.; Chen, T.-Y. Vaccine-Induced Immune Thrombotic Thrombocytopenia Following BNT162b2 mRNA COVID-19 Booster: A Case Report. Vaccines 2023, 11, 1115. [Google Scholar] [CrossRef] [PubMed]
- Schönborn, L.; Esteban, O.; Wesche, J.; Dobosz, P.; Broto, M.; Puig, S.R.; Fuhrmann, J.; Torres, R.; Serra, J.; Llevadot, R.; et al. Anti-PF4 Immunothrombosis without Proximate Heparin or Adenovirus Vector Vaccine Exposure. Blood 2023, 142, 2305–2314. [Google Scholar] [CrossRef]
- Uzun, G.; Zlamal, J.; Althaus, K.; Bevot, A.; Hennersdorf, F.; Wolska, N.; Jock, A.; Kern, J.; Icheva, V.; Poli, S.; et al. Cerebral Venous Sinus Thrombosis and Thrombocytopenia Due to Heparin-Independent Anti-PF4 Antibodies after Adenovirus Infection. Haematologica 2024, 109, 2010–2015. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Baskin-Miller, J.; Raybould, A.L.; Sheppard, J.-A.I.; Daka, M.; Nazy, I.; Moll, S. Adenovirus-Associated Thrombocytopenia, Thrombosis, and VITT-like Antibodies. N. Engl. J. Med. 2023, 389, 574–577. [Google Scholar] [CrossRef]
- Dimopoulou, D.; Mentesidou, L.; Dettoraki, A.; Karastathi, C.; Berikopoulou, M.; Katsouli, P.; Anastasopoulou, I.; Stamatakis, I.G.; Bachou, T.; Tzifi, F.; et al. A Cluster of Pediatric VITT-like Cases with Thrombosis and Thrombocytopenia Following Respiratory Infections-Case Series. Res. Pract. Thromb. Haemost. 2024, 8, 102589. [Google Scholar] [CrossRef]
- Lambert, M.P.; Warkentin, T.E. Mini-Clusters of Postadenovirus VITT. Res. Pract. Thromb. Haemost. 2025, 9, 102641. [Google Scholar] [CrossRef]
- Wang, J.J.; Schönborn, L.; Warkentin, T.E.; Chataway, T.; Grosse, L.; Simioni, P.; Moll, S.; Greinacher, A.; Gordon, T.P. Antibody Fingerprints Linking Adenoviral Anti-PF4 Disorders. N. Engl. J. Med. 2024, 390, 1827–1829. [Google Scholar] [CrossRef]
- Greinacher, A.; Langer, F.; Schonborn, L.; Thiele, T.; Haddad, M.; Renne, T.; Rollin, J.; Gruel, Y.; Warkentin, T.E. Platelet-Activating Anti-PF4 Antibodies Mimic VITT Antibodies in an Unvaccinated Patient with Monoclonal Gammopathy. Haematologica 2022, 107, 1219–1221. [Google Scholar] [CrossRef]
- Kanack, A.J.; Schaefer, J.K.; Sridharan, M.; Splinter, N.P.; Kohlhagen, M.C.; Singh, B.; De Lorenzo, S.B.; Mauch, E.E.; Hussein, M.A.; Shaikh, M.; et al. Monoclonal Gammopathy of Thrombotic/Thrombocytopenic Significance. Blood 2023, 141, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Kanack, A.J.; Leung, N.; Padmanabhan, A. Diagnostic Complexity in Monoclonal Gammopathy of Thrombotic Significance. N. Engl. J. Med. 2024, 391, 1961–1963. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Warkentin, T.E.; Schönborn, L.; Wheeler, M.B.; Geerts, W.H.; Costedoat-Chalumeau, N.; Gendron, N.; Ene, G.; Lozano, M.; Langer, F.; et al. VITT-like Monoclonal Gammopathy of Thrombotic Significance. N. Engl. J. Med. 2025, 392, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, G.; Murray, D.L.; Padmanabhan, A. Myeloma Therapy for Monoclonal Gammopathy of Thrombotic Significance. N. Engl. J. Med. 2024, 391, 570–571. [Google Scholar] [CrossRef]
- Häusler, S.; Schönborn, L.; Gradl, J.; Cadamuro, J.; Steinbrücker, K.; Broto, M.; Palicio, M.; Budde, K.; Wesche, J.; Greinacher, A.; et al. Maternal Anti-PF4 Antibodies as Cause of Neonatal Stroke. N. Engl. J. Med. 2025, 392, 719–721. [Google Scholar] [CrossRef]
- Remez-Gabay, L.; Vdovich, O.; Akria, L.; Kruzel-Davila, E. Case Report: Anti-Platelet Factor 4 -Mediated Immunothrombosis in a Patient with ANCA Vasculitis—a Shared Mechanism of NETosis. Front. Immunol. 2025, 16, 1567999. [Google Scholar] [CrossRef]
- Xia, J.; Siegel, M.; Bergseng, E.; Sollid, L.M.; Khosla, C. Inhibition of HLA-DQ2 Mediated Antigen Presentation by Analogues of a High Affinity 33-Residue Peptide from A2-Gliadin. J. Am. Chem. Soc. 2006, 128, 1859–1867. [Google Scholar] [CrossRef]
VITT | VITT-like Syndromes | TTS | |
---|---|---|---|
Thrombocytopenia | Yes | Yes | Yes |
Thrombosis at unusual sites | Yes | Yes | Yes |
Proximate heparin administration | No | No | No |
Proximate anti-SARS-CoV-2 vaccine administration | Yes | No | Yes/No |
D-dimer level > 0.5 mg/L FEU | Yes | Yes | Yes |
Anti-PF4 antibodies (ELISA) | Yes | Yes | Yes/No * |
Platelet-activation assay (PIFPA, PIPA, SRA) | Yes | Yes | Yes/No * |
Treatment | References |
---|---|
Methylprednisolone (1 mg/kg/day) | [16,63,67] |
IVIg (1 gr/kg/day) | [59,61,62,63,65] |
Platelet transfusions | [65,66,67] |
Prednisone oral (1 mg/kg/day) | [59,66] |
Plasma exchange | [64,66] |
Non-heparin anticoagulant (Fondaparinux, Bivalirudin, or Argatroban) | [59,62,64,66] |
Direct Oral Anticoagulants (DOAC) | [59,63,64] |
Unfractionated heparin (UFH) | [61,64,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petito, E.; Gresele, P. VITT Pathophysiology: An Update. Vaccines 2025, 13, 650. https://doi.org/10.3390/vaccines13060650
Petito E, Gresele P. VITT Pathophysiology: An Update. Vaccines. 2025; 13(6):650. https://doi.org/10.3390/vaccines13060650
Chicago/Turabian StylePetito, Eleonora, and Paolo Gresele. 2025. "VITT Pathophysiology: An Update" Vaccines 13, no. 6: 650. https://doi.org/10.3390/vaccines13060650
APA StylePetito, E., & Gresele, P. (2025). VITT Pathophysiology: An Update. Vaccines, 13(6), 650. https://doi.org/10.3390/vaccines13060650