Efficacy of a Self-Vaccination Strategy for Influenza A Virus, Mycoplasma hyopneumoniae, Erysipelothrix rhusiopathiae, and Lawsonia intracellularis in Swine
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Maternal Pheromone (MP) Pilot Study
2.3. Experimental Design of Vaccine Studies
2.4. Vaccines
2.5. Sample Collection
2.6. Serology Methods
2.6.1. Equipment and General Protocol for ELISAs
2.6.2. Influenza A Virus ELISAs
2.6.3. Mycoplasma hyopneumoniae ELISAs
2.6.4. LAW Intracellularis ELISAs
2.6.5. Erysipelothrix rhusiopathiae FMIA
2.7. Statistical Analyses
3. Results
3.1. Pilot Study with MP
3.2. Trial A: Mycoplasma hyopneumoniae
3.3. Trial B: Influenza A Virus
3.4. Trial C: Erysipelothrix rhusiopathiae
3.5. Trial D: Lawsonia intracellularis
4. Discussion
4.1. MHP Vaccine
4.2. IAV-S Vaccine
4.3. ERY Vaccine
4.4. LAW Vaccine
4.5. Limitations and Future Directions
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selke, M.; Meens, J.; Springer, S.; Frank, R.; Gerlach, G.-F. Immunization of Pigs To Prevent Disease in Humans: Construction and Protective Efficacy of a Salmonella Enterica Serovar Typhimurium Live Negative-Marker Vaccine. Infect. Immun. 2007, 75, 2476–2483. [Google Scholar] [CrossRef]
- Boessen, C.; Artz, G.; Schulz, L.; Cook, H. A Baseline Study of Labor Issues and Trends in U.S. Pork Production; National Pork Producers Council: Urbandale, IA, USA, 2018. [Google Scholar]
- Dubman, R. Agricultural Income and Finance Situation and Outlook: 2021 Edition; United States Department of Agriculture (USDA): Washington, DC, USA, 2021. [CrossRef]
- Cardenas, N.C.; Valencio, A.; Sanchez, F.; O’Hara, K.C. Analyzing the Intrastate and Interstate Swine Movement Network in the United States. Prev. Vet. Med. 2024, 230, 106264. [Google Scholar] [CrossRef]
- Chase, C.C.L.; Daniels, C.S.; Garcia, R.; Milward, F.; Nation, T. Needle-Free Injection Technology in Swine: Progress toward Vaccine Efficacy and Pork Quality. J. Swine Health Prod. 2008, 16, 254–261. [Google Scholar] [CrossRef]
- Mitragotri, S. Current Status and Future Prospects of Needle-Free Liquid Jet Injectors. Nat. Rev. Drug Discov. 2006, 5, 543–548. [Google Scholar] [CrossRef]
- Robbins, R.C.; Archer, C.; Giménez-Lirola, L.G.; Mora-Díaz, J.C.; McGlone, J.J. Self-Administration of a Salmonella Vaccine by Domestic Pigs. Sci. Rep. 2023, 13, 2972. [Google Scholar] [CrossRef]
- McGlone, J.J.; Duke, L.; Sanchez, M.; Garcia, A. Self-Administration of a Boar Priming Pheromone Stimulates Puberty in Gilts without Boar Exposure. Animals 2023, 14, 91. [Google Scholar] [CrossRef]
- Thacker, E.L.; Halbur, P.G.; Ross, R.F.; Thanawongnuwech, R.; Thacker, B.J. Mycoplasma Hyopneumoniae Potentiation of Porcine Reproductive and Respiratory Syndrome Virus-Induced Pneumonia. J. Clin. Microbiol. 1999, 37, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, V.; Ahrens, P.; Barfod, K.; Feenstra, A.A.; Feld, N.C.; Friis, N.F.; Bille-Hansen, V.; Jensen, N.E.; Pedersen, M.W. Mycoplasma Hyopneumoniae Infection in Pigs: Duration of the Disease and Evaluation of Four Diagnostic Assays. Vet. Microbiol. 1997, 54, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Mancera Gracia, J.C.; Pearce, D.S.; Masic, A.; Balasch, M. Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies. Front. Vet. Sci. 2020, 7, 647. [Google Scholar] [CrossRef]
- Do Nascimento, G.M.; Bugybayeva, D.; Patil, V.; Schrock, J.; Yadagiri, G.; Renukaradhya, G.J.; Diel, D.G. An Orf-Virus (ORFV)-Based Vector Expressing a Consensus H1 Hemagglutinin Provides Protection against Di-verse Swine Influenza Viruses. Viruses 2023, 15, 994. [Google Scholar] [CrossRef]
- Bender, J.S.; Irwin, C.K.; Shen, H.-G.; Schwartz, K.J.; Opriessnig, T. Erysipelothrix Spp. Genotypes, Serotypes, and Surface Protective Antigen Types Associated with Abattoir Condemnations. J. Vet. Diagn. Investig. 2011, 23, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chang, B.J.; Riley, T.V. Erysipelothrix Rhusiopathiae. Vet. Microbiol. 2010, 140, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Vannucci, F.A.; Gebhart, C.J. Recent Advances in Understanding the Pathogenesis of Lawsonia Intracellularis Infections. Vet. Pathol. 2014, 51, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.B.; Mac-Neil, M.D.; Webster, A.B. (Eds.) Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th ed.; American Dairy Science Association, American Society of Animal Science, Poultry Science Association: Champaign, IL, USA, 2020. [Google Scholar]
- World Health Organization (WHO). WHO Policy Statement: Multi-Dose Vial Policy (MDVP) Revision 2014; Department of Immunization, Vaccines, and Biologicals: Geneva, Switzerland, 2014; Available online: https://www.who.int/publications/i/item/WHO-IVB-14.07 (accessed on 13 November 2024).
- Aviles-Rosa, E.O.; Surowiec, K.; McGlone, J. Identification of Faecal Maternal Semiochemicals in Swine (Sus Scrofa) and Their Effects on Weaned Piglets. Sci. Rep. 2020, 10, 5349. [Google Scholar] [CrossRef] [PubMed]
- Panyasing, Y.; Goodell, C.K.; Giménez-Lirola, L.; Kittawornrat, A.; Wang, C.; Schwartz, K.J.; Zimmerman, J.J. Kinetics of Influenza A Virus Nucleoprotein Antibody (IgM, IgA, and IgG) in Serum and Oral Fluid Specimens from Pigs Infected under Experimental Conditions. Vaccine 2013, 31, 6210–6215. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Lirola, L.G.; Xiao, C.T.; Halbur, P.G.; Opriessnig, T. Development of a Novel Fluorescent Microbead-Based Immunoassay and Comparison with Three Enzyme-Linked Immunoassays for Detection of Anti-Erysipelothrix Spp. IgG Antibodies in Pigs with Known and Unknown Exposure. J. Microbiol. Methods 2012, 91, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Lirola, L.G.; Xiao, C.T.; Halbur, P.G.; Opriessnig, T. Development and Evaluation of an En-zyme-Linked Immunosorbent Assay Based on a Recombinant SpaA Protein (rSpaA415) for Detection of Anti-Erysipelothrix Spp. IgG Antibodies in Pigs. J. Microbiol. Methods 2012, 91, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.-T.; Giménez-Lirola, L.G.; Gerber, P.F.; Jiang, Y.-H.; Halbur, P.G.; Opriessnig, T. Identification and Characterization of Novel Porcine Astroviruses (PAstVs) with High Prevalence and Frequent Co-Infection of Individual Pigs with Multiple PAstV Types. J. Gen. Virol. 2013, 94, 570–582. [Google Scholar] [CrossRef]
- Augustyniak, A.; Pomorska-Mól, M. Vaccination failures in Pigs—The impact of chosen factors on the immunisation efficacy. Vaccines 2023, 11, 230. [Google Scholar] [CrossRef]
- Dumpa, N.; Goel, K.; Guo, Y.; McFall, H.; Pillai, A.R.; Shukla, A.; Repka, M.A.; Murthy, S.N. Stability of Vaccines. AAPS PharmSciTech 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Schmied, J.; Hamilton, K.; Rupa, P.; Oh, S.-Y.; Wilkie, B. Immune Response Phenotype Induced by Controlled Immunization of Neonatal Pigs Varies in Type 1:Type 2 Bias. Vet. Immunol. Immunopathol. 2012, 149, 11–19. [Google Scholar] [CrossRef]
- Betlach, A. Approaches for Mycoplasma Hyopneumoniae Detection, Control, and Molecular Characterization. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2021. Available online: https://www.proquest.com/docview/2590064147/abstract/15592BE335364447PQ/1 (accessed on 13 November 2024).
- Feng, Z.-X.; Wei, Y.-N.; Li, G.-L.; Lu, X.-M.; Wan, X.-F.; Pharr, G.T.; Wang, Z.-W.; Kong, M.; Gan, Y.; Bai, F.-F.; et al. Development and Validation of an Attenuated Mycoplasma Hyopneumoniae Aerosol Vaccine. Vet. Microbiol. 2013, 167, 417–424. [Google Scholar] [CrossRef]
- Seo, S.-U.; Seong, B.-L. Prospects on Repurposing a Live Attenuated Vaccine for the Control of Unrelated Infections. Front. Immunol. 2022, 13, 877845. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lopez, A.; Behnsen, J.; Nuccio, S.-P.; Raffatellu, M. Mucosal Immunity to Pathogenic Intestinal Bacteria. Nat. Rev. Immunol. 2016, 16, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-C.; Wiest, M.J.; Yan, V.; Wong, P.T.; Schotsaert, M. Induction of Protective Immune Responses at Respiratory Mucosal Sites. Hum. Vaccines Immunother. 2024, 20, 2368288. [Google Scholar] [CrossRef] [PubMed]
- Maes, D.; Sibila, M.; Kuhnert, P.; Segalés, J.; Haesebrouck, F.; Pieters, M. Update on Mycoplasma Hyopneumoniae Infections in Pigs: Knowledge Gaps for Improved Disease Control. Transbound. Emerg. Dis. 2018, 65, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.L.; Karasin, A.; Zuckermann, F.; Olsen, C.W. Systemic and Mucosal Immune Responses to H1N1 Influenza Virus Infection in Pigs. Vet. Microbiol. 2000, 74, 117–131. [Google Scholar] [CrossRef]
- Keshavarz, M.; Mirzaei, H.; Salemi, M.; Momeni, F.; Javad Mousavi, M.; Sadeghalvad, M.; Arjeini, Y.; Solay-mani-Mohammadi, F.; Sadri Nahand, J.; Namdari, H.; et al. Influenza Vaccine: Where Are We and Where Do We Go? Med. Virol. 2018, 29, e2014. [Google Scholar] [CrossRef]
- Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Hajra, D.; Datey, A.; Chakravortty, D. Attenuation methods for live vaccines. Methods Mol. Biol. 2020, 2183, 331–356. [Google Scholar] [CrossRef]
- Graaf-Rau, A.; Schmies, K.; Breithaupt, A.; Ciminski, K.; Zimmer, G.; Summerfield, A.; Sehl-Ewert, J.; Lillie-Jaschniski, K.; Helmer, C.; Bielenberg, W.; et al. Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets. NPJ Vaccines 2024, 9, 127. [Google Scholar] [CrossRef]
- Ogra, P.L.; Faden, H.; Welliver, R.C. Vaccination Strategies for Mucosal Immune Responses. Clin. Microbiol. Rev. 2001, 14, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. Secretory IgA: Designed for Anti-Microbial Defense. Front. Immunol. 2013, 4, 222. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.M.C.; Gebhart, C.J. Evidence of Cell-Mediated Immune Response and Specific Local Mucosal Immunoglobulin (Ig) A Production against Lawsonia Intracellularis in Experimentally Infected Swine. Can. J. Vet. Res. 2010, 74, 97–101. [Google Scholar] [PubMed]
- Sattler, K.; Billing, M.; Gimenez-Lirola, L.; Magtoto, R.; Mora-Diaz, J.; Leite, F. Evaluation of the IgA Response to Attenuated-Live Oral Lawsonia Intracellularis Vaccine. In Proceedings of the AASV Annual Meeting, Aurora, CO, USA, 4–7 March 2023; American Association of Swine Veterinarians: Perry, IA, USA, 2023. [Google Scholar] [CrossRef]
- Maltseva, M.; Galipeau, Y.; Renner, T.M.; Deschatelets, L.; Durocher, Y.; Akache, B.; Langlois, M.-A. Characterization of Systemic and Mucosal Humoral Immune Responses to an Adjuvanted Intranasal SARS-CoV-2 Protein Subunit Vaccine Candidate in Mice. Vaccines 2022, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Periwal, S.B.; Larrivee, K.; Zuleger, C.; Erickson, C.A.; Endres, R.L.; Payne, L.G. Serum and Mucosal Immune Responses to an Inactivated Influenza Virus Vaccine Induced by Epidermal Powder Immunization. J. Virol. 2001, 75, 7956–7965. [Google Scholar] [CrossRef] [PubMed]
- Schmader, K.E.; Liu, C.K.; Flannery, B.; Rountree, W.; Auerbach, H.; Barnett, E.D.; Schlaudecker, E.P.; Todd, C.A.; Poniewierski, M.; Staat, M.A.; et al. Immunogenicity of Adjuvanted versus High-Dose Inactivated Influenza Vaccines in Older Adults: A Randomized Clinical Trial. Immun. Ageing 2023, 20, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine Adjuvants: Mechanisms and Platforms. Sig. Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Lee, P.; Choi, H. Non-Invasive vaccines: Challenges in formulation and vaccine adjuvants. Pharmaceutics 2023, 15, 2114. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, A.; Dumka, S.; Saxena, M.K.; Singh, Y.; Kaur, B.P.; Da Silva, S.J.R.; Kumar, S. A comprehensive review of our understanding and challenges of viral vaccines against swine pathogens. Viruses 2024, 16, 833. [Google Scholar] [CrossRef]
- Petro-Turnquist, E.; Pekarek, M.J.; Weaver, E.A. Swine influenza A virus: Challenges and novel vaccine strategies. Front. Cell Infect. Microbiol. 2024, 14, 1336013. [Google Scholar] [CrossRef]
- Wu, L.; Xu, W.; Jiang, H.; Yang, M.; Cun, D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm. Sin. B 2024, 14, 5132–5160. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, E.C.; Ward, R.W. Mucosal Vaccines—Fortifying the Frontiers. Nat. Rev. Immunol. 2022, 22, 236–250. [Google Scholar] [CrossRef]
Trial | Vaccines | N | Sampling 1 Days Post-Vaccination |
---|---|---|---|
A | MHP | 36 | −7, 21, 28, 45 |
B | IAV | 36 | −7, 21, 28, 45 |
C | ERY | 36 | 0, 21, 28, 42, 49 |
D | LAW | 36 | 0, 21, 28, 42, 49 |
Treatment Groups | p-Value | |||||
---|---|---|---|---|---|---|
Measure | Control | Hand-Vaccinated | Self-Vaccinated | Time | Treatment c | Treatment ∗ Time |
Serum | ||||||
Day −7, IgG | 0.012 ± 0.003 a | 0.032 ± 0.004 a | 0.019 ± 0.034 a | 0.206 | <0.0001 | <0.0001 |
Day 21, IgG | 0.024 ± 0.004 a | 0.229 ± 0.022 b | 0.030 ± 0.005 a | |||
Day 28, IgG | 0.026 ± 0.004 a | 0.211 ± 0.020 b | 0.036 ± 0.006 a | |||
Day 45, IgG | 0.026 ± 0.003 a | 0.175 ± 0.016 b | 0.034 ± 0.005 a | |||
Oral Fluids | ||||||
Day −7, IgG | 0.083 ± 0.005 a | 0.007 ± 0.008 a | 0.081 ± 0.006 a | <0.0001 | <0.0001 | <0.0001 |
Day 21, IgG | 0.009 ± 0.008 a | 0.446 ± 0.050 b | 0.097 ± 0.008 a | |||
Day 28, IgG | 0.069 ± 0.006 a | 0.214 ± 0.024 b | 0.090 ± 0.009 a | |||
Day 45, IgG | 0.106 ± 0.046 a | 0.257 ± 0.044 b | 0.106 ± 0.008 a |
Treatments | p-Value | |||||
---|---|---|---|---|---|---|
Measure | Control | Hand-Vaccinated | Self-Vaccinated | Treatment | Time | Treatment ∗ Time |
Serum | ||||||
Day −7, IgA | 0.153 ± 0.035 a | 0.083 ± 0.021 a | 0.225 ± 0.033 b | 0.200 | 0.001 | 0.009 |
Day 21, IgA | 0.058 ± 0.029 a | 0.139 ± 0.035 b | 0.140 ± 0.038 b | |||
Day 28, IgA | 0.086 ± 0.025 a | 0.202 ± 0.037 b | 0.108 ± 0.002 a | |||
Day 45, IgA | 0.035 ± 0.042 a | 0.107 ± 0.034 a | 0.025 ± 0.028 a | |||
Day −7, TAB | 0.905 ± 0.023 a | 0.865 ± 0.046 a | 0.937 ± 0.027 a | <0.0001 | <0.0001 | <0.0001 |
Day 21, TAB | 0.835 ± 0.030 a | 0.761 ± 0.021 a | 0.793 ± 0.035 a | |||
Day 28, TAB | 0.851 ± 0.025 a | 0.395 ± 0.035 b | 0.915 ± 0.488 a | |||
Day 45, TAB | 0.916 ± 0.015 a | 0.499 ± 0.026 b | 0.882 ± 0.029 a | |||
Oral Fluids | ||||||
Day −7, IgA | 0.339 ± 0.094 | 0.097 ± 0.028 | 0.226 ± 0.054 | 0.543 | 0.139 | 0.056 |
Day 21, IgA | 0.082 ± 0.048 | 0.159 ± 0.041 | 0.120 ± 0.045 | |||
Day 28, IgA | 0.100 ± 0.055 | 0.253 ± 0.043 | 0.266 ± 0.097 | |||
Day 45, IgA | 0.093 ± 0.028 | 0.246 ± 0.042 | 0.261 ± 0.135 |
Treatment | p-Value | |||||
---|---|---|---|---|---|---|
Measure | Control | Hand-Vaccinated | Self-Vaccinated | Time | Treatment | TIME ∗ Treatment |
Serum | ||||||
Day 0, IgG | 0.075 ± 0.014 a | 0.065 ± 0.016 a | 0.061 ± 0.020 a | <0.0001 | <0.0001 | <0.0001 |
Day 21, IgG | 0.004 ± 0.006 a | 0.578 ± 0.040 b | 0.684 ± 0.021 b | |||
Day 28, IgG | 0.037 ± 0.007 a | 0.573 ± 0.040 b | 0.709 ± 0.018 b | |||
Day 42, IgG | 0.041 ± 0.006 a | 0.544 ± 0.043 b | 0.655 ± 0.021 b | |||
Day 49, IgG | 0.039 ± 0.006 a | 0.542 ± 0.044 b | 0.709 ± 0.023 c | |||
Oral Fluids | ||||||
Day 0, IgG | 0.015 ± 0.003 a | 0.023 ± 0.009 a | 0.015 ± 0.003 a | <0.0001 | <0.0001 | <0.0001 |
Day 21, IgG | 0.008 ± 0.001 a | 0.324 ± 0.044 b | 0.625 ± 0.071 c | |||
Day 28, IgG | 0.013 ± 0.002 a | 0.496 ± 0.065 b | 0.474 ± 0.064 b | |||
Day 42, IgG | 0.014 ± 0.003 a | 0.457 ± 0.057 b | 0.518 ± 0.047 b | |||
Day 49, IgG | 0.022 ± 0.004 a | 0.422 ± 0.066 b | 0.556 ± 0.045 b |
Treatments | p-Value | |||||
---|---|---|---|---|---|---|
Measure | Control | Hand-Vaccinated | Self-Vaccinated | Treatment | Time | Treatment ∗ Time |
Serum | ||||||
Day 0, IgA | 1.404 ± 0.217 | 1.185 ± 0.208 | 1.178 ± 0.284 | 0.867 | <0.0001 | 0.816 |
Day 21, IgA | 0.580 ± 0.102 | 0.539 ± 0.082 | 0.518 ± 0.124 | |||
Day 28, IgA | 0.440 ± 0.093 | 0.503 ± 0.086 | 0.471 ± 0.121 | |||
Day 42, IgA | 0.475 ± 0.474 | 0.393 ± 0.047 | 0.440 ± 0.090 | |||
Day 49, IgA | 0.436 ± 0.436 | 0.286 ± 0.035 | 0.344 ± 0.064 | |||
Day 0, TAB | 72.224 ± 11.774 | 65.146 ± 16.528 | 63.012 ± 17.081 | 0.178 | <0.0001 | 0.308 |
Day 21, TAB | 59.570 ± 11.125 | 50.118 ± 15.932 | 53.115 ± 15.371 | |||
Day 28, TAB | 57.570 ± 11.784 | 47.637 ± 14.429 | 50.335 ± 16.108 | |||
Day 42, TAB | 55.303 ± 10.935 | 43.602 ± 12.183 | 49.015 ± 15.477 | |||
Day 49, TAB | 53.884 ± 12.228 | 40.632 ± 13.846 | 45.778 ± 15.573 | |||
Oral Fluids | ||||||
Day 0, IgA | 0.684 ± 0.119 a | 0.540 ± 0.083 a | 0.516 ± 0.105 a | 0.138 | 0.911 | 0.023 |
Day 21, IgA | 0.326 ± 0.067 a | 0.623 ± 0.144 a,b | 0.823 ± 0.139 b | |||
Day 28, IgA | 0.336 ± 0.044 a | 0.730 ± 0.156 b | 0.898 ± 0.150 b | |||
Day 42, IgA | 0.482 ± 0.061 a | 0.680 ± 0.098 a | 0.617 ± 0.120 a | |||
Day 49, IgA | 0.612 ± 0.145 a | 0.637 ± 0.105 a | 0.522 ± 118 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spetic da Selva, L.C.; Robbins, R.; Archer, C.; Henderson, M.; Seate, J.; Giménez-Lirola, L.G.; Magtoto, R.; Garcia, A.; Martinez Aguiriano, A.J.; Julianna Salinas, E.; et al. Efficacy of a Self-Vaccination Strategy for Influenza A Virus, Mycoplasma hyopneumoniae, Erysipelothrix rhusiopathiae, and Lawsonia intracellularis in Swine. Vaccines 2025, 13, 229. https://doi.org/10.3390/vaccines13030229
Spetic da Selva LC, Robbins R, Archer C, Henderson M, Seate J, Giménez-Lirola LG, Magtoto R, Garcia A, Martinez Aguiriano AJ, Julianna Salinas E, et al. Efficacy of a Self-Vaccination Strategy for Influenza A Virus, Mycoplasma hyopneumoniae, Erysipelothrix rhusiopathiae, and Lawsonia intracellularis in Swine. Vaccines. 2025; 13(3):229. https://doi.org/10.3390/vaccines13030229
Chicago/Turabian StyleSpetic da Selva, Lucas Caua, Rebecca Robbins, Courtney Archer, Madelyn Henderson, Jessica Seate, Luis G. Giménez-Lirola, Ronaldo Magtoto, Arlene Garcia, Allen Jimena Martinez Aguiriano, Emerald Julianna Salinas, and et al. 2025. "Efficacy of a Self-Vaccination Strategy for Influenza A Virus, Mycoplasma hyopneumoniae, Erysipelothrix rhusiopathiae, and Lawsonia intracellularis in Swine" Vaccines 13, no. 3: 229. https://doi.org/10.3390/vaccines13030229
APA StyleSpetic da Selva, L. C., Robbins, R., Archer, C., Henderson, M., Seate, J., Giménez-Lirola, L. G., Magtoto, R., Garcia, A., Martinez Aguiriano, A. J., Julianna Salinas, E., & McGlone, J. J. (2025). Efficacy of a Self-Vaccination Strategy for Influenza A Virus, Mycoplasma hyopneumoniae, Erysipelothrix rhusiopathiae, and Lawsonia intracellularis in Swine. Vaccines, 13(3), 229. https://doi.org/10.3390/vaccines13030229