Sporadic Outbreaks of Avian Infectious Bronchitis Viruses Highly Similar to the S95 Live Attenuated Vaccine Strain in Japan: A Comparative Study of Ten Field Isolates and S95
Abstract
1. Introduction
2. Materials and Methods
2.1. IBV S95 Isolate and Its Attenuation History
2.2. IBV S95-Like Strain Isolation and Propagation
2.3. Conventional RT-PCR for the S2 Region of IBV
2.4. Quantitative Real-Time RT-PCR for the 5′ Untranslated Region of IBV
2.5. Sequencing of IBV S95-Like Strains
2.6. Capacity of IBV S95-Like Strains to Kill Chick Embryos
2.7. Growth Kinetics and Replication Capacity of IBV S95-Like Strains in Embryonated Chicken Eggs
2.8. Sequence Alignment and Phylogenetic Tree Analysis of IBV S95-Like Strains
2.9. PCR-Based Differentiation of the S95 Vaccine Strain and S95-Like Virulent Field IBVs
3. Results
3.1. Live Attenuated S95 Vaccine and S95-Like Strains in the Field
3.2. Comparison of S95-Like Strains with the S95 Vaccine Strain at the Gene Level
3.3. Amino Acid Changes in ORF1ab (R), ORF2 (S), and ORF5a Genes Acquired by the S95 Vaccine Strain During Attenuation and Amino Acids in the Same Positions of S95-Like Strains
3.4. Egg Embryo Mortality Associated with the B3389 Strain
3.5. Replication Capacity of the B3389 Strain in Embryonated Chicken Eggs
3.6. Differentiation of the S95 Vaccine Strain from the S95-Like Field IBV Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavanagh, D. Coronavirus Avian Infectious Bronchitis Virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef]
- Cook, J.K.A.; Jackwood, M.; Jones, R.C. The Long View: 40 Years of Infectious Bronchitis Research. Avian Pathol. 2012, 41, 239–250. [Google Scholar] [CrossRef]
- Khataby, K.; Fellahi, S.; Loutfi, C.; Mustapha, E.M. Avian Infectious Bronchitis Virus in Africa: A Review. Vet. Q. 2016, 36, 71–75. [Google Scholar] [CrossRef]
- Sultan, H.A.; Ali, A.; El Feil, W.K.; Bazid, A.H.I.; Zain El-Abideen, M.A.; Kilany, W.H. Protective Efficacy of Different Live Attenuated Infectious Bronchitis Virus Vaccination Regimes Against Challenge with IBV Variant-2 Circulating in the Middle East. Front. Vet. Sci. 2019, 6, 341. [Google Scholar] [CrossRef] [PubMed]
- Promkuntod, N. Dynamics of Avian Coronavirus Circulation in Commercial and Non-Commercial Birds in Asia—A Review. Vet. Q. 2016, 36, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Han, Z.; Wang, Q.; Zhang, T.; Gao, M.; Zhao, Y.; Shao, Y.; Li, H.; Kong, X.; Liu, S. Emergence of Novel Nephropathogenic Infectious Bronchitis Viruses Currently Circulating in Chinese Chicken Flocks. Avian Pathol. 2016, 45, 54–65. [Google Scholar] [CrossRef]
- Jackwood, M.W. Review of Infectious Bronchitis Virus Around the World. Avian Dis. 2012, 56, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Dhinakar Raj, G.; Jones, R.C. Infectious Bronchitis Virus: Immunopathogenesis of Infection in the Chicken. Avian Pathol. 1997, 26, 677–706. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; De Groot, R.J.; Haagmans, B.; Lau, S.K.P.; Neuman, B.W.; Perlman, S.; Sola, I.; Van Der Hoek, L.; Wong, A.C.P.; Yeh, S.H. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J. Gen. Virol. 2023, 104, 1843. [Google Scholar] [CrossRef]
- Brierley, I.; Digard, P.; Inglis, S.C. Characterization of an Efficient Coronavirus Ribosomal Frameshifting Signal: Requirement for an RNA Pseudoknot. Cell 1989, 57, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Wang, Y.; Zhang, Y.; Song, X.; Zou, Y.; Li, L.; Zhao, X.; Yin, Z. Current Knowledge on Infectious Bronchitis Virus Non-Structural Proteins: The Bearer for Achieving Immune Evasion Function. Front. Vet. Sci. 2022, 9, 6–8. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Y.; Zhang, Y.; Song, X.; Zou, Y.; Li, L.; Zhao, X.; Yin, Z.; Tsai, C.T.; Wu, H.Y.; et al. Genomic Characteristics and Changes of Avian Infectious Bronchitis Virus Strain CK/CH/LDL/97I after Serial Passages in Chicken Embryos. Front. Vet. Sci. 2014, 56, 319–330. [Google Scholar] [CrossRef]
- Hu, T.; Chen, C.; Li, H.; Dou, Y.; Zhou, M.; Lu, D.; Zong, Q.; Li, Y.; Yang, C.; Zhong, Z.; et al. Structural Basis for Dimerization and RNA Binding of Avian Infectious Bronchitis Virus Nsp9. Protein Sci. 2017, 26, 1037–1048. [Google Scholar] [CrossRef]
- Xia, T.; Xu, S.; Li, X.; Ruan, W. Avian Coronavirus Infectious Bronchitis Virus Beaudette Strain NSP9 Interacts with STAT1 and Inhibits Its Phosphorylation to Facilitate Viral Replication. Virology 2024, 590, 109944. [Google Scholar] [CrossRef]
- Tsai, C.T.; Wu, H.Y.; Wang, C.H. Genetic Sequence Changes Related to the Attenuation of Avian Infectious Bronchitis Virus Strain TW2575/98. Virus Genes 2020, 56, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Chu, V.C.; McElroy, L.J.; Chu, V.; Bauman, B.E.; Whittaker, G.R. The Avian Coronavirus Infectious Bronchitis Virus Undergoes Direct Low-PH-Dependent Fusion Activation during Entry into Host Cells. J. Virol. 2006, 80, 3180–3188. [Google Scholar] [CrossRef] [PubMed]
- Ambepitiya Wickramasinghe, I.N.; de Vries, R.P.; Weerts, E.A.W.S.; van Beurden, S.J.; Peng, W.; McBride, R.; Ducatez, M.; Guy, J.; Brown, P.; Eterradossi, N.; et al. Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. J. Virol. 2015, 89, 8783–8792. [Google Scholar] [CrossRef] [PubMed]
- Hewson, K.A.; Noormohammadi, A.H.; Devlin, J.M.; Browning, G.F.; Schultz, B.K.; Ignjatovic, J. Evaluation of a Novel Strain of Infectious Bronchitis Virus Emerged as a Result of Spike Gene Recombination between Two Highly Diverged Parent Strains. Avian Pathol. 2014, 43, 249–257. [Google Scholar] [CrossRef]
- Liang, R.; Liu, K.; Li, Y.; Zhang, X.; Duan, L.; Huang, M.; Sun, L.; Yuan, F.; Zhao, J.; Zhao, Y.; et al. Adaptive Truncation of the S Gene in IBV during Chicken Embryo Passaging Plays a Crucial Role in Its Attenuation. PLoS Pathog. 2024, 20, e1012415. [Google Scholar] [CrossRef]
- Cavanagh, D.; Mawditt, K.; Britton, P.; Naylor, C.J. Longitudinal Field Studies of Infectious Bronchitis Virus and Avian Pneumovirus in Broilers Using Type-Specific Polymerase Chain Reactions. Avian Pathol. 1999, 28, 593–605. [Google Scholar] [CrossRef]
- Xu, L.; Han, Z.; Jiang, L.; Sun, J.; Zhao, Y.; Liu, S. Genetic Diversity of Avian Infectious Bronchitis Virus in China in Recent Years. Infect. Genet. Evol. 2018, 66, 82–94. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, Q.X.; Chen, J.D.; Han, Z.X.; Liu, X.; Feng, L.; Shao, Y.H.; Rong, J.G.; Kong, X.G.; Tong, G.Z. Genetic Diversity of Avian Infectious Bronchitis Coronavirus Strains Isolated in China between 1995 and 2004. Arch. Virol. 2006, 151, 1133–1148. [Google Scholar] [CrossRef]
- Kim, J.Y.; Le, H.D.; Thai, T.N.; Kim, J.K.; Song, H.S.; Her, M.; Kim, H.R. Revealing a Novel GI-19 Lineage Infectious Bronchitis Virus Sub-Genotype with Multiple Recombinations in South Korea Using Whole-Genome Sequencing. Infect. Genet. Evol. 2025, 128, 105717. [Google Scholar] [CrossRef]
- Mase, M.; Gotou, M.; Inoue, D.; Watanabe, S.; Iseki, H. Genotyping of Infectious Bronchitis Viruses Isolated in Japan during 2008−2019. J. Vet. Med. Sci. 2021, 83, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Soma, J.; Takahashi, S.; Matsune, K.; Ono, M.; Oosumi, T. Detection and Isolation of QX-like Infectious Bronchitis Virus in Japan. J. Vet. Med. Sci. 2022, 84, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Mase, M.; Kawanishi, N.; Ootani, Y.; Murayama, K.; Karino, A.; Inoue, T.; Kawakami, J. A Novel Genotype of Avian Infectious Bronchitis Virus Isolated in Japan in 2009. J. Vet. Med. Sci. 2010, 72, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Mase, M.; Inoue, T.; Yamaguchi, S.; Imada, T. Genetic Diversity of Avian Infectious Bronchitis Viruses in Japan Based on Analysis of S2 Glycoprotein Gene. J. Vet. Med. Sci. 2009, 71, 287–291. [Google Scholar] [CrossRef]
- Mase, M.; Hiramatsu, K.; Watanabe, S.; Iseki, H. Complete Genome Sequences of Two JP-I (GI-18) Genotype Infectious Bronchitis Virus Strains Isolated from Chickens with Nephritis in Japan. Microbiol. Resour. Announc. 2022, 11, 18–20. [Google Scholar] [CrossRef]
- Ariyoshi, R.; Kawai, T.; Honda, T.; Tokiyoshi, S. Classification of IBV S1 Genotypes by Direct Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and Relationship between Serotypes and Genotypes of Strains Isolated between 1998 and 2008 in Japan. J. Vet. Med. Sci. 2010, 72, 687–692. [Google Scholar] [CrossRef]
- Kato, A.; Oguro, S.; Kurihara, Y.; Kojima, H.; Inayoshi, Y.; Lin, Z.; Sasakawa, C.; Shibuya, K. Repeated Avian Infectious Bronchitis Virus Infections within a Single Chicken Farm. J. Vet. Med. Sci. 2019, 81, 636–640. [Google Scholar] [CrossRef]
- Lin, Z.; Kato, A.; Kudou, Y.; Umeda, K.; Ueda, S. Typing of Recent Infectious Bronchitis Virus Isolates Causing Nephritis in Chicken. Arch. Virol. 1991, 120, 145–149. [Google Scholar] [CrossRef]
- Lin, Z.; Kato, A.; Kudou, Y.; Ueda, S. A New Typing Method for the Avian Infectious Bronchitis Virus Using Polymerase Chain Reaction and Restriction Enzyme Fragment Length Polymorphism. Arch. Virol. 1991, 116, 19–31. [Google Scholar] [CrossRef]
- Valastro, V.; Holmes, E.C.; Britton, P.; Fusaro, A.; Jackwood, M.W.; Cattoli, G.; Monne, I. S1 Gene-Based Phylogeny of Infectious Bronchitis Virus: An Attempt to Harmonize Virus Classification. Infect. Genet. Evol. 2016, 39, 349–364. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Watanabe, Y.; Harada, M.; Seki, Y.; Kuroda, Y.; Fukuda, M.; Honda, E.; Suzuki, S.; Nakamura, S. Genetic Analysis of the S1 Gene of 4/91 Type Infectious Bronchitis Virus Isolated in Japan. J. Vet. Med. Sci. 2009, 71, 583–588. [Google Scholar] [CrossRef]
- Callison, S.A.; Hilt, D.A.; Boynton, T.O.; Sample, B.F.; Robison, R.; Swayne, D.E.; Jackwood, M.W. Development and Evaluation of a Real-Time Taqman RT-PCR Assay for the Detection of Infectious Bronchitis Virus from Infected Chickens. J. Virol. Methods 2006, 138, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Inayoshi, Y.; Oguro, S.; Tanahashi, E.; Lin, Z.; Kawaguchi, Y.; Kodama, T.; Sasakawa, C. Bacterial Artificial Chromosome-Based Reverse Genetics System for Cloning and Manipulation of the Full-Length Genome of Infectious Bronchitis Virus. Curr. Res. Microb. Sci. 2022, 3, 100155. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; Dijkman, R.; de Wit, J.J. Characterization of Infectious Bronchitis Virus D181, a New Serotype (GII-2). Avian Pathol. 2020, 49, 243–250. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.A.; Amin, Z.; Bakar, A.M.S.A.; Saallah, S.; Yusuf, N.H.M.; Shaarani, S.M.; Siddiquee, S. Factor Influences for Diagnosis and Vaccination of Avian Infectious Bronchitis Virus (Gammacoronavirus) in Chickens. Vet. Sci. 2021, 8, 47. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.N.; Wang, T.; Fan, W.Q.; Zhang, A.Y.; Wei, K.; Tian, G.B.; Yang, X. Complete Genome Sequence and Recombination Analysis of Infectious Bronchitis Virus Attenuated Vaccine Strain H120. Virus Genes 2010, 41, 377–388. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, J.; Yan, S.; Jia, W.; Zhang, K.; Zhang, G. S Gene and 5a Accessory Gene Are Responsible for the Attenuation of Virulent Infectious Bronchitis Coronavirus. Virology 2019, 533, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Laconi, A.; van Beurden, S.J.; Berends, A.J.; Krämer-Kühl, A.; Jansen, C.A.; Spekreijse, D.; Chénard, G.; Philipp, H.C.; Mundt, E.; Rottier, P.J.M.; et al. Deletion of Accessory Genes 3a, 3b, 5a or 5b from Avian Coronavirus Infectious Bronchitis Virus Induces an Attenuated Phenotype Both In Vitro and In Vivo. J. Gen. Virol. 2018, 99, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liang, R.; Cheng, J.; Zhao, J.; Xue, J.; Zhang, G. Attenuated Viral Replication of Avian Infectious Bronchitis Virus with a Novel 82-Nucleotide Deletion in the 5a Gene Indicates a Critical Role for 5a in Virus-Host Interactions. Microbiol. Spectr. 2022, 10, e01405-22. [Google Scholar] [CrossRef]
- Phillips, J.E.; Jackwood, M.W.; McKinley, E.T.; Thor, S.W.; Hilt, D.A.; Acevedol, N.D.; Williams, S.M.; Kissinger, J.C.; Paterson, A.H.; Robertson, J.S.; et al. Changes in Nonstructural Protein 3 Are Associated with Attenuation in Avian Coronavirus Infectious Bronchitis Virus. Virus Genes 2012, 44, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Listorti, V.; Laconi, A.; Catelli, E.; Cecchinato, M.; Lupini, C.; Naylor, C.J. Identification of IBV QX Vaccine Markers: Should Vaccine Acceptance by Authorities Require Similar Identifications for All Live IBV Vaccines? Vaccine 2017, 35, 5531–5534. [Google Scholar] [CrossRef] [PubMed]




| Field Sample | Year | Prefecture | Breed of Chicken | Disease State | Tissue | Days Old | IB Vaccination History |
|---|---|---|---|---|---|---|---|
| B3024 | 2020 | Kagoshima | broiler | death | kidney | 57 | C-78, TM86, ON, Nerima |
| B3273 | 2021 | Ibaraki | layer | death | kidney | 28 | GN, S95 |
| B3362 | 2022 | Gunma | layer | death | kidney | 47 | S95, AK01, H120, TM86 |
| B3364 | 2022 | Tokushima | broiler | death | kidney | 35 | Kita-1 |
| B3389 | 2022 | Okayama | layer | death | kidney | 27 | S95 |
| B3510 | 2023 | Aichi | layer | death | kidney | 30 | H120, H120 |
| B3539 | 2023 | Okayama | layer | death | kidney | 36 | C-78, S95, Ma5 |
| B3616 | 2023 | Okayama | layer | death | kidney | 35 | C-78, S95, H120, H120 |
| B3639 | 2023 | Aichi | layer | death | kidney | 74 | TM86, C-78, H120, AK01 |
| B3691 | 2024 | Kagawa | layer | death | kidney | 19 | S95, H120 |
| Nucleic acid /Amino acid | S95-E4 Parent * | S95 Vaccine | B3389 | B3273 | B3510 | B3639 | B3362 | B3616 | B3691 | B3539 | B3364 | B3024 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ORF1ab (R) | 100/100 | 99/99 | 99/99 | 97/97 | 91/95 | 97/95 | 99/99 | 92/95 | 99/99 | 97/98 | 90/94 | 95/95 |
| ORF2 (S) | 100/100 | 99/99 | 99/99 | 99/99 | 99/99 | 99/99 | 99/99 | 99/99 | 99/99 | 99/99 | 99/99 | 97/98 |
| ORF3a | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 92/91 | 100/100 | 100/100 | 100/100 | 87/85 | 97/100 | 91/89 |
| ORF3b | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 85/78 | 90/89 | 92/92 |
| ORF3c (E) | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 91/93 | 85/84 | 85/88 |
| ORF4a (M) | 100/100 | 100/100 | 100/100 | 99/100 | 99/100 | 99/99 | 94/97 | 96/96 | 97/96 | 95/97 | 90/93 | 90/92 |
| ORF4b | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 95/93 | 95/93 | 93/90 | 95/93 | 93/90 | 86/82 |
| ORF5a | 100/100 | 99/98 | 99/98 | 98/96 | 98/98 | 99/98 | 93/92 | 93/93 | 93/90 | 93/93 | 93/90 | 84/81 |
| ORF5b | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 99/100 | 100/100 | 96/96 | 98/97 | 96/96 | 90/87 |
| ORF6a (N) | 100/100 | 100/100 | 100/100 | 99/99 | 99/99 | 100/100 | 96/98 | 99/99 | 96/99 | 95/96 | 91/94 | 94/95 |
| ORF6b | 100/100 | 100/100 | 100/100 | 99/98 | 99/98 | 100/100 | 99/98 | 99/98 | 73/62 | 99/98 | 96/94 | 99/98 |
| Nucleic acid /Amino acid | S95-E4 Parent | S95 Vaccine # | B3389 | B3273 | B3510 | B3639 | B3362 | B3616 | B3691 | B3539 | B3364 | B3024 |
| ORF1ab (R) | 99/99 | 100/100 | 99/99 | 97/97 | 94/95 | 97/95 | 99/99 | 94/95 | 98/99 | 94/98 | 93/94 | 95/95 |
| ORF2 (S) | 99/99 | 100/100 | 99/99 | 99/99 | 99/99 | 98/99 | 99/99 | 99/99 | 99/99 | 99/99 | 98/99 | 97/98 |
| ORF3a | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 92/91 | 100/100 | 100/100 | 100/100 | 87/85 | 97/100 | 91/89 |
| ORF3b | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 85/78 | 90/89 | 92/92 |
| ORF3c (E) | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 91/93 | 85/84 | 85/88 |
| ORF4a (M) | 100/100 | 100/100 | 100/100 | 99/100 | 99/100 | 99/99 | 94/97 | 96/96 | 97/96 | 95/97 | 90/93 | 90/92 |
| ORF4b | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 95/93 | 95/93 | 93/90 | 95/93 | 93/90 | 86/82 |
| ORF5a | 99/98 | 100/100 | 100/100 | 99/98 | 99/98 | 100/100 | 92/90 | 92/92 | 92/89 | 93/92 | 92/89 | 84/81 |
| ORF5b | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 | 99/100 | 100/100 | 96/96 | 98/97 | 96/96 | 90/87 |
| ORF6a (N) | 100/100 | 100/100 | 100/100 | 99/99 | 99/99 | 100/100 | 96/98 | 99/99 | 96/98 | 95/96 | 91/94 | 94/95 |
| ORF6b | 100/100 | 100/100 | 100/100 | 99/98 | 99/98 | 100/100 | 99/98 | 99/98 | 73/62 | 99/98 | 96/94 | 99/98 |
| Gene | Position | S95-E4 Parent | S95 Vaccine | B3389 | B3273 | B3510 | B3639 | B3362 | B3616 | B3691 |
|---|---|---|---|---|---|---|---|---|---|---|
| ORF1ab (R) 5/6633 | 3928 | Ser | Phe | Phe | Ser | Ser | Phe | Ser | Ser | Phe |
| 3939 | Asp | Tyr | Tyr | Asp | Glu | Asp | Asp | Gly | Gly | |
| 4346 | His | Gln | Gln | His | His | His | His | His | His | |
| 4851 | Ser | Asn | Asn | Ser | Ser | Ser | Ser | Ser | Ser | |
| 5382 | Thr | Ile | Ile | Thr | Thr | Thr | Thr | Thr | Thr | |
| ORF2 (S) 3/1169 | 123 | Pro | Leu | Pro | Pro | Pro | Pro | Pro | Pro | Pro |
| 370 | Phe | Leu | Phe | Phe | Phe | Phe | Phe | Phe | Phe | |
| 1161 | Glu | Stop | Glu | Stop | Glu | Glu | Glu | Glu | Glu | |
| ORF5a (NS) 1/65 | 11 | Val | Ala | Ala | Ala | Val | Ala | Val | Val | Val |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nukui, R.; Takahashi, M.; Kato, A.; Oguro, S.; Tanahashi, E.; Ohmori, T.; Tsutsumi, N. Sporadic Outbreaks of Avian Infectious Bronchitis Viruses Highly Similar to the S95 Live Attenuated Vaccine Strain in Japan: A Comparative Study of Ten Field Isolates and S95. Vaccines 2025, 13, 1092. https://doi.org/10.3390/vaccines13111092
Nukui R, Takahashi M, Kato A, Oguro S, Tanahashi E, Ohmori T, Tsutsumi N. Sporadic Outbreaks of Avian Infectious Bronchitis Viruses Highly Similar to the S95 Live Attenuated Vaccine Strain in Japan: A Comparative Study of Ten Field Isolates and S95. Vaccines. 2025; 13(11):1092. https://doi.org/10.3390/vaccines13111092
Chicago/Turabian StyleNukui, Ryohei, Mari Takahashi, Atsushi Kato, Shiori Oguro, Erika Tanahashi, Takashi Ohmori, and Nobuyuki Tsutsumi. 2025. "Sporadic Outbreaks of Avian Infectious Bronchitis Viruses Highly Similar to the S95 Live Attenuated Vaccine Strain in Japan: A Comparative Study of Ten Field Isolates and S95" Vaccines 13, no. 11: 1092. https://doi.org/10.3390/vaccines13111092
APA StyleNukui, R., Takahashi, M., Kato, A., Oguro, S., Tanahashi, E., Ohmori, T., & Tsutsumi, N. (2025). Sporadic Outbreaks of Avian Infectious Bronchitis Viruses Highly Similar to the S95 Live Attenuated Vaccine Strain in Japan: A Comparative Study of Ten Field Isolates and S95. Vaccines, 13(11), 1092. https://doi.org/10.3390/vaccines13111092

