Peptide Vaccines for Pediatric High-Grade Glioma and Diffuse Midline Glioma: Current Progress and Future Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Sources
2.2. Search Terms and Keywords
2.3. Eligibility Criteria and Study Selection
3. Mechanisms of Peptide-Based Cancer Immunotherapy
3.1. Montanide ISA-51 + Poly-ICLC
3.2. Montanide ISA-51 + TMZ/Td Preconditioning
3.3. Antigen Selection: TAAs vs. TSAs and Rationale for Multi-Antigen Targeting
3.4. Clinical Evidence
3.4.1. Shared TAA Short-Peptide + Montanide ISA51 + Poly-ICLC
| Trial (First Author, Year) | ID | N | Tumor Type(s) | Patient Population | Key Immunogenicity Findings | Key Clinical Outcomes (PFS/OS) |
|---|---|---|---|---|---|---|
| Pollack et al., 2014 [16] | NCT01130077 | 26 | HGG, brainstem glioma (BSG) | Newly diagnosed | Showed evidence of immunological activity | Evidence of clinical activity; some patients had sustained stable disease |
| Pollack et al., 2016 [17] | NCT01130077 | 12 | HGG | Recurrent | Immune response in 90% of evaluable patients | Median PFS 4.1 months, OS 12.9 months; one partial response for >39 months |
| Thompson et al., 2025 [24] | NCT03299309 | 42 | HGG, medulloblastoma | Recurrent | Successfully induced a significant increase in pp65-reactive T- cells | Median PFS 2.5 months, OS 6.4 months; 12-month OS 26.6% |
| Mueller et al., 2020 [15] | NCT02960230 | 19 | Diffuse midline glioma | Newly diagnosed | H3.3K27M-specific CD8T-cell expansion was detected | Responders had a median OS of 16.1 months vs. 9.8 months for non-responders |
3.4.2. Neoantigen Short-Peptide + Montanide + Poly-ICLC
3.4.3. HLA-Agnostic SLP + Montanide with TMZ/Td Preconditioning (PEP-CMV)
4. Response Assessment and Immune Analysis
4.1. Response Assessment and Imaging Pitfalls
4.2. Immune Biomarkers and Mechanistic Correlates
5. Future Directions
| Trial ID | Phase | Name/Target | Patient Population | Primary Intervention |
|---|---|---|---|---|
| NCT05096481 [46] | II | CONNECT 1906 (PEP-CMV) | Newly diagnosed DMG/HGG, recurrent medulloblastoma | CMV pp65 SLP |
| NCT06639607 [36] | I/II | PRiME II (PEP-CMV) | Newly diagnosed DMG/HGG | CMV pp65 SLP + nivolumab |
| NCT05096481 [47] | I | Intercept H3 | H3K27M+ DMG/HGG | H3.3K27M vaccine + nivolumab |
| NCT06342908 [23] | I | Neoantigen- targeted ppDC | H3 G34 mutant glioma | Personalized neoantigen |
| NCT04943848 [35] | I | DIPGVax | DIPG/DMG | H3.3K27M peptide + checkpoint |
| NCT04749641 [48] | I | H3.3-K27M | HGG/DMG | IDH1 peptide (Survivin/poly-ICLC) |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, Q.T.; de Blank, P.M.; Kruchko, C.; Petersen, C.M.; Liao, P.; Finlay, J.L.; Stearns, D.S.; Wolff, J.E.; Wolinsky, Y.; Letterio, J.J.; et al. Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro. Oncol. 2015, 16, x1–x36. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO classification of tumors of the Central Nervous System: A summary. Neuro. Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Jones, C.; Karajannis, M.A.; Jones, D.T.W.; Kieran, M.W.; Monje, M.; Baker, S.J.; Becher, O.J.; Cho, Y.-J.; Gupta, N.; Hawkins, C.; et al. Pediatric high-grade glioma: Biologically and clinically in need of new thinking. Neuro. Oncol. 2017, 19, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Di Ruscio, V.; Del Baldo, G.; Fabozzi, F.; Vinci, M.; Cacchione, A.; de Billy, E.; Megaro, G.; Carai, A.; Mastronuzzi, A. Pediatric diffuse Midline gliomas: An unfinished puzzle. Diagnostics 2022, 12, 2064. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.; Stoller, S.; Grotzer, M.; Stucklin, A.G.; Nazarian, J.; Mueller, S. Pediatric hemispheric high-grade glioma: Targeting the future. Cancer Metastasis Rev. 2020, 39, 245–260. [Google Scholar] [CrossRef]
- Jennings, M.T.; Freeman, M.L.; Murray, M.J. Strategies in the treatment of diffuse pontine gliomas: The therapeutic role of hyperfractionated radiotherapy and chemotherapy. J. Neurooncol. 1996, 28, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Low, K.L.; Kohanbash, G.; McDonald, H.A.; Hamilton, R.L.; Pollack, I.F. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J. Neurooncol. 2008, 88, 245–250. [Google Scholar] [CrossRef]
- Verschuur, A.C.; Grill, J.; Lelouch-Tubiana, A.; Couanet, D.; Kalifa, C.; Vassal, G. Temozolomide in paediatric high-grade glioma: A key for combination therapy? Br. J. Cancer 2004, 91, 425–429. [Google Scholar] [CrossRef][Green Version]
- Kline, C.; Felton, E.; Allen, I.E.; Tahir, P.; Mueller, S. Survival outcomes in pediatric recurrent high-grade glioma: Results of a 20-year systematic review and meta-analysis. J. Neurooncol. 2018, 137, 103–110. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Q.; Li, K.; Yin, H.; Zheng, J.-N. Composite peptide-based vaccines for cancer immunotherapy (Review). Int. J. Mol. Med. 2015, 35, 17–23. [Google Scholar] [CrossRef]
- Abd-Aziz, N.; Poh, C.L. Development of peptide-based vaccines for cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef]
- Nurieva, R.; Thomas, S.; Nguyen, T.; Martin-Orozco, N.; Wang, Y.; Kaja, M.-K.; Yu, X.-Z.; Dong, C. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 2006, 25, 2623–2633. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Batich, K.A.; Gunn, M.D.; Huang, M.-N.; Sanchez-Perez, L.; Nair, S.K.; Congdon, K.L.; Reap, E.A.; Archer, G.E.; Desjardins, A.; et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015, 519, 366–369. [Google Scholar] [CrossRef]
- Sanchez-Perez, L.A.; Choi, B.D.; Archer, G.E.; Cui, X.; Flores, C.; Johnson, L.A.; Schmittling, R.J.; Snyder, D.; Herndon, J.E., 2nd; Bigner, D.D.; et al. Myeloablative temozolomide enhances CD8+ T-cell responses to vaccine and is required for efficacy against brain tumors in mice. PLoS ONE 2013, 8, e59082. [Google Scholar] [CrossRef]
- Mueller, S.; Taitt, J.M.; Villanueva-Meyer, J.E.; Bonner, E.R.; Nejo, T.; Lulla, R.R.; Goldman, S.; Banerjee, A.; Chi, S.N.; Whipple, N.S.; et al. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. J. Clin. Investig. 2020, 130, 6325–6337. [Google Scholar] [CrossRef]
- Pollack, I.F.; Jakacki, R.I.; Butterfield, L.H.; Hamilton, R.L.; Panigrahy, A.; Potter, D.M.; Connelly, A.K.; Dibridge, S.A.; Whiteside, T.L.; Okada, H. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J. Clin. Oncol. 2014, 32, 2050–2058. [Google Scholar]
- Pollack, I.F.; Jakacki, R.I.; Butterfield, L.H.; Hamilton, R.L.; Panigrahy, A.; Normolle, D.P.; Connelly, A.K.; Dibridge, S.; Mason, G.; Whiteside, T.L.; et al. Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: Results of a pilot study. J. Neurooncol. 2016, 130, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ju, D.; Wang, Q.; Zhang, M.; Xia, D.; Zhang, L.; Yu, H.; Cao, X. Dexamethasone inhibits the antigen presentation of dendritic cells in MHC class II pathway. Immunol. Lett. 2001, 76, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Matasić, R.; Dietz, A.B.; Vuk-Pavlović, S. Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells. J. Leukoc. Biol. 1999, 66, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Giles, A.J.; Hutchinson, M.-K.N.D.; Sonnemann, H.M.; Jung, J.; Fecci, P.E.; Ratnam, N.M.; Zhang, W.; Song, H.; Bailey, R.; Davis, D.; et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy. J. Immunother. Cancer 2018, 6, 51. [Google Scholar] [CrossRef]
- Salahlou, R.; Farajnia, S.; Alizadeh, E.; Dastmalchi, S. Recent developments in peptide vaccines against Glioblastoma, a review and update. Mol. Brain 2025, 18, 50. [Google Scholar] [CrossRef]
- Segura-Collar, B.; Hiller-Vallina, S.; de Dios, O.; Caamaño-Moreno, M.; Mondejar-Ruescas, L.; Sepulveda-Sanchez, J.M.; Gargini, R. Advanced immunotherapies for glioblastoma: Tumor neoantigen vaccines in combination with immunomodulators. Acta Neuropathol. Commun. 2023, 11, 79. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Vaccine (Neoantigen-Targeted ppDC) for the Treatment of H3 G34-mutant Diffuse Hemispheric Glioma. Available online: https://clinicaltrials.gov/study/NCT06342908 (accessed on 23 September 2025).
- Thompson, E.M.; Ashley, D.M.; Ayasoufi, K.; Norberg, P.; Archer, G.; Buckley, E.D.; Herndon, J.E., 2nd; Walter, A.; Archambault, B.; Flahiff, C.; et al. A peptide vaccine targeting the CMV antigen pp65 in children and young adults with recurrent high-grade glioma and medulloblastoma: A phase 1 trial. Nat. Cancer 2025, 6, 1559–1569. [Google Scholar] [CrossRef]
- Hogquist, K.A.; Baldwin, T.A.; Jameson, S.C. Central tolerance: Learning self-control in the thymus. Nat. Rev. Immunol. 2005, 5, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Johanns, T.M.; Garfinkle, E.A.R.; Miller, K.E.; Livingstone, A.J.; Roberts, K.F.; Rao Venkata, L.P.; Dowling, J.L.; Chicoine, M.R.; Dacey, R.G.; Zipfel, G.J.; et al. Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma. Clin. Cancer Res. 2024, 30, 2729–2742. [Google Scholar] [CrossRef]
- Maldonado, M.D.M.; Gracia-Hernandez, M.; Le, L.H.; Iida, M.; Gulley, J.L.; Donahue, R.N.; Palena, C.; Schlom, J.; Hamilton, D.H. Combination of a therapeutic cancer vaccine targeting the endogenous retroviral envelope protein ERVMER34-1 with immune-oncology agents facilitates expansion of neoepitope-specific T cells and promotes tumor control. J. Immunother. Cancer 2025, 13, e011378. [Google Scholar] [CrossRef]
- Pollack, I.F.; Jakacki, R.I.; Butterfield, L.H.; Hamilton, R.L.; Panigrahy, A.; Normolle, D.P.; Connelly, A.K.; Dibridge, S.; Mason, G.; Whiteside, T.L.; et al. Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro. Oncol. 2016, 18, 1157–1168. [Google Scholar] [CrossRef]
- Furtado, A.D.; Ceschin, R.; Blüml, S.; Mason, G.; Jakacki, R.I.; Okada, H.; Pollack, I.F.; Panigrahy, A. Neuroimaging of peptide-based vaccine therapy in pediatric brain tumors. Neuroimaging Clin. N. Am. 2017, 27, 155–166. [Google Scholar] [CrossRef]
- Ceschin, R.; Kurland, B.F.; Abberbock, S.R.; Ellingson, B.M.; Okada, H.; Jakacki, R.I.; Pollack, I.F.; Panigrahy, A. Parametric response mapping of apparent diffusion coefficient as an imaging biomarker to distinguish pseudoprogression from true tumor progression in peptide-based vaccine therapy for pediatric diffuse intrinsic pontine glioma. AJNR Am. J. Neuroradiol. 2015, 36, 2170–2176. [Google Scholar] [CrossRef]
- Panigrahy, A.; Jakacki, R.I.; Pollack, I.F.; Ceschin, R.; Okada, H.; Nelson, M.D.; Kohanbash, G.; Dhall, G.; Bluml, S. Magnetic resonance spectroscopy metabolites as biomarkers of disease status in pediatric diffuse intrinsic pontine gliomas (DIPG) treated with glioma-associated antigen peptide vaccines. Cancers 2022, 14, 5995. [Google Scholar] [CrossRef]
- de Jonge, K.; Ebering, A.; Nassiri, S.; Maby-El Hajjami, H.; Ouertatani-Sakouhi, H.; Baumgaertner, P.; Speiser, D.E. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci. Rep. 2019, 9, 4487. [Google Scholar] [CrossRef]
- Messiaen, J.; Jacobs, S.A.; De Smet, F. The tumor micro-environment in pediatric glioma: Friend or foe? Front. Immunol. 2023, 14, 1227126. [Google Scholar] [CrossRef]
- Blethen, K.E.; Sprowls, S.A.; Arsiwala, T.A.; Wolford, C.P.; Panchal, D.M.; Fladeland, R.A.; Glass, M.J.; Dykstra, L.P.; Kielkowski, B.N.; Blackburn, J.R.; et al. Effects of whole-brain radiation therapy on the blood-brain barrier in immunocompetent and immunocompromised mouse models. Radiat. Oncol. 2023, 18, 22. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. rHSC-DIPGVax Plus Checkpoint Blockade for the Treatment of Newly Diagnosed DIPG and DMG. Available online: https://clinicaltrials.gov/study/NCT04943848 (accessed on 23 September 2025).
- ClinicalTrials.gov. PEP-CMV Plus Nivolumab for Newly Diagnosed Diffuse Midline Glioma/High-Grade Glioma and Recurrent Diffuse Midline Glioma/High-Grade Glioma, Medulloblastoma, and Ependymoma (NCT06639607). Available online: https://clinicaltrials.gov/study/NCT06639607 (accessed on 23 September 2025).
- Weant, M.P.; Jesús, C.M.-D.; Yerram, P. Immunotherapy in gliomas. Semin. Oncol. Nurs. 2018, 34, 501–512. [Google Scholar] [CrossRef]
- Miguel Llordes, G.; Medina Pérez, V.M.; Curto Simón, B.; Castells-Yus, I.; Vázquez Sufuentes, S.; Schuhmacher, A.J. Epidemiology, diagnostic strategies, and therapeutic advances in diffuse Midline glioma. J. Clin. Med. 2023, 12, 5261. [Google Scholar] [CrossRef]
- Yao, L.; Hatami, M.; Ma, W.; Skutella, T. Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol. Med. 2024, 30, 965–981. [Google Scholar] [CrossRef]
- Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanović, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019, 565, 240–245. [Google Scholar] [CrossRef]
- Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019, 565, 234–239. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Pembrolizumab in Association with the IMA950/Poly-ICLC for Relapsing Glioblastoma (IMA950-106). Available online: https://www.clinicaltrials.gov/study/NCT03665545 (accessed on 20 November 2025).
- Dutoit, V.; Marinari, E.; Egervari, K.; Merkler, D.; Schaller, K.; Dietrich, P.-Y.; Migliorini, D. CTIM-27. Pembrolizumab in Combination with the Multipeptide Vaccine IMA950 Adjuvanted with Poly-Iclc for Relapsing Glioblastoma: A Randomized Phase I/Ii Trial (IMA950-106). Neuro-Oncol. 2025, 27, v120–v121. [Google Scholar] [CrossRef]
- Platten, M.; Bunse, L.; Wick, A.; Bunse, T.; Le Cornet, L.; Harting, I.; Sahm, F.; Sanghvi, K.; Tan, C.L.; Poschke, I.; et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021, 592, 463–468. [Google Scholar] [CrossRef]
- Magoola, M.; Niazi, S.K. Current progress and future perspectives of RNA-based cancer vaccines: A 2025 update. Cancers 2025, 17, 1882. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. PEP-CMV Vaccine Targeting CMV Antigen to Treat Newly Diagnosed Pediatric HGG and DIPG and Recurrent Medulloblastoma. 2025. Available online: https://www.clinicaltrials.gov/study/NCT05096481 (accessed on 20 November 2025).
- ClinicalTrials.Gov. A MultIceNTER Phase I Peptide VaCcine Trial for the Treatment of H3-Mutated Gliomas (INTERCEPT-H3). Available online: https://clinicaltrials.gov/study/NCT04808245 (accessed on 20 November 2025).
- ClinicalTrials.Gov. Neoantigen Vaccine Therapy Against H3.3-K27M Diffuse Intrinsic Pontine Glioma (ENACTING). Available online: https://clinicaltrials.gov/study/NCT04749641 (accessed on 23 September 2025).

| Antigen Class | Key Target(s) | Description | Immunogenicity Challenges |
|---|---|---|---|
| Shared neoantigen (TSA) | H3.3K27M (pathognomonic for DMG/DIPG) [15,21,22]. H3 G34-mutant (targeted in new Trials [23]. | These arise from tumor-specific mutational burden; not expressed in normal tissue. | Low mutational burden in DMG requires precise molecular screening to confirm target presence. |
| Tumor- associated antigens (TAAs) | EphA2, IL-13Rα2, Survivin (frequently co-expressed in pediatric gliomas) [16,17,21]. | These are overexpressed by tumor cells but are also present (in low levels) in healthy tissue. | Risk of immune tolerance (“self-antigen”) requires potent adjuvants. |
| Viral Antigen | CMV pp65 (widely expressed on most HGG and medulloblastoma tumors) [24] | These are viral proteins frequently expressed by a large fraction of tumor cells in HGG/DIPG/ medulloblastoma. | Novel and tests the concept of viral immunogenicity being leveraged against tumor. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mebrahtu, A.K.; Jain, V.; Moelker, E.M.; Hoyt-Miggelbrink, A.M.; Ayasoufi, K.; Thompson, E.M. Peptide Vaccines for Pediatric High-Grade Glioma and Diffuse Midline Glioma: Current Progress and Future Perspectives. Vaccines 2025, 13, 1215. https://doi.org/10.3390/vaccines13121215
Mebrahtu AK, Jain V, Moelker EM, Hoyt-Miggelbrink AM, Ayasoufi K, Thompson EM. Peptide Vaccines for Pediatric High-Grade Glioma and Diffuse Midline Glioma: Current Progress and Future Perspectives. Vaccines. 2025; 13(12):1215. https://doi.org/10.3390/vaccines13121215
Chicago/Turabian StyleMebrahtu, Aron K., Vatsal Jain, Eliese M. Moelker, Alexandra M. Hoyt-Miggelbrink, Katayoun Ayasoufi, and Eric M. Thompson. 2025. "Peptide Vaccines for Pediatric High-Grade Glioma and Diffuse Midline Glioma: Current Progress and Future Perspectives" Vaccines 13, no. 12: 1215. https://doi.org/10.3390/vaccines13121215
APA StyleMebrahtu, A. K., Jain, V., Moelker, E. M., Hoyt-Miggelbrink, A. M., Ayasoufi, K., & Thompson, E. M. (2025). Peptide Vaccines for Pediatric High-Grade Glioma and Diffuse Midline Glioma: Current Progress and Future Perspectives. Vaccines, 13(12), 1215. https://doi.org/10.3390/vaccines13121215

