Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Searches
2.3. Study Selection Procedures
2.3.1. Participants/Population
2.3.2. Intervention(s)/Exposure
2.3.3. Comparator(s)/Control
2.3.4. Main Outcome
2.4. Eligibility Criteria
- Studies reporting on immune responses and/or disease outcomes in individuals with helminth co-infections.
- Population-level, cohort-based, or facility-based studies conducted at any administrative level (district, regional, or national).
- Studies including a comparator group assessing immune responses and/or disease outcomes in participants without helminth exposure or infection.
2.5. Study Inclusion/Exclusion
2.6. Data Extraction
2.7. Measures of Effect
2.8. Article Screening
2.9. Data Analysis and Quality Assessment
3. Results
3.1. Helminth and Emerging Respiratory Viruses
Study | Type of Study | Year of Publication | Helminth or Anthelmintic Treatment Involved | Respiratory Disease Condition Investigated | Main Findings ↓↑ | Ref. |
---|---|---|---|---|---|---|
Helminth Infection and COVID-19 Severity in Ethiopia | Human | 2021 | Helminths and protozoa | COVID-19 | ↓ COVID-19 severity. | [48] |
Helminth Antigens and SARS-CoV-2 Response | Human (In vitro) | 2022 | Helminth antigens | COVID-19 | ↓ SARS-CoV-2-reactive CD4+ T cells, ↑ IL-10, ↓ IFNγ and TNFα levels. | [30] |
H. polygyrus and Influenza Virus | Mice | 2023 | H. polygyrus bakeri (Hpb) | Influenza | ↓ weight loss, ↑ immune responses in the lungs, ↓ viral loads, and ↓ inflammation in lungs. | [34] |
H. polygyrus Infection and RSV | Mice (BALB/c) | 2017 | H. polygyrus | Respiratory Syncytial Virus | ↑ monocytes in the blood and lungs driven by IFN-I signaling, ↓ viral load. | [36] |
Filarial Infection Stage and Influenza | Mice (BALB/c) | 2022 | Filarial infection | Influenza | early-stage infection reduced symptoms, middle-stage infections offered less protection, and late-stage infections worsened symptoms and ↑ viral loads. | [35] |
H. polygyrus and RSV | Mice (BALB/c) | 2024 | H. polygyrus | Respiratory Syncytial Virus | ↓ RSV severity, ↓ lung inflammation. | [37] |
Ascaris Lumbricoides and COVID-19 Severity in Benin | Human | 2023 | Ascaris lumbricoides | COVID-19 | ↓ risk of severe COVID-19, ↓ systemic pro-inflammatory markers. | [29] |
Helminth and SARS-CoV-2 | Human | 2025 | A. lumbricoides, S. ratti, A. viteae | COVID-19 | ↓ COVID-19 severity, ↓ inflammatory cytokines, ↓ SARS-CoV-2 antibodies | [16] |
3.2. Helminths and Blood-Borne Viral Co-Infections
Study | Type of Study | Year of Publication | Helminth or Anthelmintic Treatment | Systemic Viral Condition Investigated | Main Findings ↓↑ | Ref. |
---|---|---|---|---|---|---|
Ascaris and Vaccinia Virus | Mice | 2017 | Ascaris infection | Vaccinia Virus (VACV) | ↑ severity, ↑ viral loads, ↑ lung inflammation, ↓ CD8+ T cells. | [62] |
Helminth Infection and HIV Immune Response | Human | 2014 | A. lumbricoides, T. trichiura | HIV | ↑ CCR5 expression on CD4 or CD8 T cells, ↑ HIV susceptibility, ↓ HLA-DR+ CD8 T cells. | [61] |
HIV and LF Interaction and treatment in Tanzania | Human | 2016 | Wucheriria bancrofti | HIV | No significant difference in LF prevalence or worm burden was observed between HIV-positive and HIV-negative individuals. | [54] |
LF and HIV Incidence in Tanzania | Human | 2016 | Wuchereria bancrofti | HIV | HIV incidence was significantly higher among individuals with LF compared to those without. | [55] |
LF and HIV Risk by Microfilariae in Tanzania | Human | 2023 | Wuchereria bancrofti | HIV | Individuals with microfilariae-producing W. bancrofti had a significantly higher HIV incidence than those without. | [56] |
Hookworm and HPV Co-Infection | Human | 2022 | Hookworm (Ancylostoma duodenale) | HPV | Hookworm infection was associated with a mixed type 1/type 2 immune response in the vaginal tract and an increased risk and viral load of HPV infection. | [58] |
Hookworm and FRTIs in Rural Togo | Human | 2021 | Hookworm | HPV and FRTIs (Female Reproductive Tract Infections) | Hookworm infection increased the risk of HPV infections and was associated with sexually transmitted infections (STIs), bacterial vaginosis (BV), and candidiasis. | [57] |
STH and HPV in Peru | Human | 2016 | STH | HPV | Women with STH infections in the Peruvian Amazon had a 60% higher HPV prevalence compared to uninfected women. A Th2 immune profile was observed in cervical fluid of helminth-infected women. | [72] |
Nippostrongylus braziliensis Infection Alters FGT Immunity | Mice | 2021 | Nippostrongylus braziliensis | HSV-2 | Co-infection led to enhanced genital ulceration, necrosis, reduced MHC expression, and impaired IFN-γ response without affecting viral load. | [63] |
Helminth and HIV | In-vitro | 2016 | Helminth proteins (BmA and ES-62) | HIV | Neither BmA nor ES-62 affected overall HIV-1 replication in CD4+ T cells or dendritic cell function. | [73] |
L. sigmodontis and Retroviral Infection | Mice (C57BL/6) | 2016 | L. sigmodontis | Retroviral infection | ↑ viral load, larger spleens, more severe illness, ↓ virus-neutralizing antibodies, ↑ viral loads. | [50] |
Puumala hantavirus and Heligmosomum mixtum | Mice | 2014 | Heligmosomum mixtum | Puumala hantavirus (PUUV) | ↓ immune responses, ↑ viral loads. | [60] |
S. mansoni and HBV | Mice | 2020 | Schistosoma mansoni | Hepatitis B Virus (HBV) | ↑ antiviral response to HBV, ↑ IFN-γ. | [59] |
Helminth Infections in HIV-patients | Human | 2015 | Deworming | HIV | ↓ symptoms, ↓serum IgE | [49] |
Helminth Infections and Herpesvirus Interactions | Mice (C57BL6/) | 2014 | general helminth infections | Murine g-herpesvirus | ↑ IL-4, ↑ viral replication and reactivation. | [74] |
Schistosoma and Geohelminth Infections with β-cell Function and Insulin Resistance (Tanzania) | Human | 2022 | Schistosoma and Geohelminth Infections | HIV/Insulin | Schistosoma infection ↑ β-cell function in HIV-uninfected participants. In HIV-infected individuals not on ART, Schistosoma and geohelminth infections ↓ β-cell function, and caused insulin resistance. | [75] |
Impact of Schistosomiasis Treatment on HIV Susceptibility in Women (Uganda) | Human | 2019 | S. mansoni infection and treatment | HIV | Schistosomiasis treatment ↓ HIV entry into cervical and blood CD4+ T cells, with effects lasting up to two months. The treatment led to immune activation but also ↑ IFN-I pathway activity, which potentially ↓ HIV susceptibility by inhibiting HIV entry. | [76] |
Helminth-induced immunomodulation and its effect on antiviral immunity | Mice | 2014 | Trichinella spiralis | Murine Norovirus (MNV), CW3 strain | ↓ antiviral immunity independently of changes in the microbiota. The impairment was mediated by STAT6-dependent alternative macrophage activation, with the molecule Ym1 contributing to ↓ antiviral response. Neutralization of Ym1 partially restores antiviral immunity. | [77] |
HIV and helminth Co-Infections in China | Human | 2013 | Intestinal helminths and protozoa (Blastocystis hominis, Cryptosporidium spp.) | HIV | Co-infection with helminths led to a shift in Th1–Th2 balance similar to HIV infection, potentially accelerating AIDS progression. | [53] |
Helminth-HIV Co-Infection in South Africa | Human | 2011 | A. lumbricoides, Trichuris trichiura (diagnosed via coproscopy and IgE levels) | HIV | Individuals with both helminth egg excretion and high Ascaris-specific IgE had dysregulated immune cells, higher viral loads, and increased immune activation. Those with egg excretion but low IgE had a modified Th2 response with better HIV-related immune profiles | [51] |
Helminth Co-Infection and HTLV-1 Immune Modulation | Human | 2005 | Strongyloides stercoralis, Schistosoma mansoni | Human T cell Lymphotropic Virus Type 1 (HTLV-1) | HTLV-1 carriers co-infected with helminths had lower IFN-γ levels and reduced activation of CD8+ and CD4+ T cells compared to HTLV-1 carriers without helminths. IL-5 and IL-10 levels were higher in co-infected individuals | [52] |
3.3. Helminth and Bacterial Infections
3.4. Helminths and Non-Communicable Diseases
3.5. Helminths and Vaccine Efficacy
4. Conclusions
5. Limitations
6. Recommendation and Future Research Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capewell, P.; Cooper, A.; Clucas, C.; Weir, W.; MacLeod, A. A Co-Evolutionary Arms Race: Trypanosomes Shaping the Human Genome, Humans Shaping the Trypanosome Genome. Parasitology 2015, 142 (Suppl. S1), S108–S119. [Google Scholar] [CrossRef] [PubMed]
- Eyck, H.J.F.; Brown, G.P.; Rollins, L.A.; Shine, R. In an Arms Race between Host and Parasite, a Lungworm’s Ability to Infect a Toad Is Determined by Host Susceptibility Not Parasite Preference. Biol. Lett. 2022, 18, 35259944. [Google Scholar] [CrossRef]
- Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric Schistosomiasis Parasite Found in the Middle East. Lancet Infect. Dis. 2014, 14, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.A. Helminths: Structure, Classification, Growth, and Development. In Medical Microbiology; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Shiferaw, M.B.; Zegeye, A.M.; Mengistu, A.D. Helminth Infections and Practice of Prevention and Control Measures among Pregnant Women Attending Antenatal Care at Anbesame Health Center, Northwest Ethiopia. BMC Res. Notes 2017, 10, 274. [Google Scholar] [CrossRef]
- World Health Organization. Soil-Transmitted Helminth Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 20 February 2023).
- Edward, R.E.; Fox, R.S.; Barnes, R.D. Invertebrate Zoology: A Functional Evolutionary Approach, 7th ed.; Brooks/Cole: Belmont, CA, USA, 2004; ISBN 978-0-03-025982-1. [Google Scholar]
- Massacand, J.C.; Stettler, R.C.; Meier, R.; Humphreys, N.E.; Grencis, R.K.; Marsland, B.J.; Harris, N.L. Helminth Products Bypass the Need for TSLP in Th2 Immune Responses by Directly Modulating Dendritic Cell Function. Proc. Natl. Acad. Sci. USA 2009, 106, 13968–13973. [Google Scholar] [CrossRef]
- Maizels, R.M.; Yazdanbakhsh, M. Immune Regulation by Helminth Parasites: Cellular and Molecular Mechanisms. Nat. Rev. Immunol. 2003, 3, 733–744. [Google Scholar] [CrossRef]
- Maizels, R.M.; Pearce, E.J.; Artis, D.; Yazdanbakhsh, M.; Wynn, T.A. Regulation of Pathogenesis and Immunity in Helminth Infections. J. Exp. Med. 2009, 206, 2059–2066. [Google Scholar]
- Maizels, R.M.; Smits, H.H.; McSorley, H.J. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018, 49, 801–818. [Google Scholar] [CrossRef]
- Fenton, A. Dances with Worms: The Ecological and Evolutionary Impacts of Deworming on Coinfecting Pathogens. Parasitology 2013, 140, 1119–1132. [Google Scholar] [CrossRef]
- Haben, I.; Hartmann, W.; Breloer, M. Nematode-Induced Interference with Vaccination Efficacy Targets Follicular T Helper Cell Induction and Is Preserved after Termination of Infection. PLoS Negl. Trop. Dis. 2014, 8, e3170. [Google Scholar] [CrossRef]
- Lazm, A.M.; Ajeel, N.A.; Abbood, A.S. A Survey Study on the Relationship between Helminthes Infection and Other Microorganism Infection. World J. Adv. Res. Rev. 2022, 15, 505–508. [Google Scholar] [CrossRef]
- Schlosser-Brandenburg, J.; Midha, A.; Mugo, R.M.; Ndombi, E.M.; Gachara, G.; Njomo, D.; Rausch, S.; Hartmann, S. Infection with Soil-Transmitted Helminths and Their Impact on Coinfections. Front. Parasitol. 2023, 2, 1–18. [Google Scholar] [CrossRef]
- Armel, B.; Fogang, N.; Meyer, J.; Debrah, L.B.; Owusu, M.; Agyei, G.; Mensah, D.A.; Boateng, J.; Mensah, J.O.; Klarmann-schulz, U.; et al. Helminth Seropositivity Inversely Correlated with Th1 and Th17 Cytokines and Severe COVID-19. Vaccines 2025, 13, 252. [Google Scholar] [CrossRef]
- Elias, D.; Britton, S.; Aseffa, A.; Engers, H.; Akuffo, H. Poor Immunogenicity of BCG in Helminth Infected Population Is Associated with Increased in Vitro TGF-β Production. Vaccine 2008, 26, 3897–3902. [Google Scholar] [CrossRef]
- Elias, D.; Britton, S.; Kassu, A.; Akuffo, H. Chronic Helminth Infections May Negatively Influence Immunity against Tuberculosis and Other Diseases of Public Health Importance. Expert. Rev. Anti Infect. Ther. 2007, 5, 475–484. [Google Scholar] [CrossRef]
- Elias, D.; Akuffo, H.; Pawlowski, A.; Haile, M.; Schön, T.; Britton, S. Schistosoma mansoni Infection Reduces the Protective Efficacy of BCG Vaccination against Virulent Mycobacterium tuberculosis. Vaccine 2005, 23, 1326–1334. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.-Q.; Lei, J.-H.; Guan, F.; Li, M.-J.; Song, W.-J.; Li, Y.-L.; Wang, T. Chronic Schistosoma Japonicum Infection Reduces Immune Response to Vaccine against Hepatitis B in Mice. PLoS ONE 2012, 7, e51512. [Google Scholar] [CrossRef]
- Guan, F.; Hou, X.; Nie, G.; Xiao, Y.; Zhang, Q.; Liu, W.Q.; Li, Y.L.; Lei, J.H. Effect of Trichinella Spiralis Infection on the Immune Response to HBV Vaccine in a Mouse Model. Foodborne Pathog. Dis. 2013, 10, 882–887. [Google Scholar] [CrossRef]
- Apiwattanakul, N.; Thomas, P.G.; Iverson, A.R.; McCullers, J.A. Chronic Helminth Infections Impair Pneumococcal Vaccine Responses. Vaccine 2014, 32, 5405–5410. [Google Scholar] [CrossRef]
- Riner, D.K.; Ndombi, E.M.; Carter, J.M.; Omondi, A.; Kittur, N.; Kavere, E.; Korir, H.K.; Flaherty, B.; Karanja, D.; Colley, D.G. Schistosoma mansoni Infection Can Jeopardize the Duration of Protective Levels of Antibody Responses to Immunizations against Hepatitis B and Tetanus Toxoid. PLoS Negl. Trop. Dis. 2016, 10, e0005180. [Google Scholar] [CrossRef]
- Alvarez-Larrotta, C.; Arango, E.M.; Carmona-Fonseca, J. Negative Immunomodulation by Parasitic Infections in the Human Response to Vaccines. J. Infect. Dev. Ctries. 2018, 12, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Gent, V.; Waihenya, R.; Kamau, L.; Nyakundi, R.; Ambala, P.; Kariuki, T.; Ochola, L. An Investigation into the Role of Chronic Schistosoma mansoni Infection on Human Papillomavirus (HPV) Vaccine Induced Protective Responses. PLoS Negl. Trop. Dis. 2019, 13, e0007704. [Google Scholar] [CrossRef]
- Tweyongyere, R.; Nassanga, B.R.; Muhwezi, A.; Odongo, M.; Lule, S.A.; Nsubuga, R.N.; Webb, E.L.; Cose, S.C.; Elliott, A.M. Effect of Schistosoma mansoni Infection and Its Treatment on Antibody Responses to Measles Catch-up Immunisation in Pre-School Children: A Randomised Trial. PLoS Negl. Trop. Dis. 2019, 13, e0007157. [Google Scholar] [CrossRef] [PubMed]
- Natukunda, A.; Zirimenya, L.; Nassuuna, J.; Nkurunungi, G.; Cose, S.; Elliott, A.M.; Webb, E.L. The Effect of Helminth Infection on Vaccine Responses in Humans and Animal Models: A Systematic Review and Meta-Analysis. Parasite Immunol. 2022, 44, e12939. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Diamond, M.S.; Thackray, L.B. Helminth–Virus Interactions: Determinants of Coinfection Outcomes. Gut Microbes 2021, 13, 1961202. [Google Scholar] [CrossRef]
- Adjobimey, T.; Meyer, J.; Hennenfent, A.; Bara, A.J.; Lagnika, L.; Kocou, B.; Adjagba, M.; Laleye, A.; Hoerauf, A.; Parcina, M. Negative Association between Ascaris Lumbricoides Seropositivity and Covid-19 Severity: Insights from a Study in Benin. Front. Immunol. 2023, 14, 1233082. [Google Scholar] [CrossRef]
- Adjobimey, T.; Meyer, J.; Terkeš, V.; Parcina, M.; Hoerauf, A. Helminth Antigens Differentially Modulate the Activation of CD4+ and CD8+ T Lymphocytes of Convalescent COVID-19 Patients in Vitro. BMC Med. 2022, 20, 241. [Google Scholar] [CrossRef]
- Sinha, A.; Pati, S.; Sahoo, P.K. Investigating Immunological Interaction between Lymphatic Filariasis and COVID-19 Infection: A Preliminary Evidence. Hum. Vaccin. Immunother. 2021, 17, 5150–5152. [Google Scholar] [CrossRef]
- Alosaimi, B.; Hamed, M.E.; Naeem, A.; Alsharef, A.A.; AlQahtani, S.Y.; AlDosari, K.M.; Alamri, A.A.; Al-Eisa, K.; Khojah, T.; Assiri, A.M.; et al. MERS-CoV Infection Is Associated with Downregulation of Genes Encoding Th1 and Th2 Cytokines/Chemokines and Elevated Inflammatory Innate Immune Response in the Lower Respiratory Tract. Cytokine 2019, 126, 154895. [Google Scholar] [CrossRef]
- Pedersen, S.F.; Ho, Y.C. SARS-CoV-2: A Storm Is Raging. J. Clin. Investig. 2020, 130, 2202–2205. [Google Scholar] [CrossRef]
- Tai, C.; Xie, J.-X.; Lin, J.-S. Enteric Helminth Infection Confers Protection against Lethal Respiratory Influenza Virus Infection. J. Immunol. 2023, 210, 156.01. [Google Scholar] [CrossRef]
- Hardisty, G.R.; Knipper, J.A.; Fulton, A.; Hopkins, J.; Dutia, B.M.; Taylor, M.D. Concurrent Infection with the Filarial Helminth Litomosoides Sigmodontis Attenuates or Worsens Influenza a Virus Pathogenesis in a Stage-Dependent Manner. Front. Immunol. 2022, 12, 819560. [Google Scholar] [CrossRef]
- McFarlane, A.J.; McSorley, H.J.; Davidson, D.J.; Fitch, P.M.; Errington, C.; Mackenzie, K.J.; Gollwitzer, E.S.; Johnston, C.J.C.; MacDonald, A.S.; Edwards, M.R.; et al. Enteric Helminth-Induced Type I Interferon Signaling Protects against Pulmonary Virus Infection through Interaction with the Microbiota. J. Allergy Clin. Immunol. 2017, 140, 1068–1078.e6. [Google Scholar] [CrossRef]
- Burgess, M.O.; Janas, P.; Berry, K.; Mayr, H.; Mack, M.; Jenkins, S.J.; Bain, C.C.; McSorley, H.J.; Schwarze, J. Helminth Induced Monocytosis Conveys Protection from Respiratory Syncytial Virus Infection in Mice. Allergy 2024, 79, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, C.; Navarro, S.; Wangchuk, P.; Wilson, D.; Daly, N.L.; Loukas, A. Identifying the Immunomodulatory Components of Helminths. Parasite Immunol. 2015, 37, 293–303. [Google Scholar] [CrossRef]
- Zakeri, A.; Hansen, E.P.; Andersen, S.D.; Williams, A.R.; Nejsum, P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front. Immunol. 2018, 9, 2349. [Google Scholar] [CrossRef]
- Melendez, A.J.; Harnett, M.M.; Pushparaj, P.N.; Wong, W.F.; Tay, H.K.; McSharry, C.P.; Harnett, W. Inhibition of FcεRI-Mediated Mast Cell Responses by ES-62, a Product of Parasitic Filarial Nematodes. Nat. Med. 2007, 13, 1375–1381. [Google Scholar] [CrossRef]
- Doonan, J.; Lumb, F.E.; Pineda, M.A.; Tarafdar, A.; Crowe, J.; Khan, A.M.; Suckling, C.J.; Harnett, M.M.; Harnett, W. Protection against Arthritis by the Parasitic Worm Product ES-62, and Its Drug-like Small Molecule Analogues, Is Associated with Inhibition of Osteoclastogenesis. Front. Immunol. 2018, 9, 336903. [Google Scholar] [CrossRef]
- Al-Riyami, L.; Pineda, M.A.; Rzepecka, J.; Huggan, J.K.; Khalaf, A.I.; Suckling, C.J.; Scott, F.J.; Rodgers, D.T.; Harnett, M.M.; Harnett, W. Designing Anti-Inflammatory Drugs from Parasitic Worms: A Synthetic Small Molecule Analogue of the Acanthocheilonema Viteae Product ES-62 Prevents Development of Collagen-Induced Arthritis. J. Med. Chem. 2013, 56, 9982–10002. [Google Scholar] [CrossRef]
- Aguayo, V.; Valdés Fernandez, B.N.; Rodríguez-Valentín, M.; Ruiz-Jiménez, C.; Ramos-Benítez, M.J.; Méndez, L.B.; Espino, A.M. Fasciola Hepatica GST Downregulates NF-ΚB Pathway Effectors and Inflammatory Cytokines While Promoting Survival in a Mouse Septic Shock Model. Sci. Rep. 2019, 9, 2275. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Zheng, H.; Ma, Q.; Chen, K.; Li, H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J. Inflamm. Res. 2024, 17, 11789–11812. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Barker, S.J.; MacDonald, A.J.; Yu, Y.; Cao, L.; Li, J.; Parhar, R.; Heck, S.; Hartmann, S.; Golenbock, D.T.; et al. Recombinant Ov-ASP-1, a Th1-Biased Protein Adjuvant Derived from the Helminth Onchocerca Volvulus, Can Directly Bind and Activate Antigen-Presenting Cells. J. Immunol. 2009, 182, 4005–4016. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.; Anuradha, R.; Bethunaickan, R. TLR Specific Immune Responses against Helminth Infections. J. Parasitol. Res. 2017, 2017, 6865789. [Google Scholar] [CrossRef]
- Afful, P.; Abotsi, G.K.; Adu-Gyamfi, C.O.; Benyem, G.; Katawa, G.; Kyei, S.; Arndts, K.; Ritter, M.; Asare, K.K. Schistosomiasis–Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens 2024, 13, 906. [Google Scholar] [CrossRef]
- Wolday, D.; Gebrecherkos, T.; Arefaine, Z.G.; Kiros, Y.K.; Gebreegzabher, A.; Tasew, G.; Abdulkader, M.; Abraha, H.E.; Desta, A.A.; Hailu, A.; et al. Effect of Co-Infection with Intestinal Parasites on COVID-19 Severity: A Prospective Observational Cohort Study. eClinicalMedicine 2021, 39, 101054. [Google Scholar] [CrossRef]
- Mulu, A.; Anagaw, B.; Gelaw, A.; Ota, F.; Kassu, A.; Yifru, S. Effect of Deworming on Th2 Immune Response during HIV-Helminths Co-Infection. J. Transl. Med. 2015, 13, 236. [Google Scholar] [CrossRef]
- Dietze, K.K.; Dittmer, U.; Koudaimi, D.K.; Schimmer, S.; Reitz, M.; Breloer, M.; Hartmann, W. Filariae-Retrovirus Co-Infection in Mice Is Associated with Suppressed Virus-Specific IgG Immune Response and Higher Viral Loads. PLoS Negl. Trop. Dis. 2016, 10, e000517. [Google Scholar] [CrossRef]
- Mkhize-Kwitshana, Z.L.; Taylor, M.; Jooste, P.; Mabaso, M.L.H.; Walzl, G. The Influence of Different Helminth Infection Phenotypes on Immune Responses against HIV in Co-Infected Adults in South Africa. BMC Infect. Dis. 2011, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.F.; Santos, S.B.; Muniz, A.L.; Basílio, V.; Rodrigues, W.; Neva, F.A.; Dutra, W.O.; Gollob, K.J.; Jacobson, S.; Carvalho, E.M. Helminthic Infection Down-Regulates Type 1 Immune Responses in Human T Cell Lymphotropic Virus Type 1 (HTLV-1) Carriers and Is More Prevalent in HTLV-1 Carriers than in Patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis. J. Infect. Dis. 2005, 191, 612–618. [Google Scholar] [CrossRef]
- Tian, L.G.; Wang, T.P.; Lv, S.; Wang, F.F.; Guo, J.; Yin, X.M.; Cai, Y.C.; Dickey, M.K.; Steinmann, P.; Chen, J.X. HIV and Intestinal Parasite Co-Infections among a Chinese Population: An Immunological Profile. Infect. Dis. Poverty 2013, 2, 18. [Google Scholar] [CrossRef]
- Kroidl, I.; Saathoff, E.; Maganga, L.; Clowes, P.; Maboko, L.; Hoerauf, A.; Makunde, W.H.; Haule, A.; Mviombo, P.; Pitter, B.; et al. Correction: Prevalence of Lymphatic Filariasis and Treatment Effectiveness of Albendazole/Ivermectin in Individuals with HIV Co-Infection in Southwest-Tanzania. PLoS Negl. Trop. Dis. 2016, 10, e0004967. [Google Scholar] [CrossRef]
- Kroidl, I.; Saathoff, E.; Maganga, L.; Makunde, W.H.; Hoerauf, A.; Geldmacher, C.; Clowes, P.; Maboko, L.; Hoelscher, M. Effect of Wuchereria Bancrofti Infection on HIV Incidence in Southwest Tanzania: A Prospective Cohort Study. Lancet 2016, 388, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Mnkai, J.; Ritter, M.; Maganga, L.; Maboko, L.; Olomi, W.; Clowes, P.; Minich, J.; Lelo, A.E.; Kariuki, D.; Debrah, A.Y.; et al. Increased HIV Incidence in Wuchereria Bancrofti Microfilaria Positive Individuals in Tanzania. Pathogens 2023, 12, 387. [Google Scholar] [CrossRef]
- Holali Ameyapoh, A.; Katawa, G.; Ritter, M.; Tchopba, C.N.; Tchadié, P.E.; Arndts, K.; Kamassa, H.E.; Mazou, B.; Amessoudji, O.M.; N’djao, A.; et al. Hookworm Infections and Sociodemographic Factors Associated with Female Reproductive Tract Infections in Rural Areas of the Central Region of Togo. Front. Microbiol. 2021, 12, 738894. [Google Scholar] [CrossRef]
- Omondi, M.A.; Kamassa, E.H.; Katawa, G.; Tchopba, C.N.; Vogelbusch, C.; Parcina, M.; Tchadié, E.P.; Amessoudji, O.M.; Arndts, K.; Karou, S.D.; et al. Hookworm Infection Associates with a Vaginal Type 1/Type 2 Immune Signature and Increased HPV Load. Front. Immunol. 2022, 13, 1009968. [Google Scholar] [CrossRef]
- Loffredo-Verde, E.; Bhattacharjee, S.; Malo, A.; Festag, J.; Kosinska, A.D.; Ringelhan, M.; Rim Sarkar, S.; Steiger, K.; Heikenwaelder, M.; Protzer, U.; et al. Dynamic, Helminth-Induced Immune Modulation Influences the Outcome of Acute and Chronic Hepatitis B Virus Infection. J. Infect. Dis. 2020, 221, 1448–1461. [Google Scholar] [CrossRef] [PubMed]
- Guivier, E.; Galan, M.; Henttonen, H.; Cosson, J.F.; Charbonnel, N. Landscape Features and Helminth Co-Infection Shape Bank Vole Immunoheterogeneity, with Consequences for Puumala Virus Epidemiology. Heredity 2014, 112, 274–281. [Google Scholar] [CrossRef]
- Chachage, M.; Podola, L.; Clowes, P.; Nsojo, A.; Bauer, A.; Mgaya, O.; Kowour, D.; Froeschl, G.; Maboko, L.; Hoelscher, M.; et al. Helminth-Associated Systemic Immune Activation and HIV Co-Receptor Expression: Response to Albendazole/Praziquantel Treatment. PLoS Negl. Trop. Dis. 2014, 8, e2755. [Google Scholar] [CrossRef]
- Gazzinelli-Guimarães, P.H.; de Freitas, L.F.D.; Gazzinelli-Guimarães, A.C.; Coelho, F.; Barbosa, F.S.; Nogueira, D.; Amorim, C.; Dhom-Lemos, L.d.C.; Oliveira, L.M.; da Silveira, A.B.; et al. Concomitant Helminth Infection Downmodulates the Vaccinia Virus-Specific Immune Response and Potentiates Virus-Associated Pathology. Int. J. Parasitol. 2017, 47, 1–10. [Google Scholar] [CrossRef]
- Chetty, A.; Darby, M.G.; Vornewald, P.M.; Martín-Alonso, M.; Filz, A.; Ritter, M.; McSorley, H.J.; Masson, L.; Smith, K.; Brombacher, F.; et al. Il4ra-Independent Vaginal Eosinophil Accumulation Following Helminth Infection Exacerbates Epithelial Ulcerative Pathology of HSV-2 Infection. Cell Host Microbe 2021, 29, 579–593.e5. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cai, T.; Fan, L.; Lou, K.; Hua, X.; Huang, Z.; Gao, G. Clinical Value of Immune-Inflammatory Parameters to Assess the Severity of Coronavirus Disease 2019. Int. J. Infect. Dis. 2020, 95, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.G.; Liu, W.; Liu, J.; Liu, K.; Shang, J.; Deng, Y.; Wei, S. [Analysis of Clinical Features of 29 Patients with 2019 Novel Coronavirus Pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, E005. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, J.; Liu, X.; Liu, Y.; Li, F.; Liu, M.; Chiu, S.; Jin, X. Helminth Alleviates COVID-19-Related Cytokine Storm in an IL-9-Dependent Way. mBio 2024, 15, e0090524. [Google Scholar] [CrossRef]
- Piatak, M.; Saag, M.S.; Yang, L.C.; Clark, S.J.; Kappes, J.C.; Luk, K.C.; Hahn, B.H.; Shaw, G.M.; Lifson, J.D. High Levels of HIV-1 in Plasma During All Stages of Infection Determined By Competitive PCR. Science 1993, 259, 1749–1754. [Google Scholar] [CrossRef]
- Cooper, A.; García, M.; Petrovas, C.; Yamamoto, T.; Koup, R.A.; Nabel, G.J. HIV-1 Causes CD4 Cell Death through DNA-Dependent Protein Kinase during Viral Integration. Nature 2013, 498, 376–379. [Google Scholar] [CrossRef]
- Gravitt, P.E.; Marks, M.; Kosek, M.; Huang, C.; Cabrera, L.; Olortegui, M.P.; Medrano, A.M.; Trigoso, D.R.; Qureshi, S.; Bardales, G.S.; et al. Soil-Transmitted Helminth Infections Are Associated with an Increase in Human Papillomavirus Prevalence and a T-Helper Type 2 Cytokine Signature in Cervical Fluids. J. Infect. Dis. 2016, 213, 723–730. [Google Scholar] [CrossRef]
- Mouser, E.E.I.M.; Pollakis, G.; Yazdanbakhsh, M.; Harnett, W.; de Jong, E.C.; Paxton, W.A. Brugia Malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells. PLoS ONE 2016, 11, e0146527. [Google Scholar] [CrossRef]
- Reese, T.A.; Wakeman, B.S.; Choi, H.S.; Hufford, M.M.; Huang, S.C.; Zhang, X.; Buck, M.D.; Jezewski, A.; Kambal, A.; Liu, C.Y.; et al. Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. Science 2014, 345, 573–577. [Google Scholar]
- PrayGod, G.; Filteau, S.; Range, N.; Ramaiya, K.; Jeremiah, K.; Rehman, A.M.; Krogh-Madsen, R.; Friis, H.; Faurholt-Jepsen, D. The Association of Schistosoma and Geohelminth Infections with β-Cell Function and Insulin Resistance among HIV-Infected and HIV-Uninfected Adults: A Cross-Sectional Study in Tanzania. PLoS ONE 2022, 17, e0262860. [Google Scholar] [CrossRef]
- Yegorov, S.; Joag, V.; Galiwango, R.M.; Good, S.V.; Mpendo, J.; Tannich, E.; Boggild, A.K.; Kiwanuka, N.; Bagaya, B.S.; Kaul, R. Schistosoma mansoni Treatment Reduces HIV Entry into Cervical CD4+ T Cells and Induces IFN-I Pathways. Nat. Commun. 2019, 10, 2296. [Google Scholar] [CrossRef] [PubMed]
- Osborne, L.C.; Monticelli, L.A.; Nice, T.J.; Sutherland, T.E.; Siracusa, M.C.; Hepworth, M.R.; Tomov, V.T.; Kobuley, D.; Tran, S.V.; Bittinger, K.; et al. Virus-Helminthcoinfection Reveals a Microbiota-Independent Mechanism of Immunomodulation. Science 2014, 345, 578–582. [Google Scholar] [CrossRef]
- Kusumaningtyas, R.N.; Tantular, I.S.; Kusumaningrum, D.; Kusumaratna, R.K. Asymptomatic Intestinal Helminth Co-Infection among Pulmonary Tuberculosis Patients in Urban Surabaya: A Preliminary Study. J. Biomedika dan Kesehat. 2020, 3, 112–118. [Google Scholar] [CrossRef]
- Alemu, G.; Mama, M. Intestinal Helminth Co-Infection and Associated Factors among Tuberculosis Patients in Arba Minch, Ethiopia. BMC Infect. Dis. 2017, 17, 68. [Google Scholar] [CrossRef]
- Schick, J.; Altunay, M.; Lacorcia, M.; Marschner, N.; Westermann, S.; Schluckebier, J.; Schubart, C.; Bodendorfer, B.; Christensen, D.; Alexander, C.; et al. IL-4 and Helminth Infection Downregulate MINCLE-Dependent Macrophage Response to Mycobacteria and Th17 Adjuvanticity. eLife 2023, 12, 1–24. [Google Scholar] [CrossRef]
- Su, L.; Su, C.W.; Qi, Y.; Yang, G.; Zhang, M.; Cherayil, B.J.; Zhang, X.; Shi, H.N. Coinfection with an Intestinal Helminth Impairs Host Innate Immunity against Salmonella enterica Serovar Typhimurium and Exacerbates Intestinal Inflammation in Mice. Infect. Immun. 2014, 82, 3855–3866. [Google Scholar] [CrossRef]
- Gebreegziabiher, D.; Desta, K.; Desalegn, G.; Howe, R.; Abebe, M. The Effect of Maternal Helminth Infection on Maternal and Neonatal Immune Function and Immunity to Tuberculosis. PLoS ONE 2014, 9, e93429. [Google Scholar] [CrossRef]
- Abate, E.; Elias, D.; Getachew, A.; Alemu, S.; Diro, E.; Britton, S.; Aseffa, A.; Stendahl, O.; Schön, T. Effects of Albendazole on the Clinical Outcome and Immunological Responses in Helminth Co-Infected Tuberculosis Patients: A Double Blind Randomised Clinical Trial. Int. J. Parasitol. 2015, 45, 133–140. [Google Scholar] [CrossRef]
- Gondorf, F.; Berbudi, A.; Buerfent, B.C.; Ajendra, J.; Bloemker, D.; Specht, S.; Schmidt, D.; Neumann, A.L.; Layland, L.E.; Hoerauf, A.; et al. Chronic Filarial Infection Provides Protection against Bacterial Sepsis by Functionally Reprogramming Macrophages. PLoS Pathog. 2015, 11, e1004616. [Google Scholar] [CrossRef] [PubMed]
- George, P.J.; Kumar, N.P.; Sridhar, R.; Hanna, L.E.; Nair, D.; Banurekha, V.V.; Nutman, T.B.; Babu, S. Coincident Helminth Infection Modulates Systemic Inflammation and Immune Activation in Active Pulmonary Tuberculosis. PLoS Negl. Trop. Dis. 2014, 8, e3289. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, E.; Kazura, J.W.; Hazlett, F.E.; Boom, W.H. Modulation of Murine Cytokine Responses to Mycobacterial Antigens by Helminth-Induced T Helper 2 Cell Responses. J. Immunol. 1993, 151, 4857–4864. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.M.; Maslowski, K.M.; Mosconi, I.; Guenat, N.; Marsland, B.J.; Harris, N.L. IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity. PLoS Pathog. 2013, 9, e1003531. [Google Scholar] [CrossRef]
- Anuradha, R.; Munisankar, S.; Bhootra, Y.; Dolla, C.; Kumaran, P.; Nutman, T.B.; Babu, S. Anthelmintic Therapy Modifies the Systemic and Mycobacterial Antigen-Stimulated Cytokine Profile in Helminth-Latent Mycobacterium tuberculosis Coinfection. Infect. Immun. 2017, 85, e00973-16. [Google Scholar] [CrossRef]
- Biraro, I.A.; Egesa, M.; Toulza, F.; Levin, J.; Cose, S.; Joloba, M.; Smith, S.; Dockrell, H.M.; Katamba, A.; Elliott, A.M. Impact of Co-Infections and BCG Immunisation on Immune Responses Among Household Contacts of Tuberculosis Patients in a Ugandan Cohort. PLoS ONE 2014, 9, e111517. [Google Scholar] [CrossRef]
- Rajamanickam, A.; Munisankar, S.; Dolla, C.; Menon, P.A.; Nutman, T.B.; Babu, S. Helminth Coinfection Alters Monocyte Activation, Polarization, and Function in Latent Mycobacterium tuberculosis Infection. J. Immunol. 2020, 204, 1274–1286. [Google Scholar] [CrossRef]
- Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 9 September 2024).
- Yazdanyar, A.; Newman, A.B. The Burden of Cardiovascular Disease in the Elderly: Morbidity, Mortality, and Costs. Clin. Geriatr. Med. 2009, 25, 563–577. [Google Scholar] [CrossRef]
- Morimoto, M.; Azuma, N.; Kadowaki, H.; Abe, T.; Suto, Y. Regulation of Type 2 Diabetes by Helminth-Induced Th2 Immune Response. J. Vet. Med. Sci. 2016, 78, 1855–1864. [Google Scholar] [CrossRef]
- Aravindhan, V.; Mohan, V.; Surendar, J.; Rao, M.M.; Pavankumar, N.; Deepa, M.; Rajagopalan, R.; Kumaraswami, V.; Nutman, T.B.; Babu, S. Decreased Prevalence of Lymphatic Filariasis among Diabetic Subjects Associated with a Diminished Pro-Inflammatory Cytokine Response (CURES 83). PLoS Negl. Trop. Dis. 2010, 4, 2–7. [Google Scholar] [CrossRef]
- Aravindhan, V.; Mohan, V.; Surendar, J.; Rao, M.M.; Ranjani, H.; Kumaraswami, V.; Nutman, T.B.; Babu, S. Decreased Prevalence of Lymphatic Filariasis among Subjects with Type-1 Diabetes. Am. J. Trop. Med. Hyg. 2010, 83, 1336–1339. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.; Miller, M.M.; Reinhardt, R.L. Neonatal Helminth Infection and Chronic Type 2 Inflammation Promotes Immune Suppression through FcγRIIb. J. Immunol. 2023, 210, 82.04. [Google Scholar] [CrossRef]
- Wohlleben, G.; Trujillo, C.; Müller, J.; Ritze, Y.; Grunewald, S.; Tatsch, U.; Erb, K.J. Helminth Infection Modulates the Development of Allergen-Induced Airway Inflammation. Int. Immunol. 2004, 16, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Jr, M.M.; Figueiredo, J.; Almeida, M.; Matos, M.; Araujo, M. Schistosoma mansoni Infection Is Associated with a Reduced Course of Asthma. J. Allergy Clin. Immunol. 2003, 111, 947–951. [Google Scholar]
- Zaccone, P.; Burton, O.; Miller, N.; Jones, F.; Dunne, D. Schistosoma mansoni Egg Antigens Induce Treg That Participate in Diabetes Prevention in NOD Mice. Eur. J. Immunol. 2009, 39, 1098–1107. [Google Scholar] [PubMed]
- Smits, H.; Hammad, H.; van Nimwegen, M.; Soullie, T.; Willart, M. Protective Effect of Schistosoma mansoni Infection on Allergic Airway Inflammation Depends on the Intensity and Chronicity of Infection. J. Allergy Clin. Immunol. 2007, 120, 932–940. [Google Scholar]
- Cardoso, L.S.; Oliveira, S.C.; Araujo, M.I. Schistosoma mansoni Antigens as Modulators of the Allergic Inflammatory Response in Asthma. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Layland, L.E.; Straubinger, K.; Ritter, M.; Loffredo-Verde, E.; Garn, H.; Sparwasser, T.; Prazeres da Costa, C. Schistosoma mansoni-Mediated Suppression of Allergic Airway Inflammation Requires Patency and Foxp3+ Treg Cells. PLoS Negl. Trop. Dis. 2013, 7, e2379. [Google Scholar] [CrossRef]
- Straubinger, K.; Paul, S.; Prazeres Da Costa, O.; Ritter, M.; Buch, T.; Busch, D.H.; Layland, L.E.; Prazeres Da Costa, C.U. Maternal Immune Response to Helminth Infection during Pregnancy Determines Offspring Susceptibility to Allergic Airway Inflammation. J. Allergy Clin. Immunol. 2014, 134, 1271–1279.e10. [Google Scholar] [CrossRef]
- Ludwig, E.; Harder, J.; Lacorcia, M.; Honkpehedji, Y.J.; Nouatin, O.P.; van Dam, G.J.; Corstjens, P.L.A.M.; Sartono, E.; Esen, M.; Lobmaier, S.M.; et al. Placental Gene Expression and Antibody Levels of Mother-Neonate Pairs Reveal an Enhanced Risk for Inflammation in a Helminth Endemic Country. Sci. Rep. 2019, 9, 15776. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Wang, Y.; Zhan, B.; Gu, Y.; Cheng, Y.; Zhu, X. Excretory/Secretory Products from Trichinella Spiralis Adult Worms Ameliorate DSS-Induced Colitis in Mice. PLoS ONE 2014, 9, e96454. [Google Scholar] [CrossRef]
- Sánchez-Quintero, A.; Bradford, B.M.; Maizels, R.; Donaldson, D.S.; Mabbott, N.A. Effect of Co-Infection with a Small Intestine-Restricted Helminth Pathogen on Oral Prion Disease Pathogenesis in Mice. Sci. Rep. 2019, 9, 6674. [Google Scholar] [CrossRef]
- Rajamanickam, A.; Munisankar, S.; Menon, P.A.; Dolla, C.; Nutman, T.B.; Babu, S. Helminth Mediated Attenuation of Systemic Inflammation and Microbial Translocation in Helminth-Diabetes Comorbidity. Front. Cell Infect. Microbiol. 2020, 10, 431. [Google Scholar] [CrossRef]
- Meijlink, K.J. Can a Gut Helminth Parasite Influence Th2 Inflammatory Responses in the Skin? Ph.D. Thesis, Victoria University of Wellington, Wellington, New Zealand, 2017. [Google Scholar] [CrossRef]
- Tahapary, D.L.; De Ruiter, K.; Martin, I.; Brienen, E.A.T.; Van Lieshout, L.; Cobbaert, C.M.; Soewondo, P.; Djuardi, Y.; Wiria, A.E.; Houwing-Duistermaat, J.J.; et al. Effect of Anthelmintic Treatment on Insulin Resistance: A Cluster-Randomized, Placebo-Controlled Trial in Indonesia. Clin. Infect. Dis. 2017, 65, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Sanya, R.E.; Webb, E.L.; Zziwa, C.; Kizindo, R.; Sewankambo, M.; Tumusiime, J.; Nakazibwe, E.; Oduru, G.; Niwagaba, E.; Nakawungu, P.K.; et al. The Effect of Helminth Infections and Their Treatment on Metabolic Outcomes: Results of a Cluster-Randomized Trial. Clin. Infect. Dis. 2020, 71, 601–613. [Google Scholar] [CrossRef]
- Rajamanickam, A.; Munisankar, S.; Thiruvengadam, K.; Menon, P.A.; Dolla, C.; Nutman, T.B.; Babu, S. Impact of Helminth Infection on Metabolic and Immune Homeostasis in Non-Diabetic Obesity. Front. Immunol. 2020, 11, 2195. [Google Scholar] [CrossRef]
- Namara, B.; Nash, S.; Lule, S.A.; Akurut, H.; Mpairwe, H.; Akello, F.; Tumusiime, J.; Kizza, M.; Kabagenyi, J.; Nkurunungi, G.; et al. Effects of Treating Helminths during Pregnancy and Early Childhood on Risk of Allergy-Related Outcomes: Follow-up of a Randomized Controlled Trial. Pediatr. Allergy Immunol. 2017, 28, 784–792. [Google Scholar] [CrossRef]
- Pierce, D.R.; McDonald, M.; Merone, L.; Becker, L.; Thompson, F.; Lewis, C.; Ryan, R.Y.M.; Hii, S.F.; Zendejas-Heredia, P.A.; Traub, R.J.; et al. Effect of Experimental Hookworm Infection on Insulin Resistance in People at Risk of Type 2 Diabetes. Nat. Commun. 2023, 14, 4503. [Google Scholar] [CrossRef]
- Sanya, R.E.; Nkurunungi, G.; Spaans, R.H.; Nampijja, M.; O’Hara, G.; Kizindo, R.; Oduru, G.; Nakawungu, P.K.; Niwagaba, E.; Abayo, E.; et al. The Impact of Intensive Versus Standard Anthelminthic Treatment on Allergy-Related Outcomes, Helminth Infection Intensity, and Helminth-Related Morbidity in Lake Victoria Fishing Communities, Uganda: Results from the LaVIISWA Cluster-Randomized Trial. Clin. Infect. Dis. 2019, 68, 1665–1674. [Google Scholar] [CrossRef]
- Da’Dara, A.A.; Lautsch, N.; Dudek, T.; Novitsky, V.; Lee, T.H.; Essex, M.; Harn, D.A. Helminth Infection Suppresses T-Cell Immune Response to HIV-DNA-Based Vaccine in Mice. Vaccine 2006, 24, 5211–5219. [Google Scholar] [CrossRef]
- Noland, G.S.; Chowdhury, D.R.; Urban, J.F.; Zavala, F.; Kumar, N. Helminth Infection Impairs the Immunogenicity of a Plasmodium Falciparum DNA Vaccine, but Not Irradiated Sporozoites, in Mice. Vaccine 2010, 28, 2917–2923. [Google Scholar] [CrossRef]
- Hartmann, W.; Brunn, M.L.; Stetter, N.; Gagliani, N.; Muscate, F.; Stanelle-Bertram, S.; Gabriel, G.; Breloer, M. Helminth Infections Suppress the Efficacy of Vaccination against Seasonal Influenza. Cell Rep. 2019, 29, 2243–2256.e4. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Karl, C.E.; Ying, B.; Liang, C.-Y.; Garcia-Salum, T.; Santana, A.C.; Ten-Caten, F.; Joseph, F., Jr.; Elbashir, S.M.; Edwards, D.K.; et al. Intestinal Helminth Infection Impairs Vaccine-Induced T Cell Responses and Protection against SARS-CoV-2 in Mice. Sci. Transl. Med. 2024, 16, eado1941. [Google Scholar] [CrossRef]
- Oshiba, S.; Harba, N.; El Melegy, M.; El Gammal, S.; Hegazy, A.; Abokhalil, N. Effects of COVID-19 Vaccine on Experimentally Infected Mice with Schistosoma mansoni. J. Biosci. Appl. Res. 2023, 9, 138–160. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, W.; Gong, Y.; Zhang, J.; Yu, Y.; Zhang, J.; Liu, M.; Guan, F.; Lei, J. Trichinella Spiralis Infection Inhibits the Efficacy of RBD Protein of SARS-CoV-2 Vaccination via Regulating Humoral and Cellular Immunity. Vaccines 2024, 12, 729. [Google Scholar] [CrossRef]
- Brown, J.; Baisley, K.; Kavishe, B.; Changalucha, J.; Andreasen, A.; Mayaud, P.; Gumodoka, B.; Kapiga, S.; Hayes, R.; Watson-Jones, D. Impact of Malaria and Helminth Infections on Immunogenicity of the Human Papillomavirus-16/18 AS04-Adjuvanted Vaccine in Tanzania. Vaccine 2014, 32, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.H.; Gazzinelli-guimaraes, P.H.; Howard, J.; Barnafo, E.; Alani, N.A.H.; Muratova, O.; Mccormack, A.; Kelnhofer, E.; Urban, J.F.; Narum, D.L.; et al. Chronic Helminth Infection Does Not Impair Immune Response to Malaria Transmission Blocking Vaccine Pfs230D1-EPA/Alhydrogel Ò in Mice. Vaccine 2019, 37, 1038–1045. [Google Scholar] [CrossRef]
- Flügge, J.; Adegnika, A.A.; Honkpehedji, Y.J.; Sandri, T.L.; Askani, E.; Manouana, G.P.; Loembe, M.M.; Brückner, S.; Duali, M.; Strunk, J.; et al. Impact of Helminth Infections during Pregnancy on Vaccine Immunogenicity in Gabonese Infants. Vaccines 2020, 8, 381. [Google Scholar] [CrossRef]
- Zhang, Y.; Hardy, L.C.; Kapita, C.M.; Hall, J.A.; Arbeeva, L.; Campbell, E.; Urban, J.F.; Belkaid, Y.; Nagler, C.R.; Iweala, O.I. Intestinal Helminth Infection Impairs Oral and Parenteral Vaccine Efficacy. J. Immunol. 2023, 211, 389–402. [Google Scholar] [CrossRef]
- Muir, R.; Metcalf, T.; Fourati, S.; Bartsch, Y.; Kyosiimire-Lugemwa, J.; Canderan, G.; Alter, G.; Muyanja, E.; Okech, B.; Namatovu, T.; et al. Schistosoma mansoni Infection Alters the Host Pre-Vaccination Environment Resulting in Blunted Hepatitis B Vaccination Immune Responses. PLoS Negl. Trop. Dis. 2023, 17, e0011089. [Google Scholar] [CrossRef]
- Stetter, N.; Hartmann, W.; Brunn, M.L.; Stanelle-Bertram, S.; Gabriel, G.; Breloer, M. A Combination of Deworming and Prime-Boost Vaccination Regimen Restores Efficacy of Vaccination Against Influenza in Helminth-Infected Mice. Front. Immunol. 2021, 12, 784141. [Google Scholar] [CrossRef]
- Hartmann, W.; Brunn, M.L.; Stetter, N.; Gabriel, G.; Breloer, M. Pre-Existing Helminth Infection Impairs the Efficacy of Adjuvanted Influenza Vaccination in Mice. PLoS ONE 2022, 17, e0266456. [Google Scholar] [CrossRef]
- Wajja, A.; Kizito, D.; Nassanga, B.; Nalwoga, A.; Kabagenyi, J.; Kimuda, S.; Galiwango, R.; Mutonyi, G.; Vermaak, S.; Satti, I.; et al. The Effect of Current Schistosoma mansoni Infection on the Immunogenicity of a Candidate TB Vaccine, MVA85A, in BCG-Vaccinated Adolescents: An Open-Label Trial. PLoS Negl. Trop. Dis. 2017, 11, e0005440. [Google Scholar] [CrossRef]
- Brückner, S.; Agnandji, S.T.; Berberich, S.; Bache, E.; Fernandes, J.F.; Schweiger, B.; Loembe, M.M.; Engleitner, T.; Lell, B.; Mordmüller, B.; et al. Effect of Antihelminthic Treatment on Vaccine Immunogenicity to a Seasonal Influenza Vaccine in Primary School Children in Gabon: A Randomized Placebo-Controlled Trial. PLoS Negl. Trop. Dis. 2015, 9, e0003768. [Google Scholar] [CrossRef] [PubMed]
- Nash, S.; Mentzer, A.J.; Lule, S.A.; Kizito, D.; Smits, G.; van der Klis, F.R.M.; Elliott, A.M. The Impact of Prenatal Exposure to Parasitic Infections and to Anthelminthic Treatment on Antibody Responses to Routine Immunisations given in Infancy: Secondary Analysis of a Randomised Controlled Trial. PLoS Negl. Trop. Dis. 2017, 11, e0005213. [Google Scholar] [CrossRef]
- Victoria, L. Pre-Vaccination Schistosoma mansoni and Hookworm Infections Are Associated with Altered Vaccine Immune Responses: A Longitudinal Analysis among Adolescents Living in Helminth-Endemic Islands of Lake Victoria, Uganda. Front. Immunol. 2024, 69, 1460183. [Google Scholar] [CrossRef]
- Nouatin, O.; Mengue, J.B.; Dejon-Agobé, J.C.; Fendel, R.; Ibáñez, J.; Ngoa, U.A.; Edoa, J.R.; Adégbité, B.R.; Honkpéhédji, Y.J.; Zinsou, J.F.; et al. Exploratory Analysis of the Effect of Helminth Infection on the Immunogenicity and Efficacy of the Asexual Blood-Stage Malaria Vaccine Candidate Gmz2. PLoS Negl. Trop. Dis. 2021, 15, e0009361. [Google Scholar] [CrossRef]
- Id, H.B.; Lhomme, E.; Sure, M.; Robinson, C.; Bockstal, V.; Valea, I.; Somda, S.; Tinto, H.; Lacabaratz, C.; Meda, N.; et al. Helminth Exposure and Immune Response to MVA-BN-Filo Ebola Vaccine Regimen. PLoS Negl. Trop. Dis. 2024, 118, e0011500. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Study | Type of Study | Year of Publication | Helminth or Anthelmintic Treatment | Bacterial Disease Condition Investigated | Main Findings ↓↑ | Ref. |
---|---|---|---|---|---|---|
Heligmosomoides polygyrus and Salmonella Typhimurium | Mice | 2014 | Heligmosomoides polygyrus | Salmonella Typhimurium | ↑ intestinal inflammation, ↓ neutrophil, ↓ MIP-2, ↓ CXCL1, poor control of bacterial replication. | [81] |
Modulation of Cytokine Responses in Latent Tuberculosis by Helminth Coinfection | Human | 2017 | Anthelmintic treatment (for Strongyloides stercoralis) | Latent TB | Individuals with latent TB and S. stercoralis co-infection had ↓ type 1 (IFN-γ, TNF-α, IL-2) and type 17 (IL-17A, IL-17F) cytokines but ↑ type 2 (IL-4, IL-5) and regulatory (TGF-β) cytokines. Anthelmintic therapy reversed these effects, increasing type 1 and type 17 cytokines while decreasing type 2 and regulatory cytokines. TB antigen-stimulated type 1 cytokines increased post-treatment. | [88] |
IL-4, Helminths, and Mycobacterial Infections | Mice | 2023 | Nippostrongylus brasiliensis, Schistosoma mansoni | Mycobacterial infections (including BCG vaccine) | ↓ Mincle expression in macrophages, affecting immune responses to mycobacterial infections and vaccines. IL-4 decreases Mincle activation and alters T cell responses depending on adjuvants. | [80] |
Litomosoides sigmodontis and Bacterial Sepsis | Mice | 2015 | Litomosoides sigmodontis | Bacterial sepsis caused by Escherichia coli | Improves sepsis outcomes, ↑ bacterial clearance, ↓ pro-inflamatory cytokines. It also affects macrophage function through Wolbachia and TLR2 signaling. | [84] |
Maternal Helminth Infections and TB | Human | 2014 | S. mansoni | Tuberculosis (TB) | ↑ IgE levels and altered TB-specific antibody responses in newborns. | [82] |
Helminth Infections and Tuberculosis Inflammation | Human | 2014 | S. stercoralis | Tuberculosis (TB) | ↓ inflammation and immune activation markers in people with active TB, ↓ disease severity, ↓ acute phase proteins, ↓ matrix metalloproteinases, ↓ tissue inhibitors of matrix metalloproteinases, and ↓ sCD14 and ↓ sCD163. | [85] |
Helminth co-infection in TB Patients in East Java | Human | 2020 | Trichuris trichiura | Tuberculosis (TB) | A total of 56% of active TB patients had Trichuris trichiura eggs, though were asymptomatic. Impact on TB diagnosis and treatment is unclear, suggesting further research is needed. | [78] |
Helminth–Malaria–HIV co-infections and Latent TB Risk | Human | 2014 | Various helminths | Latent TB | Co-infections with helminths, malaria, or HIV did not increase the risk of latent TB infection or significantly affect the immune response in people with LTBI. | [89] |
Helminth Modulation of Monocyte Responses in Latent Tuberculosis Infection (LTBI) | Human | 2020 | S. stercoralis infection and Anthelmintic treatment | Latent Tuberculosis Infection (LTBI) | Helminth co-infection linked to ↓ monocyte function, ↑ M2 polarization, and ↓ monocyte activation, but anthelmintic treatment reversed these effects after 6 months. | [90] |
Helminth–tuberculosis co-infection in Ethiopia | Human | 2015 | Albendazole (400 mg/day for 3 days) | Tuberculosis | Albendazole treatment ↓ eosinophil counts and IL-10 levels in helminth-TB co-infected patients, showing a reversal of helminth-induced immune suppression. However, there was no significant improvement in clinical TB outcomes | [83] |
Study | Type of Study | Year of Publication | Helminth or Anthelmintic Treatment | NCD Investigated | Main Findings ↓↑ | Ref. |
---|---|---|---|---|---|---|
Schistosomiasis and allergy susceptibility | Mice (BALB/c) | 2014 | Schistosoma mansoni infection | Allergies | Offspring of mothers infected with S. mansoni during certain immune phases (regulatory) had a ↓ chance of developing allergic airway inflammation. The protective effect is linked to maternal immune responses, not just the presence of the helminth infection. | [103] |
Heligmosomoides polygyrus and type 2 diabetes | Mice | 2016 | Heligmosomoides polygyrus infection | Type 2 diabetes (T2D) | Infection with H. polygyrus improved glucose control, ↓ insulin resistance, and fat accumulation in diabetic mice, suggesting that helminth-induced immune responses might help manage T2D. | [93] |
Early-Life heligmosomoides infection and allergy | Mice | 2023 | Heligmosomoides polygyrus infection | Allergic diseases | Early-life infection with H. polygyrus led to chronic mild inflammation and controlled allergic responses later in life. The mechanism involved IL-4 and FcγRIIb, suggesting that helminth infections could regulate allergies through immune modulation. | [96] |
Strongyloides stercoralis and T2DM | Human | 2020 | Strongyloides stercoralis infection | Type 2 diabetes mellitus (T2DM) | In people with T2DM, S. stercoralis infection ↓ inflammation and microbial leakage. After treatment to clear the infection, these protective effects were reversed, suggesting that the helminth infection had a beneficial impact on managing T2DM. | [107] |
Helminth infection and prion disease | Mice | 2019 | Heligmosomoides polygyrus infection | Prion disease | Co-infection with H. polygyrus ↓ early prion accumulation in Peyer’s patches and extended survival in mice with prion disease, indicating that helminth infections could slow the progression of prion diseases by modulating the immune response. | [106] |
Helminth and skin inflammation | Mice | 2017 | Heligmosomoides polygyrus infection | Skin inflammation (allergic diseases) | H. polygyrus infection ↓ skin inflammation in mice by inducing an immune response that ↑ regulatory T cells, suggesting potential for helminth-based therapies in treating allergic diseases, including skin conditions like AD. | [108] |
Therapeutic potential of T. spiralis AES in colitis | Mice (C57BL/6) | 2014 | Excretory/secretory products from Trichinella spiralis | Colitis (induced by DSS) | T. spiralis AES treatment significantly ↓ the severity of DSS-induced colitis in mice. The treatment led to improved inflammation, ↑ regulatory cytokines (IL-10, TGF-β), and regulatory T cells, while ↓ pro-inflammatory cytokines (IFN-γ, IL-6, IL-17). | [105] |
Anthelmintic treatment and insulin resistance | Human | 2017 | Albendazole treatment | Insulin resistance (IR) | Albendazole significantly ↑ IR in helminth-infected subjects despite ↓ STH prevalence, total IgE, and eosinophil count. | [109] |
Anthelmintic treatment and cardiometabolic risk | Human | 2020 | Praziquantel, Albendazole treatment | Cardiometabolic risk (IR, lipid profile, blood pressure) | Intensive treatment had no effect on IR but ↑ LDL cholesterol. Helminth infections (e.g., Schistosoma mansoni, Strongyloides) associated with ↓ LDL cholesterol, total cholesterol, triglycerides, and blood pressure. | [110] |
S. stercoralis infection and obesity | Human | 2020 | S.stercoralis infection and anthelmintic treatment | Obesity and metabolic parameters | Helminth infection associated with ↓ insulin, GLP-1, and inflammatory cytokines in obese individuals. After treatment, insulin, GLP-1, and inflammatory cytokines ↑, reversing the protective effect of helminths. | [111] |
Prenatal helminth treatment and atopic diseases (entebbe mother and baby study) | Human | 2017 | Albendazole, Praziquantel (during pregnancy and early life) | Asthma, eczema, allergies (atopic diseases) | Prenatal and early-life helminth treatment had no significant impact on wheezing, asthma, or allergy risk at school age. Early eczema rates increased but did not translate to higher asthma rates later. | [112] |
Hookworm infection and type 2 diabetes | Human | 2023 | Necator americanus larvae | Insulin resistance, type 2 diabetes | Hookworm infection ↓ fasting glucose, improved insulin resistance, and ↓ body mass in individuals at risk of type 2 diabetes. The infection was associated with gastrointestinal symptoms but was generally safe, indicating potential metabolic benefits. | [113] |
Placental gene expression in helminth-endemic and non-endemic areas | Human | 2019 | Schistosoma haematobium | Immune modulation and allergy development | In Gabon (helminth-endemic), placentas showed significantly lower gene expression of VDR, Foxp3, IL-10, and Cyp27b1 compared to Germany (non-endemic), suggesting that prenatal helminth exposure may impair immune system development, leading to altered immune responses in offspring. | [104] |
Intensive anthelmintic mass drug administration (MDA) on allergy-related diseases (Uganda) | Human | 2019 | MDA with Praziquantel and Albendazole | Allergy-related diseases (wheezing, skin prick test positivity, allergen-specific IgE) | While intensive deworming reduced helminth infection intensity, it did not significantly affect allergy-related outcomes. | [114] |
Patent infections of S. mansoni and allergic airway inflammation | Mice | 2013 | Schistosoma mansoni infection and praziquantel (PZQ) treatment | Allergic airway inflammation (AAI)/asthma | S. mansoni infection during the patent phase reduced airway inflammation, eosinophil infiltration, and Th2 responses in allergic mice. Protection was lost when infection was treated with PZQ, suggesting helminth-mediated immunomodulation. | [102] |
Asthma and helminth infection in Brazil | Human | 2003 | S. mansoni infection (natural infection) | Bronchial asthma | S. mansoni infection was associated with a lower prevalence of asthma attacks and reduced use of asthma medication. Subjects from helminth-endemic areas had lower histamine release levels and a lower frequency of positive skin prick test (SPT) responses compared to non-infected individuals. | [98] |
Schistosoma mansoni infection and airway inflammation in mice | Mice | 2007 | S. mansoni infection (acute, intermediate, and chronic phases) | Asthma (allergic airway inflammation) | Chronic S. mansoni infection reduced OVA-induced airway eosinophilia, peribronchial inflammation, goblet cell hyperplasia, and airway hyperreactivity (AHR). Suppression was associated with IL-10 production and increased infection intensity. | [100] |
SEA treatment and Foxp3 Treg in the pancreas of NOD mice | Animal (NOD mice) | 2009 | S.mansoni egg antigen (SEA) treatment | Type 1 Diabetes | SEA treatment prevents diabetes in NOD mice by increasing Foxp3+ Treg cells in the pancreas. SEA induces TGF-β, IL-10, IL-4, and IL-35 expression, creating an immunoregulatory environment. The protective effect is dependent on CD25+ Treg cells, and SEA directly promotes Foxp3+ Treg differentiation. | [99] |
Circulating filarial antigen levels and anti-filarial antibody titer among type-2 diabetes subjects | Human | 2010 | lymphatic Filariasis (LF) infection | Type 2 Diabetes (T2D) | Lower CFA levels in diabetic individuals compared to normoglycemic individuals. Lower anti-filarial IgG levels in diabetic individuals. Diabetics had elevated IL-6 and GM-CSF levels, which were reduced in individuals co-infected with LF. IFN-γ was elevated in diabetics but unaltered by LF status. TGF-β was higher in diabetics compared to controls. | [94] |
Filariasis and type 1 diabetes | Human | 2010 | Lymphatic Filariasis (LF) | Type 1 Diabetes (T1DM) | Individuals with T1DM had a significantly lower prevalence of filarial-specific IgG4 (2%) compared to non-diabetic individuals (14%) (p < 0.001). No significant difference was found in general antifilarial IgG levels, suggesting reduced active infection but similar exposure rates between groups. Socioeconomic factors were not confounding variables in the observed differences. | [95] |
Study | Study Type | Year of Publication | Helminth Used for Infection | Vaccine Tested | Main Findings ↓↑ | Ref. |
---|---|---|---|---|---|---|
Malaria and helminth infections on HPV vaccine (Tanzania) | Human | 2014 | Various helminths and malaria | HPV-16/18 Vaccine | The HPV-16/18 vaccine was effective in all participants, with high antibody levels. Malaria or helminth infections did not ↓ vaccine effectiveness; malaria-infected participants even showed slightly higher antibody levels, though the reason is unclear. | [121] |
Chronic helminth infection in malaria vaccine | Mice | 2019 | Heligmosomoides polygyrus bakeri (Hpb) | Malaria vaccine | Chronic helminth infection did not ↓ the effectiveness of the malaria vaccine. Both infected and non-infected mice showed similar immune responses and vaccine effectiveness, indicating that the vaccine remains effective even in the presence of helminth infections. | [122] |
Helminth infection on COVID-19 vaccine | Mice | 2024 | Hpb | mRNA COVID-19 | The vaccine produced similar B cell responses in both infected and uninfected mice. However, T cell responses were significantly weaker in Hpb-infected mice, leading to reduced protection against the Omicron variant. The suppression was linked to IL-10, and blocking IL-10 improved T cell responses. | [118] |
Helminth infection on influenza vaccine | Mice | 2019 | Litomosoides sigmodontis | Influenza vaccine | Mice with helminth infections showed ↓ antibody responses to both seasonal and H1N1 Influenza vaccines. The impairment was linked to IL-10-producing regulatory T cells. Blocking IL-10 partially restored the vaccine response. | [117] |
Helminth infection on oral and parenteral vaccines | Mice | 2023 | Hpb | Salmonella vaccine | Helminth infection ↓ the immune response to both oral and injected vaccines by disrupting the balance of regulatory T cells in the gut. This led to weaker Th1 and Th2 responses, suggesting the need for the pre-treatment of helminth infections in vaccine campaigns. | [124] |
COVID-19 vaccine and S. mansoni | Mice | 2023 | S. mansoni | mRNA COVID-19 vaccine | Infected group that had received COVID-19 vaccine showed ↑ IFN-γ and TNF-α levels and ↓ levels of IL-4 and IL-17 | [119] |
Litomosoides sigmodontis on vaccine efficacy in mice | Mice (BALB/c) | 2014 | Litomosoides sigmodontis | DNP-KLH and NIP-Ficoll | Chronic worm infections completely suppress the immune response to the vaccine, reducing B cells and antibody levels. Even after deworming, immune suppression persisted, requiring stronger vaccination strategies. | [13] |
S.mansoni on hepatitis B vaccine | Human | 2023 | S.mansoni | HBV vaccine | Higher S. mansoni worm burden correlated with ↓ HepB vaccine titers and altered immune responses, including ↓ circulating T follicular helper (cTfh) cells, ↑ regulatory T cells (Tregs), and changes in cytokine/chemokine levels. These immune alterations contributed to a blunted vaccine response. | [125] |
Litomosoides sigmodontis on Influenza vaccine | Mice | 2021 | Litomosoides sigmodontis and Flubendazole (FBZ) | Influenza vaccine | Deworming improved vaccine protection only partially, highlighting that immune suppression persisted after deworming. Enhanced vaccination strategies were needed for full protection. | [126] |
Maternal helminth infections on newborn vaccine responses | Human | 2020 | Maternal helminth infections during pregnancy | Tetanus vaccine | Babies born to mothers with helminth infections had ↓ antibody levels against tetanus in cord blood but showed similar vaccine responses to babies born to uninfected mothers by 9-12 months of age. | [123] |
Helminth infections on Influenza vaccine | Mice | 2022 | Litomosoides sigmodontis | Influenza vaccine | Helminth-infected mice produced fewer antibodies in response to the flu vaccine, making it less effective. The presence of worms led to ↑ virus levels in the lungs despite vaccination, indicating ↓ vaccine efficacy. | [127] |
Trichinella spiralis infection on RBD protein vaccine of SARS-CoV-2 | Mice | 2024 | Trichinella spiralis infection and Albendazole treatment | mRNA COVID-19 vaccine | Trichinella spiralis impairs the efficacy of the COVID-19 vaccine. The infection suppresses immune responses to the vaccine, including ↓ levels of IgG, IgM, IgA, neutralizing antibodies, and splenic germinal center B cells. Treatment with albendazole (ALB) partially reverses this inhibitory effect, improving vaccine efficacy. | [120] |
S. mansoni on measles vaccine | Human | 2019 | S. mansoni and praziquantel treatment | Measles vaccine | Infected children had ↓ anti-measles IgG levels and ↓ protection rates post-immunization; praziquantel treatment improved immune response. | [26] |
S. mansoni on MVA85A TB vaccine in Ugandan adolescents | Human | 2017 | S.mansoni | MVA85A (TB vaccine) | TB vaccine immunogenicity was not affected by S.mansoni infection. No safety concerns, but S.mansoni infected had higher pre-vaccine IgG4. | [128] |
Albendazole treatment and Influenza vaccine in Gabonese children | Human | 2015 | Albendazole | Seasonal influenza vaccine | Albendazole treatment had no significant impact on Influenza vaccine response; slight trend toward better immunogenicity in treated group. | [129] |
Anthelmintic treatment during pregnancy and infant vaccine response | Human | 2017 | Albendazole, Praziquantel | DTP, HiB, hepatitis B vaccine | No significant effect of treatment on infant vaccine responses but strongyloidiasis was linked with enhanced vaccine response. | [130] |
Helminths and multiple vaccine responses in Ugandan adolescents | Human | 2024 | S. mansoni, hookworm | BCG, yellow fever, typhoid, HPV, diphtheria vaccine | Schistosoma reduced responses to BCG and typhoid vaccines; hookworm increased diphtheria IgG but reduced HPV-16 IgG. | [131] |
Helminths and GMZ2 malaria vaccine efficacy in malaria-endemic adults | Human | 2021 | Schistosoma haematobium, Strongyloides stercoralis | GMZ2 malaria vaccine | Schistosoma infection was linked to earlier malaria episodes; helminths reduced vaccine immunogenicity and efficacy. | [132] |
Helminth exposure and response to Ebola virus glycoprotein antibody (Ad26.ZEBOV, MVA-BN-Filo vaccine regimen) | Human | 2024 | Schistosoma mansoni, Acanthocheilonema viteae, Strongyloides ratti | Ebola Virus Disease (EVD), response to Ad26.ZEBOV, MVA-BN-Filo vaccine regimen | No significant association between helminth exposure (via ELISA markers) and antibody concentration to EBOV GP post-vaccination. Five immune markers (CCL2/MCP1, FGFbasic, IL-7, IL-13, and CCL11/Eotaxin) were significantly lower in participants with helminth exposure but these did not correlate with vaccine response. | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nembot Fogang, B.A.; Debrah, L.B.; Owusu, M.; Agyei, G.; Meyer, J.; Gmanyami, J.M.; Ritter, M.; Arndts, K.; Adu Mensah, D.; Adjobimey, T.; et al. Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases. Vaccines 2025, 13, 436. https://doi.org/10.3390/vaccines13050436
Nembot Fogang BA, Debrah LB, Owusu M, Agyei G, Meyer J, Gmanyami JM, Ritter M, Arndts K, Adu Mensah D, Adjobimey T, et al. Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases. Vaccines. 2025; 13(5):436. https://doi.org/10.3390/vaccines13050436
Chicago/Turabian StyleNembot Fogang, Brice Armel, Linda Batsa Debrah, Michael Owusu, George Agyei, Julia Meyer, Jonathan Mawutor Gmanyami, Manuel Ritter, Kathrin Arndts, Derrick Adu Mensah, Tomabu Adjobimey, and et al. 2025. "Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases" Vaccines 13, no. 5: 436. https://doi.org/10.3390/vaccines13050436
APA StyleNembot Fogang, B. A., Debrah, L. B., Owusu, M., Agyei, G., Meyer, J., Gmanyami, J. M., Ritter, M., Arndts, K., Adu Mensah, D., Adjobimey, T., Hörauf, A., & Debrah, A. Y. (2025). Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases. Vaccines, 13(5), 436. https://doi.org/10.3390/vaccines13050436