Genomic Analysis of Glycosyltransferases Responsible for Galactose-α-1,3-Galactose Epitopes in Streptococcus pneumoniae: Implications for Broadly Protective Vaccination Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Immunization
2.3. α3GalT1 Gene Sequences and tBLASTN-Based Homology Screening
2.4. Monoclonal Antibodies
2.5. Detection of αGal Antigen of PPV23 by ELISA
2.6. Competitive ELISA with Galα1-3Gal Disaccharide
2.7. Quantification of the αGal Epitope of PPV23 Using BSA-αGal as Standard
2.8. Detection of Anti-Gal and Anti-PPS Antibodies in Mouse Serum
2.9. Statistical Analysis
3. Result
3.1. S. pneumoniae Expresses Similar Sequences to α3GalT1
3.2. Binding of PPV23 to Anti-Gal Antibodies and Inhibition of Binding by Galα1-3Gal Disaccharide
3.3. Quantification of αGal Epitopes in PPV23
3.4. The PPV23 Immunization Induces Anti-Gal IgG Antibody Production in α3GalT1 Knockout Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CPS | capsular polysaccharides |
| PPV | pneumococcal polysaccharide vaccine |
| PPV23 | 23-valent pneumococcal polysaccharide vaccine |
| IPD | invasive pneumococcal disease |
| α3GalT1 | α1,3-galactosyltransferase |
| αGal | galactose-α-1,3-galactose |
| Anti-Gal | anti-galactose-α-1,3-galactose |
| GT8 | glycosyltransferase family 8 |
| 4PL | four-parameter logistic |
References
- Catterall, J.R. Streptococcus Pneumoniae. Thorax 1999, 54, 929–937. [Google Scholar] [CrossRef]
- Bogaert, D.; De Groot, R.; Hermans, P.W.M. Streptococcus Pneumoniae Colonisation: The Key to Pneumococcal Disease. Lancet Infect. Dis. 2004, 4, 144–154. [Google Scholar] [CrossRef]
- Kadioglu, A.; Weiser, J.N.; Paton, J.C.; Andrew, P.W. The Role of Streptococcus Pneumoniae Virulence Factors in Host Respiratory Colonization and Disease. Nat. Rev. Microb. 2008, 6, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, F.; Saad, J.S.; McGee, L.; Van Tonder, A.J.; Bentley, S.D.; Lo, S.W.; Gladstone, R.A.; Turner, P.; Keenan, J.D.; Breiman, R.F.; et al. A New Pneumococcal Capsule Type, 10D, Is the 100th Serotype and Has a Large Cps Fragment from an Oral Streptococcus. mBio 2020, 11, e00937-20. [Google Scholar] [CrossRef]
- Masomian, M.; Ahmad, Z.; Gew, L.T.; Poh, C.L. Development of Next Generation Streptococcus Pneumoniae Vaccines Conferring Broad Protection. Vaccines 2020, 8, 132. [Google Scholar] [CrossRef]
- Hausdorff, W.P.; Siber, G.; Paradiso, P.R. Geographical Differences in Invasive Pneumococcal Disease Rates and Serotype Frequency in Young Children. Lancet 2001, 357, 950–952. [Google Scholar] [CrossRef]
- Micoli, F.; Romano, M.R.; Carboni, F.; Adamo, R.; Berti, F. Strengths and Weaknesses of Pneumococcal Conjugate Vaccines. Glycoconj. J. 2023, 40, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, B.; Chen, Q.; Wang, C.; Wang, B.; Ye, Q.; Xu, Y. Pneumococcal Vaccines in China. Hum. Vaccine Immunother. 2025, 21, 2460274. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Leidner, A.J.; Gierke, R.; Farrar, J.L.; Morgan, R.L.; Campos-Outcalt, D.; Schechter, R.; Poehling, K.A.; Long, S.S.; Loehr, J.; et al. Use of 21-Valent Pneumococcal Conjugate Vaccine Among, U.S. Adults: Recommendations of the Advisory Committee on Immunization Practices–United States, 2024. MMWR. Morb. Mortal. Wkly. Rep. 2024, 73, 793–798. [Google Scholar] [CrossRef]
- Leggat, D.J.; Thompson, R.S.; Khaskhely, N.M.; Iyer, A.S.; Westerink, M.A.J. The Immune Response to Pneumococcal Polysaccharides 14 and 23F among Elderly Individuals Consists Predominantly of Switched Memory B Cells. J. Infect. Dis. 2013, 208, 101–108. [Google Scholar] [CrossRef]
- Whitney, C.G.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Bennett, N.M.; Lynfield, R.; Reingold, A.; Cieslak, P.R.; Pilishvili, T.; Jackson, D.; et al. Decline in Invasive Pneumococcal Disease after the Introduction of Protein-Polysaccharide Conjugate Vaccine. N. Engl. J. Med. 2003, 348, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Cadeddu, C.; De Waure, C.; Gualano, M.R.; Di Nardo, F.; Ricciardi, W. 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) for the Prevention of Invasive Pneumococcal Diseases (IPDs) in the Elderly: Is It Really Effective? J. Prev. Med. Hyg. 2012, 53, 101–103. [Google Scholar] [PubMed]
- Galili, U. Natural Anti-Carbohydrate Antibodies Contributing to Evolutionary Survival of Primates in Viral Epidemics? Glycobiology. 2016, 26, 1140–1150. [Google Scholar] [CrossRef]
- Galili, U. Paleo-Immunology of Human Anti-Carbohydrate Antibodies Preventing Primate Extinctions. Immunology 2022, 168, 18–29. [Google Scholar] [CrossRef]
- Galili, U.; Mandrell, R.E.; Hamadeh, R.M.; Shohet, S.B.; Griffiss, J.M. Interaction Between Human Natural Anti-Alpha-Galactosyl Immunoglobulin G and Bacteria of the Human Flora. Infect. Immun. 1988, 56, 1730–1737. [Google Scholar] [CrossRef]
- Posekany, K.J.; Pittman, H.K.; Bradfield, J.F.; Haisch, C.E.; Verbanac, K.M. Induction of Cytolytic Anti-Gal Antibodies in α-1,3-Galactosyltransferase Gene Knockout Mice by Oral Inoculation with Escherichia Coli O86:B7 Bacteria. Infect. Immun. 2002, 70, 6215–6222. [Google Scholar] [CrossRef]
- Jensen, J.M.B.; Petersen, M.S.; Ellerman-Eriksen, S.; Møller, B.K.; Jensenius, J.C.; Sørensen, U.B.S.; Thiel, S. Abundant Human Anti-Galα3Gal Antibodies Display Broad Pathogen Reactivity. Sci. Rep. 2020, 10, 4611. [Google Scholar] [CrossRef]
- Bernth Jensen, J.M.; Laursen, N.S.; Jensen, R.K.; Andersen, G.R.; Jensenius, J.C.; Sørensen, U.B.S.; Thiel, S. Complement Activation by Human IgG Antibodies to Galactose-α-1,3-Galactose. Immunology 2020, 161, 66–79. [Google Scholar] [CrossRef]
- Bernth Jensen, J.M.; Skeldal, S.; Petersen, M.S.; Møller, B.K.; Hoffmann, S.; Jensenius, J.C.; Skov Sørensen, U.B.; Thiel, S. The Human Natural Anti-αGal Antibody Targets Common Pathogens by Broad-Spectrum Polyreactivity. Immunology 2021, 162, 434–451. [Google Scholar] [CrossRef] [PubMed]
- Hamadeh, R.M.; Jarvis, G.A.; Galili, U.; Mandrell, R.E.; Zhou, P.; Griffiss, J.M. Human Natural Anti-Gal IgG Regulates Alternative Complement Pathway Activation on Bacterial Surfaces. J. Clin. Investig. 1992, 89, 1223–1235. [Google Scholar] [CrossRef]
- Montassier, E.; Al-Ghalith, G.A.; Mathé, C.; Le Bastard, Q.; Douillard, V.; Garnier, A.; Guimon, R.; Raimondeau, B.; Touchefeu, Y.; Duchalais, E.; et al. Distribution of Bacterial A1,3-Galactosyltransferase Genes in the Human Gut Microbiome. Front. Immunol. 2020, 10, 3000. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, J.D.; Planchais, C.; Roumenina, L.T.; Vassilev, T.L.; Kaveri, S.V.; Lacroix-Desmazes, S. Antibody Polyreactivity in Health and Disease: Statu Variabilis. J. Immunol. 2013, 191, 993–999. [Google Scholar] [CrossRef]
- Satapathy, A.K.; Ravindran, B. Naturally Occurring Alpha-Galactosyl Antibodies in Human Sera Display Polyreactivity. Immunol. Lett. 1999, 69, 347–351. [Google Scholar] [CrossRef]
- Bello-Gil, D.; Audebert, C.; Olivera-Ardid, S.; Pérez-Cruz, M.; Even, G.; Khasbiullina, N.; Gantois, N.; Shilova, N.; Merlin, S.; Costa, C.; et al. The Formation of Glycan-Specific Natural Antibodies Repertoire in GalT-KO Mice Is Determined by Gut Microbiota. Front. Immunol. 2019, 10, 342. [Google Scholar] [CrossRef]
- Bernth Jensen, J.M.; Søgaard, O.S.; Thiel, S. The Level of Naturally Occurring Anti-αGal Antibody Predicts Antibody Response to Polysaccharide Vaccination in HIV-Infected Adults. Scand. J. Immunol. 2021, 93, e13008. [Google Scholar] [CrossRef]
- Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma, Z.; Davis, C.; Pope, B.D.; et al. A Comparative Encyclopedia of DNA Elements in the Mouse Genome. Nature 2014, 515, 355–364. [Google Scholar] [CrossRef]
- Han, W.; Cai, L.; Wu, B.; Li, L.; Xiao, Z.; Cheng, J.; Wang, P.G. The wciN Gene Encodes an α-1,3-Galactosyltransferase Involved in the Biosynthesis of the Capsule Repeating Unit of Streptococcus Pneumoniae Serotype 6B. Biochemistry 2012, 51, 5804–5810. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Shao, J.; Zhu, L.; Li, M.; Singh, M.; Lu, Y.; Lin, S.; Li, H.; Ryu, K.; Shen, J.; et al. Escherichia Coli O86 O-Antigen Biosynthetic Gene Cluster and Stepwise Enzymatic Synthesis of Human Blood Group B Antigen Tetrasaccharide. J. Am. Chem. Soc. 2005, 127, 2040–2041. [Google Scholar] [CrossRef]
- Cinar, M.S.; Niyas, A.; Avci, F.Y. Serine-Rich Repeat Proteins: Well-Known yet Little-Understood Bacterial Adhesins. J. Bacteriol. 2024, 206, e00241-23. [Google Scholar] [CrossRef]
- Bentley, S.D.; Aanensen, D.M.; Mavroidi, A.; Saunders, D.; Rabbinowitsch, E.; Collins, M.; Donohoe, K.; Harris, D.; Murphy, L.; Quail, M.A.; et al. Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genet. 2006, 2, e31. [Google Scholar] [CrossRef] [PubMed]
- Galili, U.; Basbaum, C.B.; Shohet, S.B.; Buehler, J.; Macher, B.A. Identification of Erythrocyte Gal Alpha 1-3Gal Glycosphingolipids with a Mouse Monoclonal Antibody, Gal-13. J. Biol. Chem. 1987, 262, 4683–4688. [Google Scholar] [CrossRef]
- Nozawa, S.; Xing, P.X.; Wu, G.D.; Gochi, E.; Kearns-Jonker, M.; Swensson, J.; Starnes, V.A.; Sandrin, M.S.; McKenzie, I.F.; Cramer, D.V. Characteristics of Immunoglobulin Gene Usage of the Xenoantibody Binding to Gal-Alpha(1,3)Gal Target Antigens in the Gal Knockout Mouse. Transplantation 2001, 72, 147–155. [Google Scholar] [CrossRef]
- Diswall, M.; Gustafsson, A.; Holgersson, J.; Sandrin, M.S.; Breimer, M.E. Antigen-Binding Specificity of Anti-αGal Reagents Determined by Solid-Phase Glycolipid-Binding Assays. A Complete Lack of αGal Glycolipid Reactivity in A1,3GalT-KO Pig Small Intestine. Xenotransplantation 2011, 18, 28–39. [Google Scholar] [CrossRef]
- Galili, U.; LaTemple, D.C.; Radic, M.Z. A Sensitive Assay for Measuring Alpha-Gal Epitope Expression on Cells by a Monoclonal Anti-Gal Antibody. Transplantation 1998, 65, 1129–1132. [Google Scholar] [CrossRef]
- Jiang, Y.-L.; Jin, H.; Yang, H.-B.; Zhao, R.-L.; Wang, S.; Chen, Y.; Zhou, C.-Z. Defining the Enzymatic Pathway for Polymorphic O-Glycosylation of the Pneumococcal Serine-Rich Repeat Protein PsrP. J. Biol. Chem. 2017, 292, 6213–6224. [Google Scholar] [CrossRef]
- Yi, W.; Zhu, L.; Guo, H.; Li, M.; Li, J.; Wang, P.G. Formation of a New O-Polysaccharide in Escherichia Coli O86 via Disruption of a Glycosyltransferase Gene Involved in O-Unit Assembly. Carbohydr. Res. 2006, 341, 2254–2260. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Zhu, Y.; Yang, Z.; Wang, X.; Zhang, G.; Zhao, X.; Huang, Y.; Li, B.; Ma, Z. Pneumo-Typer: Integrated Genomic Surveiance Tool for Capsule Genotype, Serotype and Sequence Type in Streptococcus Pneumoniae Informs Vaccine Strategies. bioRxiv 2025. [Google Scholar] [CrossRef]
- Rother, R.P.; Fodor, W.L.; Springhorn, J.P.; Birks, C.W.; Setter, E.; Sandrin, M.S.; Squinto, S.P.; Rollins, S.A. A Novel Mechanism of Retrovirus Inactivation in Human Serum Mediated by Anti-Alpha-Galactosyl Natural Antibody. J. Exp. Med. 1995, 182, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Galili, U. Profiling Terminal N-Acetyllactosamines of Glycans on Mammalian Cells by an Immuno-Enzymatic Assay. Glycoconj. J. 2006, 23, 663–674. [Google Scholar] [CrossRef] [PubMed]
- MacNair, J.E.; Desai, T.; Teyral, J.; Abeygunawardana, C.; Hennessey, J.P. Alignment of Absolute and Relative Molecular Size Specifications for a Polyvalent Pneumococcal Polysaccharide Vaccine (PNEUMOVAX 23). Biologicals 2005, 33, 49–58. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, H.; Park, E.M.; Kang, H.J.; Kim, S.J.; Park, C.-G. Immunoglobulin M and Immunoglobulin G Subclass Distribution of Anti-Galactose-Alpha-1,3-Galactose and Anti-N-Glycolylneuraminic Acid Antibodies in Healthy Korean Adults. Transplant. Proc. 2021, 53, 1762–1770. [Google Scholar] [CrossRef]
- Thall, A.D.; Malý, P.; Lowe, J.B. Oocyte Gal Alpha 1,3Gal Epitopes Implicated in Sperm Adhesion to the Zona Pellucida Glycoprotein ZP3 Are Not Required for Fertilization in the Mouse. J. Biol. Chem. 1995, 270, 21437–21440. [Google Scholar] [CrossRef]
- Pearse, M.J.; Cowan, P.J.; Shinkel, T.A.; Chen, C.G.; d’Apice, A.J. Anti-Xenograft Immune Responses in Alpha 1,3-Galactosyltransferase Knock-Out Mice. Subcell. Biochem. 1999, 32, 281–310. [Google Scholar] [CrossRef] [PubMed]
- Kj, P.; Hk, P.; Ms, S.; Ce, H.; Km, V. Suppression of Lewis Lung Tumor Development in Alpha 1,3 Galactosyltransferase Knock-Out Mice. Anticancer Res. 2004, 24, 605–612. [Google Scholar]
- Ayala, E.V.; da Cunha, G.R.; Azevedo, M.A.; Calderon, M.; Jimenez, J.; Venuto, A.P.; Gazzinelli, R.; Lavalle, R.J.Y.; Riva, A.G.V.; Hincapie, R.; et al. C57BL/6 α-1,3-Galactosyltransferase Knockout Mouse as an Animal Model for Experimental Chagas Disease. ACS Infect. Dis. 2020, 6, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Portugal, S.; Tran, T.M.; Gozzelino, R.; Ramos, S.; Gomes, J.; Regalado, A.; Cowan, P.J.; d’Apice, A.J.F.; Chong, A.S.; et al. Gut Microbiota Elicits a Protective Immune Response against Malaria Transmission. Cell 2014, 159, 1277–1289. [Google Scholar] [CrossRef]



| Query | Subject | Identity | Match_length |
|---|---|---|---|
| WCIN | SPC06A_0009|wciN | 99.682 | 314 |
| WCIN | SPC33D_0009|wciN | 92.357 | 314 |
| WCIN | SPC06A_00006|wciN | 91.72 | 314 |
| WCIN | SPC33C_0009|wciN | 64.331 | 314 |
| WCIN | SPC33B_0009|wciN | 61.146 | 314 |
| WCIN | SPC01_0014|gla | 29.412 | 51 |
| WCIN | SPC06B_00003|wzd | 40 | 30 |
| WCIN | SPC23B_0006|wzd | 40 | 30 |
| WCIN | SPC11A_0005|wzd | 40 | 30 |
| WbnI | SPC10C_0013|wcrD | 29.825 | 57 |
| WbnI | SPC10F_0013|wcrD | 29.825 | 57 |
| WbnI | SPC06C_11|rmlA | 45.833 | 24 |
| WbnI | SPC34_0009|wciB | 30.357 | 56 |
| GlyE | SPC08_0017|HG266 | 66.667 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, X.; Wang, N.; Zhu, C.; Ma, Y.; Ma, Z.; Yin, L.; Zhou, D. Genomic Analysis of Glycosyltransferases Responsible for Galactose-α-1,3-Galactose Epitopes in Streptococcus pneumoniae: Implications for Broadly Protective Vaccination Strategy. Vaccines 2025, 13, 1148. https://doi.org/10.3390/vaccines13111148
Mai X, Wang N, Zhu C, Ma Y, Ma Z, Yin L, Zhou D. Genomic Analysis of Glycosyltransferases Responsible for Galactose-α-1,3-Galactose Epitopes in Streptococcus pneumoniae: Implications for Broadly Protective Vaccination Strategy. Vaccines. 2025; 13(11):1148. https://doi.org/10.3390/vaccines13111148
Chicago/Turabian StyleMai, Xinjia, Nian Wang, Chenxi Zhu, Yue Ma, Zhongrui Ma, Lan Yin, and Dapeng Zhou. 2025. "Genomic Analysis of Glycosyltransferases Responsible for Galactose-α-1,3-Galactose Epitopes in Streptococcus pneumoniae: Implications for Broadly Protective Vaccination Strategy" Vaccines 13, no. 11: 1148. https://doi.org/10.3390/vaccines13111148
APA StyleMai, X., Wang, N., Zhu, C., Ma, Y., Ma, Z., Yin, L., & Zhou, D. (2025). Genomic Analysis of Glycosyltransferases Responsible for Galactose-α-1,3-Galactose Epitopes in Streptococcus pneumoniae: Implications for Broadly Protective Vaccination Strategy. Vaccines, 13(11), 1148. https://doi.org/10.3390/vaccines13111148

