Recombinant Detoxified Holotoxin as a Potent Candidate Vaccine Against Botulism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Construction of Mutant Expression Plasmids
2.3. Recombinant Expression, Purification, and Characterization of Mutant Proteins
2.4. Determination of Mutant Proteins Toxicity
2.5. Mutant Protein Immunization
2.6. Serum Titration and Antibody Subtype Determination
2.7. Determination of Serum Neutralization Potency
2.8. Efficacy Studies
2.9. Data Statistical Analysis
3. Results
3.1. Purification and Characterization of Mutant Proteins
3.2. LD50 Determination of Mutant Proteins
3.3. Determination of Humoral Immune Response After Immunization with BoNTA/M4 Antigens
3.4. Types of Immune Response Immunized with BoNTA/M4 Antigen
3.5. Evaluation of the Ability to Neutralize BoNTA Toxin of Serum of Mice Immunized with BoNTA/M4 Antigen
3.6. Mouse Potency Bioassays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, A.K.; Sobel, J.; Chatham-Stephens, K.; Luquez, C. Clinical Guidelines for Diagnosis and Treatment of Botulism. MMWR Recomm. Rep. 2021, 70, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Ambroová, H. Botulism—A rare but still present, life-threatening disease. Epidemiol. Mikrobiol. Imunol. 2019, 68, 33–38. [Google Scholar]
- Hill, K.K.; Smith, T.J.; Helma, C.H.; Ticknor, L.O.; Marks, J.D. Genetic diversity among botulinum neurotoxin-producing clostridial strains. J. Bacteriol. 2007, 189, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R.; Mori, M.; Harada, S.; Izu, I.; Hirano, T.; Inoue, Y.; Yahiro, S.; Koyama, H. Emergence of Novel Type C Botulism Strain in Household Outbreak, Japan. Emerg. Infect. Dis. 2023, 29, 2175–2177. [Google Scholar] [CrossRef]
- Giampietro, S.; Michela, M.; Cesare, M. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar]
- Winner, B.M.; Bodt, S.M.L.; Mcnutt, P.M. Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. Int. J. Mol. Sci. 2020, 21, 8715. [Google Scholar] [CrossRef]
- Koriazova, L.K.; Montal, M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat. Struct. Biol. 2003, 10, 13–18. [Google Scholar] [CrossRef]
- Chen, S.; Kim, J.J.P.; Barbieri, J.T. Mechanism of Substrate Recognition by Botulinum Neurotoxin Serotype A. J. Biol. Chem. 2007, 282, 9621–9627. [Google Scholar] [CrossRef]
- Maselli, R.A.; Bakshi, N. Botulism. Muscle Nerve 2000, 23, 1137–1144. [Google Scholar] [CrossRef]
- Sundeen, G.; Barbieri, J.T. Vaccines against Botulism. Toxins 2017, 9, 268. [Google Scholar] [CrossRef]
- Webb, R.P.; Smith, L.A. What next for botulism vaccine development? Expert. Rev. Vaccines 2013, 12, 481–492. [Google Scholar] [CrossRef]
- Byrne, M.P.; Smith, L.A. Development of vaccines for prevention of botulism. Biochimie 2000, 82, 955–966. [Google Scholar] [CrossRef]
- Black, R.E.; Gunn, R.A. Hypersensitivity reactions associated with botulinal antitoxin. Am. J. Med. 1980, 69, 567–570. [Google Scholar] [CrossRef]
- Webb, R.; Wright, P.M.; Brown, J.L.; Skerry, J.C.; Guernieri, R.L.; Smith, T.J.; Stawicki, C.; Smith, L.A. Potency and stability of a trivalent, catalytically inactive vaccine against botulinum neurotoxin serotypes C, E and F (triCEF). Toxicon 2020, 176, 67–76. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Notice of CDC’s discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1454–1455. [Google Scholar]
- Webb, R.P.; Smith, T.J.; Wright, P.; Brown, J.; Smith, L.A. Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009, 27, 4490–4497. [Google Scholar] [CrossRef]
- Brossier, F.; Weber-Levy, M.; Mock, M.; Sirard, J.C. Role of Toxin Functional Domains in Anthrax Pathogenesis. Infect. Immun. 2000, 68, 1781–1786. [Google Scholar] [CrossRef]
- Shone, C.; Agostini, H.; Clancy, J.; Gu, M.; Yang, H.H.; Chu, Y.; Johnson, V.; Taal, M.; McGlashan, J.; Brehm, J.; et al. Bivalent recombinant vaccine for botulinum neurotoxin types A and B based on a polypeptide comprising their effector and translocation domains that is protective against the predominant A and B subtypes. Infect. Immun. 2009, 77, 2795–2801. [Google Scholar] [CrossRef]
- Webb, R.; Smith, T.J.; Smith, L.A.; Wright, P.M.; Guernieri, R.L.; Brown, L.J.; Skerry, C. Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive Clostridium botulinum holoproteins (ciBoNT HPs) as vaccine candidates for the prevention of botulism. Toxins 2017, 9, 269. [Google Scholar] [CrossRef]
- Przedpelski, A.; Tepp, W.H.; Zuverink, M.; Johnson, E.A.; Pellet, S.; Barbieri, J.T. Enhancing toxin-based vaccines against botulism. Vaccine 2018, 36, 827–832. [Google Scholar] [CrossRef]
- Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998, 5, 898–902. [Google Scholar] [CrossRef]
- Schiavo, G.; Rossetto, O.; Santucci, A.; Dasgupta, B.R.; Montecucco, C. Botulinum neurotoxins are zinc proteins. J. Biol. Chem. 1992, 267, 23479–23483. [Google Scholar] [CrossRef]
- Agarwal, R.; Eswaramoorthy, S.; Kumaran, D.; Binz, T.; Swaminathan, S. Structural Analysis of Botulinum Neurotoxin Type E Catalytic Domain and Its Mutant Glu212→Gln Reveals the Pivotal Role of the Glu212 Carboxylate in the Catalytic Pathway. Biochemistry 2004, 43, 6637–6644. [Google Scholar] [CrossRef]
- Li, L.; Binz, T.; Niemann, H.; Singh, B.R. Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 2000, 39, 2399–2405. [Google Scholar] [CrossRef]
- Swaminathan, S.; Eswaramoorthy, S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 2000, 7, 693–699. [Google Scholar] [CrossRef]
- Binz, T.; Bade, S.; Rummel, A.; Kollewe, A.A.; Jürgen, A. Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry 2002, 41, 1717–1723. [Google Scholar] [CrossRef]
- Rossetto, O.; Caccin, P.; Rigoni, M.; Tonello, F.; Bortoletto, N.; Stevens, R.; Montecucco, C. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon 2001, 39, 1151–1159. [Google Scholar] [CrossRef]
- Shi, D.Y.; Chen, B.Y.; Mao, Y.Y.; Zhou, G.; Lu, J.S.; Yu, Y.Z.; Zhou, X.W.; Sun, Z.W. Development and evaluation of candidate subunit vaccine against botulinum neurotoxin serotype B. Hum. Vaccines Immunother. 2019, 15, 3755–3760. [Google Scholar] [CrossRef]
- Pier, C.L.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Barbieri, J.T.; Baldwin, M.R. Recombinant holotoxoid vaccine against botulism. Infect. Immun. 2008, 76, 437–442. [Google Scholar] [CrossRef]
- Smith, L.; Rusnak, J.M. Botulinum neurotoxin vaccines: Past, present and future. Crit. Rev. Immunol. 2007, 27, 303–318. [Google Scholar] [CrossRef]
Primer | Sequence (5′-3′) |
---|---|
E224A-F | CATTAGCACATGCACTTATCCATGCTGGACATCG |
E224A-R | CATGGATAAGTGCATGTGCTAATGTTACTGCTGGATC |
E262A-F | AGCTTTGAGGCACTTCGCACATTTGGGGGAC |
E262A-R | ATGTGCGAAGTGCCTCAAAGCTGACTTCTAACCCAC |
R363AY366F-F | CCTTAACGCAAAAACATTCTTGAATTTTGATAAAGCCGTATTTAAGATC |
R363AY366F-R | CAAAATTCAAGAATGTTTTTGCGTTAAGGACTTTAAAAAACTTAACAAAATTATCC |
H223AH227A-F | CTAAATCATTAGATAAAGGATACGCAAAGGCACTGAACGATTTG |
H223AH227A-R | GCAGCGATAAGTGCAGCTGCTAATGTTACTGCTGGATCTG |
Mutant Protein | Challenge Dosage (ng) | Survial Percent | 1 LD50 (ng) |
---|---|---|---|
BoNTA/M2 | 1000 | 0% | 136.77 |
500 | 0% | ||
200 | 50% | ||
100 | 100% | ||
50 | 100% | ||
BoNTA/M4 | 10,000 | 0% | 5000 |
5000 | 50% | ||
2000 | 100% | ||
1000 | 100% | ||
500 | 100% | ||
BoNTA/M6 | 5000 | 0% | 674 |
2000 | 0% | ||
1000 | 25% | ||
500 | 50% | ||
200 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Cheng, C.; Xiong, G.; Cui, J.; Feng, Y.; Chen, Z.; Lu, Y.; Huang, X.; Yang, Q.; Xin, Q.; et al. Recombinant Detoxified Holotoxin as a Potent Candidate Vaccine Against Botulism. Vaccines 2025, 13, 243. https://doi.org/10.3390/vaccines13030243
Meng Z, Cheng C, Xiong G, Cui J, Feng Y, Chen Z, Lu Y, Huang X, Yang Q, Xin Q, et al. Recombinant Detoxified Holotoxin as a Potent Candidate Vaccine Against Botulism. Vaccines. 2025; 13(3):243. https://doi.org/10.3390/vaccines13030243
Chicago/Turabian StyleMeng, Zhixin, Chunlin Cheng, Guoqing Xiong, Jiazhen Cui, Yuzhong Feng, Zhili Chen, Yuanyuan Lu, Xuan Huang, Qi Yang, Qi Xin, and et al. 2025. "Recombinant Detoxified Holotoxin as a Potent Candidate Vaccine Against Botulism" Vaccines 13, no. 3: 243. https://doi.org/10.3390/vaccines13030243
APA StyleMeng, Z., Cheng, C., Xiong, G., Cui, J., Feng, Y., Chen, Z., Lu, Y., Huang, X., Yang, Q., Xin, Q., & Ge, X. (2025). Recombinant Detoxified Holotoxin as a Potent Candidate Vaccine Against Botulism. Vaccines, 13(3), 243. https://doi.org/10.3390/vaccines13030243