Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Viruses
2.3. Mpox Focus Reduction Neutralization Test (FRNT)
2.4. Vaccinia Plaque Reduction Neutralization Test (PRNT)
2.5. IFN-γ ELISPOT
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parrino, J.; Graham, B.S. Smallpox vaccines: Past, present, and future. J. Allergy Clin. Immunol. 2006, 118, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Likos, A.M.; Sammons, S.A.; Olson, V.A.; Frace, A.M.; Li, Y.; Olsen-Rasmussen, M.; Davidson, W.; Galloway, R.; Khristova, M.L.; Reynolds, M.G.; et al. A tale of two clades: Monkeypox viruses. J. Gen. Virol. 2005, 86, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Okwor, T.; Mbala, P.K.; Evans, D.H.; Kindrachuk, J. A contemporary review of clade-specific virological differences in monkeypox viruses. Clin. Microbiol. Infect. 2023, 29, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Durski, K.N.; McCollum, A.M.; Nakazawa, Y.; Petersen, B.W.; Reynolds, M.G.; Briand, S.; Djingarey, M.H.; Olson, V.; Damon, I.K.; Khalakdina, A. Emergence of Monkeypox-West and Central Africa, 1970–2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 306–310. [Google Scholar] [CrossRef]
- Pan, D.; Nazareth, J.; Sze, S.; Martin, C.A.; Decker, J.; Fletcher, E.; Hollingsworth, T.D.; Barer, M.R.; Pareek, M.; Tang, J.W. Transmission of monkeypox/mpox virus: A narrative review of environmental, viral, host, and population factors in relation to the 2022 international outbreak. J. Med. Virol. 2023, 95. [Google Scholar] [CrossRef]
- CDC. Mpox in the United States and Around the World: Current Situation. Available online: https://www.cdc.gov/mpox/situation-summary/index.html (accessed on 19 March 2025).
- WHO. 2022-24 Mpox (Monkeypox) Outbreak: Global Trends. Available online: https://worldhealthorg.shinyapps.io/mpx_global/ (accessed on 23 March 2023).
- Brand, S.P.C.; Cavallaro, M.; Cumming, F.; Turner, C.; Florence, I.; Blomquist, P.; Hilton, J.; Guzman-Rincon, L.M.; House, T.; Nokes, D.J.; et al. The role of vaccination and public awareness in forecasts of Mpox incidence in the United Kingdom. Nat. Commun. 2023, 14, 4100. [Google Scholar] [CrossRef]
- WHO. WHO Director-General Declares the Ongoing Monkeypox Outbreak a Public Health Emergency of International Concern. 2022. Available online: https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern (accessed on 23 March 2023).
- Kennedy, R.B.; Ovsyannikova, I.; Poland, G.A. Smallpox vaccines for biodefense. Vaccine 2009, 27, D73–D79. [Google Scholar] [CrossRef]
- Petersen, B.W.; Damon, I.K.; A Pertowski, C.; Meaney-Delman, D.; Guarnizo, J.T.; Beigi, R.H.; Edwards, K.M.; Fisher, M.C.; E Frey, S.; Lynfield, R.; et al. Clinical guidance for smallpox vaccine use in a postevent vaccination program. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 1–26. [Google Scholar]
- Damon, I.K.; Davidson, W.B.; Hughes, C.M.; Olson, V.A.; Smith, S.K.; Holman, R.C.; Frey, S.E.; Newman, F.; Belshe, R.B.; Yan, L.; et al. Evaluation of smallpox vaccines using variola neutralization. J. Gen. Virol. 2009, 90, 1962–1966. [Google Scholar] [CrossRef]
- Hughes, C.M.; Newman, F.K.; Davidson, W.B.; Olson, V.A.; Smith, S.K.; Holman, R.C.; Yan, L.; Frey, S.E.; Belshe, R.B.; Karem, K.L.; et al. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines. Clin. Vaccine Immunol. 2012, 19, 1116–1118. [Google Scholar] [CrossRef]
- Frey, S.E.; Wald, A.; Edupuganti, S.; Jackson, L.A.; Stapleton, J.T.; El Sahly, H.; El-Kamary, S.S.; Edwards, K.; Keyserling, H.; Winokur, P.; et al. Comparison of lyophilized versus liquid modified vaccinia Ankara (MVA) formulations and subcutaneous versus intradermal routes of administration in healthy vaccinia-naïve subjects. Vaccine 2015, 33, 5225–5234. [Google Scholar] [CrossRef] [PubMed]
- Owens, L.E.; Currie, D.W.; Kramarow, E.A.; Siddique, S.; Swanson, M.; Carter, R.J.; Kriss, J.L.; Boersma , P.M.; Lee, F.C.; Spicknall, I.; et al. JYNNEOS Vaccination Coverage Among Persons at Risk for Mpox - United States, May 22, 2022-January 31, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Africa CDC ; Gavi; UNICEF; WHO. Joint Press Release. Vaccine Doses Allocated to 9 African Countries Hardest Hit by Mpox Surge. Available online: https://www.who.int/news/item/06-11-2024-vaccine-doses-allocated-to-9-african-countries-hardest-hit-by-mpox-surge (accessed on 19 March 2025).
- Collier, A.-R.Y.; McMahan, K.; Jacob-Dolan, C.; Liu, J.; Borducchi, E.N.; Moss, B.; Barouch, D.H. Decline of Mpox Antibody Responses After Modified Vaccinia Ankara–Bavarian Nordic Vaccination. JAMA 2024, 332, 1669–1672. [Google Scholar] [CrossRef] [PubMed]
- Moschetta, N.; Raccagni, A.R.; Bianchi, M.; Diotallevi, S.; Lolatto, R.; Candela, C.; Foppa, C.U.; Gismondo, M.R.; Castagna, A.; Nozza, S.; et al. Mpox neutralising antibodies at 6 months from mpox infection or MVA-BN vaccination: A comparative analysis. Lancet Infect. Dis. 2023, 23, e455–e456. [Google Scholar] [CrossRef]
- Kottkamp, A.C.; Samanovic, M.I.; Duerr, R.; Oom, A.L.; Belli, H.M.; Zucker, J.R.; Rosen, J.B.; Mulligan, M.J. Antibody Titers against Mpox Virus after Vaccination. N. Engl. J. Med. 2023, 389, 2299–2301. [Google Scholar] [CrossRef]
- Christodoulidou, M.M.; A Mabbott, N. Efficacy of smallpox vaccines against Mpox infections in humans. Immunother. Adv. 2023, 3, ltad020. [Google Scholar] [CrossRef]
- Frey, S.E.; Winokur, P.L.; Salata, R.A.; El-Kamary, S.S.; Turley, C.B.; Walter, E.B.; Hay, C.M.; Newman, F.K.; Hill, H.R.; Zhang, Y.; et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine 2013, 31, 3025–3033. [Google Scholar] [CrossRef]
- Yu, Y.; Meza, K.; Colbert, C.; Hoft, D.F.; Jaunarajs, A.; Blazevic, A.; Frey, S.E.; Abate, G. Optimizing Microneutralization and IFN-γ ELISPOT Assays to Evaluate Mpox Immunity. Vaccines 2025, 13, 27. [Google Scholar] [CrossRef]
- Newman, F.K.; Frey, S.E.; Blevins, T.P.; Mandava, M.; Bonifacio, A., Jr.; Yan, L.; Belshe, R.B. Improved assay to detect neutralizing antibody following vaccination with diluted or undiluted vaccinia (Dryvax) vaccine. J. Clin. Microbiol. 2003, 41, 3154–3157. [Google Scholar] [CrossRef]
- von Krempelhuber, A.; Vollmar, J.; Pokorny, R.; Rapp, P.; Wulff, N.; Petzold, B.; Handley, A.; Mateo, L.; Siersbol, H.; Kollaritsch, H.; et al. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®. Vaccine 2010, 28, 1209–1216. [Google Scholar] [CrossRef]
- Crandell, J.; Monteiro, V.S.; Pischel, L.; Fang, Z.; Zhong, Y.; Lawres, L.; Conde, L.; Meira de Asis, G.; Maciel, G.; Zaleski, A.; et al. The impact of antigenic distance on Orthopoxvirus Vaccination and Mpox Infection for cross-protective immunity. medRxiv 2025, 2024-01. [Google Scholar] [CrossRef]
- Zaeck, L.M.; Lamers, M.M.; Verstrepen, B.E.; Bestebroer, T.M.; van Royen, M.E.; Götz, H.; Shamier, M.C.; van Leeuwen, L.P.M.; Schmitz, K.S.; Alblas, K.; et al. Low levels of monkeypox virus-neutralizing antibodies after MVA-BN vaccination in healthy individuals. Nat. Med. 2023, 29, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Antoine, G.; Scheiflinger, F.; Dorner, F.; Falkner, F. The complete genomic sequence of the modified vaccinia Ankara strain: Comparison with other orthopoxviruses. Virology 1998, 244, 365–396. [Google Scholar] [CrossRef] [PubMed]
- Meisinger-Henschel, C.; Späth, M.; Lukassen, S.; Wolferstätter, M.; Kachelriess, H.; Baur, K.; Dirmeier, U.; Wagner, M.; Chaplin, P.; Suter, M.; et al. Introduction of the six major genomic deletions of modified vaccinia virus Ankara (MVA) into the parental vaccinia virus is not sufficient to reproduce an MVA-like phenotype in cell culture and in mice. J. Virol. 2010, 84, 9907–9919. [Google Scholar] [CrossRef] [PubMed]
- Matusali, G.; Cimini, E.; Mazzotta, V.; Colavita, F.; Maggi, F.; Antinori, A. Mpox Immune response elicited by MVA-BN vaccine over 12 months of follow-up. J. Infect. 2024, 89, 106309. [Google Scholar] [CrossRef]
- Mack, T.M.; Noble, J.; Thomas, D.B. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 1972, 21, 214–218. [Google Scholar] [CrossRef]
- Belshe, R.B.; Newman, F.K.; Frey, S.E.; Couch, R.B.; Treanor, J.J.; Tacket, C.O.; Yan, L. Dose-dependent neutralizing-antibody responses to vaccinia. J. Infect. Dis. 2004, 189, 493–497. [Google Scholar] [CrossRef]
- Marchi, S.; Piccini, G.; Cantaloni, P.; Guerrini, N.; Zannella, R.; Coluccio, R.; Benincasa, L.; Solfanelli, N.; Remarque, E.J.; Viviani, S.; et al. Evaluation of monkeypox- and vaccinia-virus neutralizing antibodies before and after smallpox vaccination: A sero-epidemiological study. J. Med. Virol. 2024, 96, e29728. [Google Scholar] [CrossRef]
- Sarkar, J.; Mitra, A.; Mukherjee, M. The minimum protective level of antibodies in smallpox. Bull World Health Organ. 1975, 52, 307–311. [Google Scholar]
- Ilchmann, H.; Samy, N.; Reichhardt, D.; Schmidt, D.; Powell, J.D.; Meyer, T.P.H.; Silbernagl, G.; Nichols, R.; Weidenthaler, H.; De Moerlooze, L.; et al. One- and Two-Dose Vaccinations with Modified Vaccinia Ankara-Bavarian Nordic Induce Durable B-Cell Memory Responses Comparable to Replicating Smallpox Vaccines. J. Infect. Dis. 2022, 227, 1203–1213. [Google Scholar] [CrossRef]
- Edghill-Smith, Y.; Bray, M.; Whitehouse, C.A.; Miller, D.; Mucker, E.; Manischewitz, J.; King, L.R.; Robert-Guroff, M.; Hryniewicz, A.; Venzon, D.; et al. Smallpox vaccine does not protect macaques with AIDS from a lethal monkeypox virus challenge. J. Infect. Dis. 2005, 191, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.M.; Elrosasy, A.; Mahmoud, A.M.; Saed, S.A.A.; Moawad, W.A.E.; Hamouda, E.; Nguyen, D.; Tran, V.P.; Pham, H.T.; Sah, S.; et al. The effect of HIV and mpox co-infection on clinical outcomes: Systematic review and meta-analysis. HIV Med. 2024, 25, 897–909. [Google Scholar] [CrossRef] [PubMed]
MVA | Dryvax | ||||
---|---|---|---|---|---|
Time Point | Statistic | Mpox | Vaccinia | Mpox | Vaccinia |
Visit 2 (pre-dose 1) | N | 34 | 34 | 6 | 6 |
GMT (95% CI) a | 1.5 (1.0, 2.1) | 2.0 (NE) | 1.0 (1.0, 1.0) | 2.0 (2.0, 2.0) | |
Spearman’s correlationcoefficient | -- | NE | -- | NE | |
Day 14 (13–15) MVA post-dose 2vs. day 14 (13–15) post-Dryvax | N | 34 | 34 | 8 | 8 |
GMT (95% CI) a | 10.9 (4.9, 24.2) | 179.3 (90.3, 355.9) | 49.4 (8.6, 284.1) | 13.5 (3.1, 59.9) | |
Spearman’s correlationcoefficient | -- | 0.54 | -- | 0.78 | |
Day 28 (26–30) MVA post-dose 2vs. day 28 (26–30) post-Dryvax | N | 35 | 35 | 8 | 8 |
GMT (95% CI) a | 5.7 (2.9, 11.3) | 127.3 (66.0, 245.5) | 608.9 (130.4, 2842.9) | 90.0 (22.9, 353.4) | |
Spearman’s correlationcoefficient | -- | 0.44 | -- | 0.17 | |
Day 180 (177–183) MVA post-dose 2vs. day 180 (177–183) post-Dryvax | N | 34 | 34 | 8 | 8 |
GMT (95% CI) a | 3.7 (2.1, 6.5) | 23.8 (16.1, 35.3) | 76.1 (18.0, 322.7) | 28.4 (11.8, 68.7) | |
Spearman’s correlationcoefficient | -- | 0.32 | -- | 0.44 | |
Day 365 (351–379) post-Dryvax | N | -- | -- | 8 | 8 |
GMT (95% CI) a | -- | -- | 76.1 (18.0, 322.7) | 23.8 (9.0, 62.8) | |
Spearman’s correlationcoefficient | -- | -- | -- | 0.24 | |
Peak response b | N | 35 | 35 | 8 | 8 |
GMT (95% CI) a | 30.8 (14.6, 65.0) | 266.1 (156.0, 453.9) | 789.6 (238.5, 2614.1) | 123.7 (37.6, 406.7) | |
Spearman’s correlationcoefficient | -- | 0.26 | -- | 0.11 |
Time Point | Statistic | All MVA | MVA Subcutaneous | MVA Intradermal | Dryvax |
---|---|---|---|---|---|
Visit 2 (pre-dose 1) | N | 34 | 15 | 19 | 17 |
GMT (95% CI) a | 1.5 (1.0, 2.1) | 1.4 (0.8, 2.3) | 1.5 (0.9, 2.6) | 1.4 (0.9, 2.1) | |
GMTR c (95% CI) a | 1.5 (1.0, 2.1) | 1.4 (0.8, 2.3) | 1.5 (0.9, 2.6) | -- | |
Day 14 (13–15) MVA post-dose 2vs. day 14 (13–15) post-Dryvax | N | 34 | 14 | 20 | 8 |
GMT (95% CI) a | 10.9 (4.9, 24.2) | 21.5 (5.3, 87.5) | 6.7 (2.5, 18.1) | 49.4 (8.6, 284.1) | |
GMTR c (95% CI) a | 0.2 (0.0, 1.4) | 0.4 (0.1, 3.5) | 0.1 (0.0, 0.9) | -- | |
GMFR b (95% CI) a | 7.5 (3.9, 14.5) | 15.2 (4.7, 49.0) | 4.5 (2.1, 9.5) | 22.6 (3.6, 140.5) | |
Day 28 (26–30) MVA post-dose 2vs. day 28 (26–30) post-Dryvax | N | 35 | 15 | 20 | 8 |
GMT (95% CI) a | 5.7 (2.9, 11.3) | 8.8 (2.6, 30.0) | 4.1 (1.8, 9.6) | 608.9 (130.4, 2842.9) | |
GMTR c (95% CI) a | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.1) | 0.0 (0.0, 0.0) | -- | |
GMFR b (95% CI) a | 4.1 (2.4, 7.0) | 6.3 (2.6, 15.7) | 2.9 (1.4, 5.8) | 645.1 (68.8, 6048.0) | |
Day 180 (177–183) MVA post-dose 2vs. day 180 (177–183) post-Dryvax | N | 34 | 14 | 20 | 8 |
GMT (95% CI) a | 3.7 (2.1, 6.5) | 3.4 (1.4, 8.5) | 3.9 (1.8, 8.5) | 76.1 (18.0, 322.7) | |
GMTR c (95% CI) a | 0.0 (0.0, 0.2) | 0.0 (0.0, 0.2) | 0.1 (0.0, 0.2) | -- | |
GMFR b (95% CI) a | 2.6 (1.6, 4.1) | 2.4 (1.1, 5.4) | 2.7 (1.5, 4.9) | 64.0 (7.8, 527.0) | |
Day 365 (351–379) post-Dryvax | N | -- | -- | -- | 8 |
GMT (95% CI) a | -- | -- | -- | 76.1 (18.0, 322.7) | |
GMFR b (95% CI) a | -- | -- | -- | 57.0 (8.4, 388.9) | |
Peak response d | N | 35 | 15 | 20 | 19 |
GMT (95% CI) a | 30.8 (14.6, 65.0) | 30.6 (8.6, 108.7) | 30.9 (11.3, 84.6) | 368.7 (188.4, 721.7) | |
GMTR c (95% CI) a | 0.0 (0.0, 0.1) | 0.0 (0.0, 0.2) | 0.0 (0.0, 0.2) | -- | |
GMFR b (95% CI) a | 20.0 (10.9, 36.7) | 22.1 (8.3, 59.1) | 18.5 (8.0, 43.1) | 245.8 (100.4, 601.6) |
Time Point | Statistic | All MVA | MVA Subcutaneous | MVA Intradermal | Dryvax |
---|---|---|---|---|---|
Visit 2 (pre-dose 1) | N | 35 | 15 | 20 | 6 |
Median (min, max) | 4.4 (0, 325.6) | 4.4 (0, 325.6) | 7.2 (0, 34.1) | 9.9 (0, 23.1) | |
Mean (95% CI) a | 16.8 (5.8, 36.3) | 26.5 (3.5, 70.5) | 9.6 (5.8, 13.8) | 11.6 (5.5, 17.6) | |
Difference in means (95% CI) a | 5.3 (−8.9, 27.1) | 15 (−11.1, 61.1) | −2 (−9.1, 5.3) | -- | |
Day 14 (13–15) MVA post-dose 2vs. day 14 (13–15) post-Dryvax | N | 34 | 14 | 20 | 8 |
Median (min, max) | 13.8 (0, 613.8) | 13.8 (1.1, 613.8) | 14.9 (0, 158.4) | 51.2 (14.3, 90.2) | |
Mean (95% CI) a | 67.2 (31.1, 115.4) | 106.5 (25.7, 208.4) | 39.8 (20.6, 61.1) | 53.6 (33.9, 72.9) | |
Mean difference from baseline (95% CI) a | 50 (22.5, 83.6) | 78.2 (19.9, 147.5) | 30.2 (11.2, 50.9) | 38.5 (12.5, 65.7) | |
Difference in means (95% CI) a | 13.6 (−27.7, 63.4) | 52.8 (−31.9, 158.1) | −13.9 (−41, 15.1) | -- | |
Day 28 (26–30) MVA post-dose 2vs. day 28 (26–30) post-Dryvax | N | 32 | 12 | 20 | 8 |
Median (min, max) | 8.3 (0, 511.5) | 23.7 (0, 511.5) | 5 (0, 77) | 17.6 (0, 73.7) | |
Mean (95% CI) a | 36.4 (14.4, 71.6) | 69.4 (15.8, 155.7) | 16.6 (7.8, 26.9) | 30.9 (14, 49.6) | |
Mean difference from baseline (95% CI) a | 18.1 (5.7, 33.6) | 36.7 (9.5, 71) | 7 (−2.5, 17.3) | 26 (3.7, 49.9) | |
Difference in means (95% CI) b | 5.4 (−25.3, 44) | 38.5 (−20, 127.7) | −14.4 (−35.6, 5.6) | -- | |
Day 180 (177–183) MVA post-dose 2vs. day 180 (177–183) post-Dryvax | N | 34 | 14 | 20 | 8 |
Median (min, max) | 3.9 (0, 172.7) | 2.2 (0, 172.7) | 4.7 (0, 129.8) | 19.3 (5.5, 25.3) | |
Mean (95% CI) a | 14.7 (5.1, 28.6) | 17.4 (2.6, 42.5) | 12.9 (4.8, 26.8) | 16.5 (10.7, 22.1) | |
Mean difference from baseline (95% CI) a | −2.5 (−15.2, 8.7) | −10.8 (−34.4, 3.8) | 3.3 (−6.2, 18.6) | 2.2 (−9, 12.5) | |
Difference in means (95% CI) b | −1.8 (−13.1, 12.6) | 0.9 (−16.2, 27.7) | −3.6 (−14.8, 11.5) | -- | |
Day 365 (351–379) post-Dryvax | N | -- | -- | -- | 8 |
Median (min, max) | -- | -- | -- | 23.7 (0, 79.2) | |
Mean (95% CI) a | -- | -- | -- | 27.9 (14.1, 45) | |
Mean difference from baseline (95% CI) a | -- | -- | -- | 19.1 (−3.7, 44.5) | |
Peak response c | N | 35 | 15 | 20 | 8 |
Median (min, max) | 38.5 (0, 727.1) | 25.3 (4.4, 727.1) | 39.1 (0, 424.6) | 68.8 (23.1, 90.2) | |
Mean (95% CI) a | 104.3 (61, 158.7) | 127 (43.1, 238.3) | 87.3 (46, 137) | 61.2 (44.3, 77.7) | |
Mean difference from baseline (95% CI) a | 87.5 (51.8, 129.1) | 100.5 (38.7, 172.5) | 77.7 (35.9, 127.9) | 48.6 (22.7, 70.8) | |
Difference in means (95% CI) b | 43.1 (−4.8, 98.6) | 65.8 (−16.8, 178.8) | 26.1 (−18.6, 78.8) | -- |
Statistic | All MVA | MVA Subcutaneous | MVA Intradermal | Dryvax |
---|---|---|---|---|
N | 34 | 14 | 20 | 8 |
Median (min, max) | 0 (0, 166) | 14 (0, 166) | 0 (0, 166) | 83 (14, 166) |
Mean (95% CI) a | 20 (7, 37.1) | 29.7 (6, 61.3) | 13.2 (2.8, 30.5) | 88.3 (33, 143.5) |
Difference in means (95% CI) a | −68.3 (−121.5, −15.4) | −58.5 (−117.3, 0.4) | −75.1 (−126.9, −21.5) | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abate, G.; Meza, K.; Yu, Y.; Colbert, C.; Jaunarajs, A.; Blazevic, A.; Hoft, D.F.; Frey, S.E. Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines. Vaccines 2025, 13, 520. https://doi.org/10.3390/vaccines13050520
Abate G, Meza K, Yu Y, Colbert C, Jaunarajs A, Blazevic A, Hoft DF, Frey SE. Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines. Vaccines. 2025; 13(5):520. https://doi.org/10.3390/vaccines13050520
Chicago/Turabian StyleAbate, Getahun, Krystal Meza, Yinyi Yu, Chase Colbert, Anna Jaunarajs, Azra Blazevic, Daniel F. Hoft, and Sharon E. Frey. 2025. "Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines" Vaccines 13, no. 5: 520. https://doi.org/10.3390/vaccines13050520
APA StyleAbate, G., Meza, K., Yu, Y., Colbert, C., Jaunarajs, A., Blazevic, A., Hoft, D. F., & Frey, S. E. (2025). Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines. Vaccines, 13(5), 520. https://doi.org/10.3390/vaccines13050520