Cell-Based Relative Potency of a Respiratory Syncytial Virus mRNA Vaccine Correlates with In Vivo Immunogenicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine
2.2. Animals
2.3. RSV F Protein-Specific ELISA Assay
2.4. RSV Neutralization Assay
2.5. Cell-Based Relative Potency Assay
2.6. Statistical Analysis
3. Results
3.1. Cut-Off Value Determination for ELISA Titers
3.2. Total Anti-RSV F-Protein LZF60 Antibodies Titer
3.3. RSV-Neutralizing Antibodies Titers
3.4. Cell-Based Relative Potency
3.5. Correlation Between Cell-Based Potency and Mouse Immunogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeVolld, T.; Rivard, K.R. RSV immunization in adults and children: A practical guide for clinicians. Cleve. Clin. J. Med. 2024, 91 (Suppl. S1), S11–S18. [Google Scholar] [CrossRef] [PubMed]
- Rogliani, P.; Chetta, A.; Cazzola, M.; Calzetta, L. SARS-CoV-2 Neutralizing Antibodies: A Network Meta-Analysis across Vaccines. Vaccines 2021, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Stamatatos, L.; Czartoski, J.; Wan, Y.H.; Homad, L.J.; Rubin, V.; Glantz, H.; Neradilek, M.; Seydoux, E.; Jennewein, M.F.; MacCamy, A.J.; et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021, 372, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Bisgin, A.; Sanlioglu, A.D.; Eksi, Y.E.; Griffith, T.S.; Sanlioglu, S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum. Gene. Ther. 2021, 32, 541–562. [Google Scholar] [CrossRef] [PubMed]
- Aliprantis, A.O.; Shaw, C.A.; Griffin, P.; Farinola, N.; Railkar, R.A.; Cao, X.; Liu, W.; Sachs, J.R.; Swenson, C.J.; Lee, H.; et al. A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adults. Hum. Vaccin. Immunother. 2021, 17, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Piedra, P.A.; Jewell, A.M.; Cron, S.G.; Atmar, R.L.; Glezen, W.P. Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: Establishment of minimum protective threshold levels of serum neutralizing antibodies. Vaccine 2003, 21, 3479–3482. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S.; Mascola, J.R.; Fauci, A.S. Novel Vaccine Technologies: Essential Components of an Adequate Response to Emerging Viral Diseases. JAMA 2018, 319, 1431–1432. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Marc, G.P.; Zareba, A.M.; Falsey, A.R.; Jiang, Q.; Patton, M.; Polack, F.P.; Llapur, C.; Doreski, P.A.; Ilangovan, K.; et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- FDA. INDs for Phase 2 and Phase 3 Studies Chemistry, Manufacturing, and Controls Information; FDA: Silver Spring, MD, USA, 2003. [Google Scholar]
- FDA. Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs); FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-requirements-quality-documentation-concerning-biological-investigational-medicinal-products-clinical-trials-revision-2_en.pdf (accessed on 14 March 2025).
- Li, H.H.; Xu, J.; He, L.; Denny, L.I.; Rustandi, R.R.; Dornadula, G.; Fiorito, B.; Zhang, Z.Q. Development and qualification of cell-based relative potency assay for a human respiratory synctial virus (RSV) mRNA vaccine. J. Pharm. Biomed. Anal. 2023, 234, 115523. [Google Scholar] [CrossRef] [PubMed]
- Crank, M.C.; Ruckwardt, T.; Chen, M.; Morabito, K.M.; Phung, E.; Costner, P.; Holman, L.; Hickman, S.; Berkowitz, N.; Gordon, I.; et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 2019, 365, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Gindy, M.E.; Feuston, B.; Glass, A.; Arrington, L.; Haas, R.M.; Schariter, J.; Stirdivant, S.M. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics. Mol. Pharm. 2014, 11, 4143–4153. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, L.; Tang, A.; Callahan, C.; Pristatsky, P.; Swoyer, R.; Cejas, P.; Nahas, D.; Galli, J.; Cosmi, S.; et al. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein. PLoS ONE 2016, 11, e0156798. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, V.A.; Fischmann, T.O.; Howe, J.A.; Beshore, D.C.; Eddins, M.J.; Hou, Y.; Mayhood, T.; Klein, D.; Nahas, D.D.; Lucas, B.J.; et al. Conserved allosteric inhibitory site on the respiratory syncytial virus and human metapneumovirus RNA-dependent RNA polymerases. Commun. Biol. 2023, 6, 649. [Google Scholar] [CrossRef] [PubMed]
- Gopi, S. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J. Pharm. Biomed. Anal. 2008, 48, 1267–1281. [Google Scholar]
- Shank-Retzlaff, M.; Wang, F.; Morley, T.; Anderson, C.; Hamm, M.; Brown, M.; Rowland, K.; Pancari, G.; Zorman, J.; Lowe, R.; et al. Correlation between mouse potency and in vitro relative potency for human papillomavirus Type 16 virus-like particles and Gardasil vaccine samples. Hum. Vaccines 2005, 1, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, G. Development of functionally relevant potency assays for monovalent and multivalent vaccines delivered by evolving technologies. NPJ Vaccines 2022, 7, 50. [Google Scholar] [CrossRef] [PubMed]
Dose (µg mRNA) | Lot 1 | Lot 2 | Lot 3 | Lot 4 | Lot 5 | Lot 6 |
---|---|---|---|---|---|---|
0.125 | 0 | 0 | 0 | 0 | 0 | 0 |
0.25 | 0 | 0 | 0 | 1 | 0 | 0 |
0.5 | 0 | 0 | 0 | 6 | 4 | 2 |
1 | 1 | 1 | 3 | 9 | 9 | 8 |
2 | 9 | 9 | 9 | 10 | 10 | 10 |
4 | 10 | 10 | 10 | 10 | 10 | 10 |
8 | 10 | 10 | 10 | 10 | 10 | 10 |
12 | 10 | 10 | 10 | 10 | 10 | 10 |
ED50 | 1.41 | 1.41 | 1.23 | 0.47 | 0.58 | 0.71 |
95% CI | (1.10, 1.81) | (1.10, 1.81) | (0.93, 1.63) | (0.34, 0.64) | (0.43, 0.77) | (0.53, 0.94) |
Dose (µg mRNA) | Lot 1 | Lot 2 | Lot 3 | Lot 4 | Lot 5 | Lot 6 |
---|---|---|---|---|---|---|
0.125 | 1 | 1 | 0 | 0 | 0 | 1 |
0.25 | 0 | 0 | 0 | 3 | 2 | 4 |
0.5 | 0 | 4 | 3 | 6 | 9 | 9 |
1 | 8 | 7 | 4 | 10 | 9 | 10 |
2 | 10 | 10 | 9 | 10 | 10 | 10 |
4 | 10 | 10 | 10 | 10 | 10 | 10 |
8 | 10 | 10 | 9 * | 10 | 10 | 10 |
12 | 10 | 10 | 10 | 10 | 10 | 10 |
ED50 | 0.72 | 0.6 | 1.03 | 0.38 | 0.36 | 0.26 |
95% CI | 0.52–0.99 | 0.43–0.83 | 0.71–1.49 | 0.29–0.50 | 0.27–0.48 | 0.20–0.35 |
Test Article | Cell-based Relative Potency (RP, %) | Geometric Mean RP (%) | ln(RP) | Relative Standard Deviation (%) | |||
---|---|---|---|---|---|---|---|
Run 1 | Run 2 | Run 3 | Run 4 | ||||
Lot 1 | 72.5 | 60.7 | 58.8 | 57.1 | 62.0 | 4.13 | 10.8 |
Lot 2 | 87.7 | 71.4 | 94.5 | 96.5 | 86.9 | 4.47 | 13.8 |
Lot 3 | 67.6 | 66.2 | 47.6 | 42.5 | 54.9 | 4.00 | 23.7 |
Lot 4 | 86.1 | 55.9 | 67.1 | 66.3 | 68.0 | 4.22 | 17.9 |
Lot 5 | 104.8 | 116.8 | 97.8 | 96.8 | 103.8 | 4.64 | 8.7 |
Lot 6 | 115.6 | 97.1 | 108.5 | 106.9 | 106.8 | 4.67 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feller, K.; Nawar, H.; Song, L.; Abrams, A.; Shang, L.; Gruber, A.; Yun, T.; Li, H.H. Cell-Based Relative Potency of a Respiratory Syncytial Virus mRNA Vaccine Correlates with In Vivo Immunogenicity. Vaccines 2025, 13, 326. https://doi.org/10.3390/vaccines13030326
Feller K, Nawar H, Song L, Abrams A, Shang L, Gruber A, Yun T, Li HH. Cell-Based Relative Potency of a Respiratory Syncytial Virus mRNA Vaccine Correlates with In Vivo Immunogenicity. Vaccines. 2025; 13(3):326. https://doi.org/10.3390/vaccines13030326
Chicago/Turabian StyleFeller, Katrina, Hesham Nawar, Liping Song, Amanda Abrams, Liang Shang, Ashley Gruber, Tatyana Yun, and Hualin Helen Li. 2025. "Cell-Based Relative Potency of a Respiratory Syncytial Virus mRNA Vaccine Correlates with In Vivo Immunogenicity" Vaccines 13, no. 3: 326. https://doi.org/10.3390/vaccines13030326
APA StyleFeller, K., Nawar, H., Song, L., Abrams, A., Shang, L., Gruber, A., Yun, T., & Li, H. H. (2025). Cell-Based Relative Potency of a Respiratory Syncytial Virus mRNA Vaccine Correlates with In Vivo Immunogenicity. Vaccines, 13(3), 326. https://doi.org/10.3390/vaccines13030326