Health Technology Assessment of mRNA Vaccines: Clinical, Economic, and Public Health Implications
Abstract
1. Introduction
1.1. Comparison with Europe
- Italy has good coverage for childhood vaccinations (among the best in the EU).
- Below EU average for: HPV vaccination, at-risk adults, and those aged 65+.
- Per capita spending on vaccines: €12–15 (estimated), lower than countries such as France, Germany, and Belgium.
1.2. Current Challenges and Priorities
- Post-COVID recovery: decline in HPV and influenza coverage between 2020–2022.
- School-based vaccinations: need to strengthen adolescent access.
- Innovative strategies: mRNA vaccines (e.g., RSV, CMV, HIV currently in trial phases).
- Communication: addressing vaccine hesitancy in specific population groups.
1.3. Standardization of mRNA Vaccines
1.4. The Public Health Relevance of Vaccination
1.5. Key Technological Innovations
- Improved stability through advanced capping, tailing, point mutations, and purification techniques.
- Enhanced delivery via lipid nanoparticle formulations.
- Reduced innate immunogenicity through the incorporation of modified nucleotides.
- Safety: mRNA does not integrate into the host genome and is non-infectious.
- Efficacy: structural modifications can enhance stability and potency while lowering immunogenicity.
- Production efficiency and scalability: mRNA vaccines are produced in cell-free systems, allowing rapid, scalable, and cost-effective manufacturing. For example, a single 5 L bioreactor can generate up to one million doses of an mRNA vaccine in a single reaction [23].
- Antigenic versatility: mRNA can encode multiple antigens simultaneously, thereby enhancing immune responses against resilient pathogens [24].
1.6. Comparison with Conventional Vaccines
1.7. Current Challenges and Scientific Gaps
1.8. Preliminary Evidence
2. Materials and Methods
2.1. Sources of Evidence
- Scientific literature: systematic searches were performed in PubMed, Scopus, and Web of Science using predefined keywords (e.g., mRNA vaccines, safety, efficacy, health technology assessment, cost-effectiveness). Only peer-reviewed publications, guidelines, and reviews from 1990 to 2025 were included.
- Institutional data: national and international reports were reviewed (WHO, EMA, FDA, Italian Ministry of Health, Istituto Superiore di Sanità).
- Clinical trials: ongoing and completed clinical trial data were retrieved from ClinicalTrials.gov and EudraCT databases.
- Economic data: cost-effectiveness and budget impact evaluations were based on Italian National Health System (SSN) reports, OECD data, and international cost–utility analyses.
2.2. Inclusion and Exclusion Criteria
- Inclusion: studies and reports assessing mRNA vaccines for infectious or non-infectious diseases (oncological, autoimmune), in terms of safety, efficacy, immunogenicity, or economic impact.
- Exclusion: studies limited to animal models without translational relevance, preprints lacking peer review, and duplicate datasets.
2.3. Assessment Dimensions
- Clinical effectiveness: immunogenicity, protection rates, and durability of immune response.
- Safety: frequency and severity of adverse events, both common and rare.
- Economic impact: cost-effectiveness, cost–utility, and budget impact on the SSN.
- Organizational impact: logistics of storage, distribution, and administration of mRNA vaccines.
- Social and ethical implications: vaccine hesitancy, equity of access, and ethical considerations.
- Legal and regulatory aspects: international guidelines, approval processes (EMA, FDA, WHO).
2.4. Analytical Approach
- Quantitative analysis: extraction of data on vaccine efficacy, effectiveness, and safety outcomes. Meta-analyses and systematic reviews were prioritized.
- Economic evaluation: incremental cost-effectiveness ratios (ICERs) were calculated using cost per QALY (Quality-Adjusted Life Year) gained, adopting the Italian threshold of €25,000–30,000/QALY as cost-effective.
- Comparative analysis: mRNA vaccines were compared with conventional vaccines (inactivated, subunit, viral vector) to highlight advantages and limitations.
- Timeline reconstruction: historical milestones of mRNA vaccine development were synthesized to contextualize clinical progress and regulatory evolution.
2.5. Ethical Considerations
3. Results
3.1. mRNA Vaccines in Clinical Development or Approved for Use
3.1.1. Influenza [34,35,36,37]
- In 2021, a Phase 1/2 trial of an mRNA vaccine targeting a single influenza strain reported positive results.
- A Phase 1/2 trial is ongoing for a quadrivalent vaccine targeting four strains.
- In 2024, a Phase 3 clinical trial of a single-dose quadrivalent influenza mRNA vaccine for adults was completed.
3.1.2. Zika Virus [38]
3.1.3. Respiratory Syncytial Virus (RSV) [39]
3.1.4. Human Immunodeficiency Virus (HIV) [40]
3.1.5. Cytomegalovirus (CMV) [41]
3.1.6. Cancer (Therapeutic Vaccines) [42,43]
- Melanoma: Moderna and Merck are developing a personalized mRNA vaccine (mRNA-4157) in combination with immunotherapy.
- Trials are also ongoing for pancreatic, lung, and colorectal cancers.
3.1.7. COVID-19 [44,45,46,47,48,49,50,51]
3.2. Main Vaccines and Updates
- Comirnaty (Pfizer-BioNTech): Initially granted conditional approval in 2020; now fully approved for adults and authorized for children. Updated 2024–2025 formulation targets Omicron JN.1 (KP.2); submission ongoing for 2025–2026 (variant LP.8.1).
- Spikevax (Moderna): FDA-approved in January 2022; updated KP.2 formulation authorized in 2024–2025.
- mNEXSPIKE (Moderna): FDA-approved in May 2025 for adults ≥ 65 years and 12–64 years with comorbidities. Benefits include refrigerator storage, easier site handling, and efficacy comparable or superior to Spikevax.
3.2.1. mRNA Influenza Vaccines
- Combination vaccines (COVID-19 + influenza): promising Phase 3 results (Moderna mRNA-1083), though not all endpoints met [70].
3.2.2. mRNA RSV Vaccines [71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]
- Nirsevimab (Beyfortus): monoclonal antibody approved for neonates.
- Abrysvo (Pfizer): approved for adults ≥ 60 years and maternal immunization.
- Arexvy (GSK): protein-based vaccine with ~94% efficacy against severe disease in ≥60 years.
- mRNA-1345 (Moderna/mRESVIA): first RSV mRNA vaccine, FDA-approved in 2023 for ≥60 years; expanded in 2025 to high-risk adults 18–59.
3.2.3. Zika Virus Vaccines [86,87,88,89,90,91,92,93,94,95,96,97]
- mRNA-1893 (Moderna): Phase 2 candidate encoding ZIKV prM-E proteins; favorable safety and immunogenicity.
- Preclinical studies showed sterilizing protection in nonhuman primates at low doses.
- Phase 1 trial (NCT04064905): mild/moderate adverse events; robust neutralizing antibody titers sustained up to 13 months.
- Phase 2 trial ongoing (since 2022) in 800 participants.
3.2.4. HIV Vaccines [98,99,100,101,102,103,104,105,106,107,108,109,110,111,112]
- mRNA-1644 and mRNA-1574 (Moderna, with NIH and Gates Foundation): sequential prime-boost design to elicit broadly neutralizing antibodies (bnAbs). Phase 1 trials underway, showing promising B-cell precursor activation.
- IAVI G001 (eOD-GT8 60mer antigen, delivered via Moderna mRNA): >90% of participants developed desired B-cell responses.
- New multivalent candidates (mRNA-1574) aim to elicit broader immune responses.
3.2.5. Cytomegalovirus (CMV) [113,114,115,116,117]
- mRNA-1647 (Moderna): most advanced candidate; encodes six different mRNAs for gB and pentamer complex proteins.
- Phase 2 results: strong neutralizing antibody responses sustained up to 3 years in CMV-negative participants.
- Phase 3 trial (CMVictory): ~7300 women aged 16–40 years; ongoing, interim efficacy analysis pending.
- CureVac CV7202: preclinical stage; platform distinct from Moderna/Pfizer (unmodified nucleosides, no published clinical data yet).
4. Discussion
4.1. Efficacy and Safety of mRNA Vaccines in Use and Clinical Development [118,119,120,121,122]
4.2. Economic Impact of mRNA Vaccines on Healthcare Systems [123,124,125,126,127,128,129,130,131]
- Cost per dose: €15–20
- Cost-effectiveness: estimated at €1000–8000 per QALY, well below the European threshold of €25,000–30,000/QALY → highly cost-effective.
- Italy (2021): >500,000 hospitalizations and >60,000 deaths avoided, saving billions of euros in direct healthcare costs.
- Indirect savings: fewer workdays lost, reduced disability pensions, minimized economic losses from lockdowns.
4.3. Long-Term Considerations
- Sustainability: continuous adaptation of mRNA vaccines to emerging variants is feasible and cost-effective.
- Expansion to other diseases: current trials on influenza, RSV, CMV, HIV, and cancer show promising immunogenicity and acceptable safety.
- Equity and access: ensuring equitable distribution remains a challenge, particularly in low- and middle-income countries.
- Regulatory harmonization: international coordination is necessary to standardize approval processes and accelerate deployment.
5. Conclusions
- mRNA vaccines are safe, effective, and highly cost-effective.
- They have redefined global vaccine development, proving essential tools in pandemic response.
- Their expansion to influenza, RSV, CMV, HIV, and oncology could transform preventive and therapeutic strategies in the coming decade.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Italian National Health Service. National Health Fund Reports; Ministry of Health: Rome, Italy, 2023. [Google Scholar]
- OECD Health Statistics. Health Expenditure and Financing; OECD Publishing: Paris, France, 2023. [Google Scholar]
- World Health Organization. Global Health Expenditure Database; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Italian Institute of Statistics (ISTAT). Health and Prevention Reports; ISTAT: Rome, Italy, 2022. [Google Scholar]
- Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- Boccalini, S.; Ragusa, R.; Panatto, D.; Calabrò, G.E.; Cortesi, P.A.; Giorgianni, G.; Favaretti, C.; Bonanni, P.; Ricciardi, W.; de Waure, C. Health Technology Assessment of Vaccines in Italy: History and Review of Applications. Vaccines 2024, 12, 1090. [Google Scholar] [CrossRef]
- Di Nardo, F.; Boccalini, S.; Calabrò, G.E.; Marcellusi, A.; Ruggeri, M.; Bonanni, P.; Vitali, R.; Capannini, E.; Mennini, F.S.; Cicchetti, A.; et al. The economic value of vaccinations: A systematic review of Italian economic evaluations and HTA reports. Ig. Sanita Pubbl. 2017, 73, 453–471. [Google Scholar]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J.G.; Lévy, J.P.; Meulien, P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–1722. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- WHO Expert Committee on Biological Standardization. Evaluation of the Quality, Safety and Efficacy of Messenger RNA Vaccines for the Prevention of Infectious Diseases: Regulatory Considerations; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- McKinsey & Company. The Impact of COVID-19 Vaccines on Economic Recovery; McKinsey Global Institute: Washington, DC, USA, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). Effectiveness of COVID-19 Vaccines Against Severe Outcomes; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- ClinicalTrials.gov. Ongoing mRNA Vaccine Trials; U.S. National Library of Medicine: Bethesda, MD, USA, 2024.
- Moderna. Clinical Pipeline Overview: mRNA-1010, mRNA-1345, mRNA-1647; Moderna Inc.: Cambridge, MA, USA, 2024. [Google Scholar]
- GlaxoSmithKline (GSK). Arexvy Vaccine Clinical Data; GSK: Brentford, UK, 2023. [Google Scholar]
- Pfizer Inc. Abrysvo and Comirnaty Updated Formulations: Product Monographs; Pfizer: New York, NY, USA, 2025. [Google Scholar]
- Weber, J.S.; Carlino, M.S.; Khattak, A.; Meniawy, T.; Ansstas, G.; Taylor, M.H.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; et al. Individualised Neoantigen Therapy mRNA-4157 (V940) plus Pembrolizumab Versus Pembrolizumab Monotherapy in Resected Melanoma (KEYNOTE-942): A Randomised, Phase 2b Study. Lancet 2024, 403, 632–644. [Google Scholar] [CrossRef]
- World Health Organization. Vaccines and Immunization: Overview; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- OECD. The Economic Value of Vaccines: Cost-Effectiveness and Productivity Impact. OECD Health Policy Studies; OECD Publishing: Paris, France, 2023. [Google Scholar]
- Italian Ministry of Health. National Immunization Plan 2023–2025; Ministry of Health: Rome, Italy, 2023. [Google Scholar]
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A.; Edwards, K.M. Vaccines, 7th ed.; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- European Medicines Agency. COVID-19 Vaccines: Authorisation and Safety Monitoring; EMA: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). COVID-19 Vaccine Effectiveness Studies; CDC: Atlanta, GA, USA, 2023. [Google Scholar]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA Vaccine against SARS-CoV-2–Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef]
- Venuto, R.; Giunta, I.; Vaccaro, M.; La Fauci, V.; Ceccio, C.; Fedele, F.; Privitera, A.; Denaro, F.; Pantò, G.; Cortese, R.; et al. Reactogenicity and Humoral Immune Response after Heterologous Vaxzevria/Comirnaty Vaccination in a Group of Individuals Vaccinated in the AOU Policlinic “G. Martino” (Messina, Italy): A Retrospective Cohort Study. Vaccines 2022, 10, 1803. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barouch, D.H. COVID-19 vaccines—Immunity, variants, boosters. N. Engl. J. Med. 2022, 387, 1011–1020. [Google Scholar] [CrossRef]
- Krause, P.R.; Fleming, T.R.; Longini, I.M.; Peto, R.; Briand, S.; Heymann, D.L.; Beral, V.; Snape, M.D.; Rees, H.; Ropero, A.M.; et al. SARS-CoV-2 Variants and Vaccines. N. Engl. J. Med. 2021, 385, 179–186. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Spikevax (Moderna) Vaccine Product Information; EMA: Amsterdam, The Netherlands, 2022. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Spikevax (COVID-19 Vaccine, mRNA): Full Prescribing Information; FDA: Silver Spring, MD, USA, 2022.
- European Medicines Agency. Comirnaty (Pfizer-BioNTech) Vaccine Product Information; EMA: Amsterdam, The Netherlands, 2022. [Google Scholar]
- World Health Organization. Interim Recommendations for Use of the Pfizer–BioNTech COVID-19 Vaccine, BNT162b2; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Interim Recommendations for Use of the Moderna mRNA-1273 Vaccine; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- European Medicines Agency. Nuvaxovid (Novavax COVID-19 Vaccine): EPAR; EMA: Amsterdam, The Netherlands, 2022. [Google Scholar]
- U.S. Food and Drug Administration. Emergency Use Authorization for Moderna COVID-19 Vaccine; FDA: Silver Spring, MD, USA, 2020.
- U.S. Food and Drug Administration. Emergency Use Authorization for Pfizer-BioNTech COVID-19 Vaccine; FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Walsh, E.E.; Pérez Marc, G.; Zareba, A.M.; Falsey, A.R.; Jiang, Q.; Patton, M.; Polack, F.P.; Llapur, C.; Doreski, P.A.; Ilangovan, K.; et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 1465–1477. [Google Scholar] [CrossRef]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 595–608. [Google Scholar] [CrossRef]
- European Medicines Agency. Abrysvo (Pfizer): EPAR–Product Information; EMA: Amsterdam, The Netherlands, 2023. [Google Scholar]
- U.S. Food and Drug Administration. Abrysvo (Respiratory Syncytial Virus Vaccine, Recombinant); FDA: Silver Spring, MD, USA, 2023. [Google Scholar]
- European Medicines Agency. Arexvy (GSK): EPAR–Product Information; EMA: Amsterdam, The Netherlands, 2023. [Google Scholar]
- U.S. Food and Drug Administration. Arexvy (RSV Vaccine, Recombinant, Adjuvanted); FDA: Silver Spring, MD, USA, 2023.
- Hammitt, L.L.; Dagan, R.; Yuan, Y.; Baca Cots, M.; Bosheva, M.; Madhi, S.A.; Muller, W.J.; Zar, H.J.; Brooks, D.; Grenham, A.; et al. Nirsevimab for Prevention of RSV in Healthy Late-Preterm and Term Infants. N. Engl. J. Med. 2022, 386, 837–846. [Google Scholar] [CrossRef]
- European Medicines Agency. Beyfortus (Nirsevimab): EPAR–Product Information; EMA: Amsterdam, The Netherlands, 2023. [Google Scholar]
- The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from RSV infection in high-risk infants. Pediatrics 1998, 102, 531–537. [Google Scholar] [CrossRef]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C.; Walsh, E.E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 2005, 352, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Lui, G.C.; Wong, K.T.; Li, T.C.; Tse, E.C.; Chan, J.Y.; Yu, J.; Wong, S.S.; Choi, K.W.; Wong, R.Y.; et al. High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections. Clin. Infect. Dis. 2013, 57, 1069–1077. [Google Scholar] [CrossRef]
- NIAID Vaccine Research Center. Universal Influenza Vaccine Clinical Trial Protocol; NIH: Bethesda, MD, USA, 2023. [Google Scholar]
- Erbelding, E.J.; Post, D.J.; Stemmy, E.J.; Roberts, P.C.; Augustine, A.D.; Ferguson, S.; Paules, C.I.; Graham, B.S.; Fauci, A.S. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 2018, 218, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Guptill, J.; Naficy, A.; Nachbagauer, R.; Berlanda-Scorza, F.; Feser, J.; Wilson, P.C.; Solórzano, A.; Van der Wielen, M.; Walter, E.B.; et al. Immunogenicity of Chimeric Haemagglutinin-Based, Universal Influenza Virus Vaccine Candidates: Interim Results of a Randomised, Placebo-Controlled, Phase 1 Clinical Trial. Lancet Infect. Dis. 2020, 20, 80–91. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Luo, J.; Han, X.; Wei, Y.; Wei, X. mRNA Vaccine: A Potential Therapeutic Strategy. Mol. Cancer 2021, 20, 33. [Google Scholar] [CrossRef]
- Freyn, A.W.; Ramos da Silva, J.; Rosado, V.C.; Bliss, C.M.; Pine, M.; Mui, B.L.; Tam, Y.K.; Madden, T.D.; de Souza Ferreira, L.C.; Weissman, D.; et al. A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice. Mol. Ther. 2020, 28, 1569–1584. [Google Scholar] [CrossRef]
- Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892. [Google Scholar] [CrossRef]
- Ledgerwood, J.E.; Zephir, K.; Hu, Z.; Wei, C.J.; Chang, L.; Enama, M.E.; Hendel, C.S.; Sitar, S.; Bailer, R.T.; Koup, R.A.; et al. Prime-boost interval matters: A randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J. Infect. Dis. 2013, 208, 418–422. [Google Scholar] [CrossRef]
- Moderna. Clinical Study Report: mRNA-1010 Influenza Vaccine; Moderna: Cambridge, MA, USA, 2023. [Google Scholar]
- Chalkias, S.; Schwartz, H.; Nestorova, B.; Feng, J.; Chang, Y.; Zhou, H.; Dutko, F.J.; Edwards, D.K.; Montefiori, D.; Pajon, R.; et al. Safety and Immunogenicity of a 100 μg mRNA-1273 Vaccine Booster for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). medRxiv 2022. [Google Scholar] [CrossRef]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef]
- Pfizer Inc. Clinical Pipeline: Influenza mRNA Vaccines; Pfizer: New York, NY, USA, 2023. [Google Scholar]
- BioNTech. Influenza mRNA Vaccine Program Update; BioNTech: Mainz, Germany, 2023. [Google Scholar]
- Feldman, R.A.; Fuhr, R.; Smolenov, I.; Mick Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ö.; Pujar, H.S.; et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019, 37, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Alameh, M.-G.; Weissman, D.; Pardi, N. Messenger RNA-based vaccines against infectious diseases. In mRNA Vaccines; Current Topics in Microbiology and Immunology, Volume 440; Springer: Cham, Switzerland, 2020; pp. 111–145. [Google Scholar]
- Cevik, M.; Grubaugh, N.D.; Iwasaki, A.; Openshaw, P. COVID-19 vaccines: Keeping pace with SARS-CoV-2 variants. N. Engl. J. Med. 2021, 384, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Koch, M.; Wu, K.; Chu, L.; Ma, L.; Hill, A.; Nunna, N.; Huang, W.; Oestreicher, J.; Colpitts, T.; et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: An interim analysis. Nat. Med. 2021, 27, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Chalkias, S.; Eder, F.; Essink, B.; Khetan, S.; Nestorova, B.; Feng, J.; Chen, X.; Chang, Y.; Zhou, H.; Montefiori, D.; et al. Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: A phase 2/3 trial. Nat. Med. 2022, 28, 2388–2397. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Hassanzadeganroudsari, M.; Feehan, J.; Apostolopoulos, V. The Race for a COVID-19 Vaccine: Where Are We up to? Expert Rev. Vaccines 2022, 21, 355–376. [Google Scholar] [CrossRef]
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef]
- Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020, 19, 305–306. [Google Scholar] [CrossRef]
- Wang, Y.S.; Kumari, M.; Chen, G.H.; Hong, M.H.; Yuan, J.P.; Tsai, J.L.; Wu, H.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023, 30, 84. [Google Scholar] [CrossRef]
- Pardi, N.; Weissman, D. Nucleoside modified mRNA vaccines for infectious diseases. In RNA Vaccines; Methods in Molecular Biology, Volume 1499; Humana Press: New York, NY, USA, 2017; pp. 109–121. [Google Scholar]
- Petsch, B.; Schnee, M.; Vogel, A.B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K.J.; Stitz, L.; et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 2012, 30, 1210–1216. [Google Scholar] [CrossRef]
- Geall, A.J.; Verma, A.; Otten, G.R.; Shaw, C.A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C.W.; Brito, L.A.; Krucker, T.; et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Khandhar, A.P.; O’Connor, M.A.; Walls, A.C.; Hemann, E.A.; Murapa, P.; Archer, J.; Leventhal, S.; Fuller, J.T.; Lewis, T.B.; et al. An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 2020, 12, eabc9396. [Google Scholar] [CrossRef]
- Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 168, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017, 543, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Buitrago-Pabón, A.L.; Ruiz-Sáenz, S.; Jiménez-Alberto, A.; Aparicio-Ozores, G.; Castelán-Vega, J.A.; Ribas-Aparicio, R.M. An Update on Zika Virus Vaccine Development and New Research Approaches. Microbiol. Res. 2024, 15, 667–692. [Google Scholar] [CrossRef]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine. N. Engl. J. Med. 2021, 385, e35. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Zika Virus mRNA Vaccine Trials; NIH: Bethesda, MD, USA, 2023.
- World Health Organization. Zika Virus Vaccines: Status of R&D; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Moderna. Clinical Trial Protocol: mRNA-1893 Zika Vaccine; Moderna: Cambridge, MA, USA, 2023. [Google Scholar]
- Richner, J.M.; Diamond, M.S. Zika virus vaccines: Immune response, current status, and future challenges. Curr. Opin. Immunol. 2018, 53, 130–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Zika vaccine development: Current status. Mayo Clin. Proc. 2019, 94, 2572–2586. [Google Scholar] [CrossRef]
- Lunardelli, V.A.S.; Apostolico, J.S.; Fernandes, E.R.; Santoro Rosa, D. Z.i.k.a.virus-an update on the current efforts for vaccine development. Hum. Vaccin. Immunother. 2021, 17, 904–908. [Google Scholar] [CrossRef]
- Abbink, P.; Larocca, R.A.; De La Barrera, R.A.; Bricault, C.A.; Moseley, E.T.; Boyd, M.; Kirilova, M.; Li, Z.; Ng’ang’a, D.; Nanayakkara, O.; et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 2016, 353, 1129–1132. [Google Scholar] [CrossRef]
- Stephenson, K.E.; Keefer, M.C.; Bunce, C.A.; Frances, D.; Abbink, P.; Maxfield, L.F.; Borducchi, E.N.; Peter, L.; Jacobs, A.; Quirk, E.; et al. First-in-Human Randomized Controlled Trial of an Oral, Replicating Adenovirus 26 Vector Vaccine for HIV-1. PLoS ONE 2018, 13, e0205139. [Google Scholar] [CrossRef]
- Poland, G.A.; Jacobson, R.M. The age-old struggle against the antivaccine movement. N. Engl. J. Med. 2011, 364, 97–99. [Google Scholar] [CrossRef]
- Fontanet, A.; Cauchemez, S. COVID-19 herd immunity: Where are we? Nat. Rev. Immunol. 2020, 20, 583–584. [Google Scholar] [CrossRef]
- Dolgin, E. CureVac’s trials and tribulations. Nat. Biotechnol. 2021, 39, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Kremsner, P.G.; Mann, P.; Kroidl, A.; Leroux-Roels, I.; Schindler, C.; Gabor, J.J.; Schunk, M.; Leroux-Roels, G.; Bosch, J.J.; Fendel, R.; et al. Safety and Immunogenicity of an mRNA-Lipid Nanoparticle Vaccine Candidate against SARS-CoV-2: A Phase 1 Randomized Clinical Trial. Wien. Klin. Wochenschr. 2021, 133, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.; Roth, N.; Schwendt, K.; Fotin-Mleczek, M.; Mueller, S.O.; Petsch, B. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. npj Vaccines 2021, 6, 57. [Google Scholar] [CrossRef]
- Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; et al. Efficacy and Safety of a Recombinant Plant-Based Adjuvanted COVID-19 Vaccine. N. Engl. J. Med. 2022, 386, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Barouch, D.H.; Tomaka, F.L.; Wegmann, F.; Stieh, D.J.; Alter, G.; Robb, M.L.; Michael, N.L.; Peter, L.; Nkolola, J.P.; Borducchi, E.N.; et al. Evaluation of a Mosaic HIV-1 Vaccine in a Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 1/2a Clinical Trial (APPROACH) and in Rhesus Monkeys (NHP 13–19). Lancet 2018, 392, 232–243. [Google Scholar] [CrossRef]
- Kaur, A.; Vaccari, M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024, 16, 368. [Google Scholar] [CrossRef]
- Corey, L.; Gilbert, P.B.; Juraska, M.; Montefiori, D.C.; Morris, L.; Karuna, S.T.; Edupuganti, S.; Mgodi, N.M.; deCamp, A.C.; Rudnicki, E.; et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N. Engl. J. Med. 2021, 384, 1003–1014. [Google Scholar] [CrossRef]
- IAVI. Media Roundup: News Coverage Highlights Preliminary Data from IAVI G001 Clinical Trial. IAVI, 3 February 2021. Available online: https://www.iavi.org/features/media-roundup-news-coverage-highlights-preliminary-data-from-iavi-g001-clinical-trial/ (accessed on 29 September 2025).
- Moderna. Clinical Trial Protocol: mRNA-1644 HIV Vaccine; Moderna: Cambridge, MA, USA, 2023. [Google Scholar]
- Moderna. Clinical Trial Protocol: mRNA-1574 Multivalent HIV Vaccine; Moderna: Cambridge, MA, USA, 2023. [Google Scholar]
- Kwong, P.D.; Mascola, J.R.; Nabel, G.J. Rational design of vaccines to elicit broadly neutralizing antibodies against HIV-1. Cold Spring Harb. Perspect. Med. 2011, 1, a007278. [Google Scholar] [CrossRef] [PubMed]
- Burton, D.R.; Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 2016, 34, 635–659. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, K.E.; Wagh, K.; Korber, B.; Barouch, D.H. Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention. Annu. Rev. Immunol. 2020, 38, 673–703. [Google Scholar] [CrossRef]
- Caskey, M.; Klein, F.; Nussenzweig, M.C. Broadly neutralizing antibodies for HIV-1 prevention or immunotherapy. N. Engl. J. Med. 2019, 380, 2057–2060. [Google Scholar] [CrossRef]
- Pardi, N.; Muramatsu, H.; Weissman, D.; Karikó, K. In vitro transcription of long RNA containing modified nucleosides. In Synthetic Messenger RNA and Cell Metabolism Modulation; Methods in Molecular Biology, Volume 969; Humana Press: Totowa, NJ, USA, 2013; pp. 29–42. [Google Scholar]
- Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef]
- Banchereau, J.; Palucka, K. Cancer vaccines on the move. Nat. Rev. Clin. Oncol. 2018, 15, 9–10. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An Immunogenic Personal Neoantigen Vaccine for Patients with Melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; et al. Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef]
- Moderna. Clinical Pipeline Update: mRNA-4157 Personalized Cancer Vaccine; Moderna: Cambridge, MA, USA, 2024. [Google Scholar]
- Melief, C.J.M.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018, 18, 168–182. [Google Scholar] [CrossRef]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer. 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; et al. Therapeutic Vaccines for Cancer: An Overview of Clinical Trials. Nat. Rev. Clin. Oncol. 2014, 11, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Vaccines: Past, present and future. Nat. Med. 2005, 11, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R.; Pizza, M.; Del Giudice, G.; De Gregorio, E. Vaccines, new opportunities for a new society. Proc. Natl. Acad. Sci. USA 2014, 111, 12288–12293. [Google Scholar] [CrossRef]
- MacDonald, N.E.; SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Larson, H.J.; Jarrett, C.; Eckersberger, E.; Smith, D.M.D.; Paterson, P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007–2012. Vaccine 2014, 32, 2150–2159. [Google Scholar] [CrossRef]
- Dubé, E.; Gagnon, D.; MacDonald, N.E. Strategies intended to address vaccine hesitancy: Review of published reviews. Vaccine 2015, 33, 4191–4203. [Google Scholar] [CrossRef] [PubMed]
- Ehreth, J. The global value of vaccination. Vaccine 2003, 21, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, S.; Clark, S.; Portnoy, A.; Grewal, S.; Stack, M.L.; Sinha, A.; Mirelman, A.; Franklin, H.; Friberg, I.K.; Tam, Y.; et al. Estimated Economic Impact of Vaccinations in 73 Low- and Middle-Income Countries, 2001–2020. Bull. World Health Organ. 2017, 95, 629–638. [Google Scholar] [CrossRef]
- La Torre, G. Value in Assessing New Vaccines. Ital. J. Public Health 2009, 6, 202–204. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Weston, M. The value of vaccination. World Econ. 2005, 6, 15–39. [Google Scholar]
- Luyten, J.; Beutels, P. The social value of vaccination programs: Beyond cost-effectiveness. Health Aff. 2016, 35, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Barnighausen, T.; Bloom, D.E.; Cafiero-Fonseca, E.T.; O’Brien, J.C. Valuing vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12313–12319. [Google Scholar] [CrossRef]
- Jit, M.; Brisson, M.; Portnoy, A.; Hutubessy, R. Cost-effectiveness of female human papillomavirus vaccination in 179 countries: A PRIME modelling study. Lancet Glob. Health 2014, 2, e406–e414. [Google Scholar] [CrossRef] [PubMed]
- Chesson, H.W.; Ekwueme, D.U.; Saraiya, M.; Markowitz, L.E. Cost-effectiveness of human papillomavirus vaccination in the United States. Emerg. Infect. Dis. 2008, 14, 244–251. [Google Scholar] [CrossRef]
- Brisson, M.; Van de Velde, N.; Franco, E.L.; Boily, M.C. Incremental impact of adding boys to current human papillomavirus vaccination programs: Role of herd immunity. J. Infect. Dis. 2011, 204, 372–376. [Google Scholar] [CrossRef]
- Genovese, G.; Rizzo, C.E.; Nirta, A.; Bartucciotto, L.; Venuto, R.; Fedele, F.; Squeri, R.; Genovese, C. Mapping Healthcare Needs: A Systematic Review of Population Stratification Tools. Med. Sci. 2025, 13, 145. [Google Scholar] [CrossRef]
- Venuto, R.; Rizzo, C.E.; Lo Giudice, D.; Fries, W.; Ceccio, C.; Fedele, F.; Squeri, R.; Genovese, C. Vaccination Coverage in Adult Patients with Inflammatory Bowel Disease: Impact of a Tailored Vaccination Pathway Including COVID-19 and Herpes Zoster in a University Hospital Vaccination Center. Vaccines 2025, 13, 961. [Google Scholar] [CrossRef] [PubMed]
Area of Intervention | Proposed Actions | Key Stakeholders | Expected Outcomes |
---|---|---|---|
National Planning |
| Ministry of Health, Agenas, Regional Governments | Reduce per capita spending gap; ensure minimum prevention standards |
Prevention Departments |
| Regional Governments, Local Health Authorities (ASL), Universities | Enhance operational capacity and standardize services |
Accessibility and Coverage |
| Local Health Authorities, GPs, Pediatricians, Pharmacies, Municipalities | Increase participation in screening and vaccination; reduce geographic disparities |
Reducing Socio-Cultural Barriers |
| Schools, Associations, Municipalities, Local Health Authorities | Increase awareness and particip |
National Planning |
| Ministry of Health, Agenas, Regional Governments | Reduce per capita spending gap; ensure minimum prevention standards |
Area | % of Prevention Budget (Est.) |
---|---|
Vaccinations | 25–30% |
Cancer screening programs | 20–25% |
Environmental and public health | 20–25% |
Health education | 10–15% |
Occupational medicine | 5–10% |
Pathogen/Pathogen Group | Key Immune-Evasion Mechanisms | Why This Makes Vaccine Development Hard |
---|---|---|
HIV-1 |
| It is difficult to design immunogens that induce broadly neutralizing antibodies (bnAbs), because conserved sites are often hidden or transient; also, any vaccine needs to deal with the latent virus or reduce its ability to rebound. Correlates of protection are still uncertain. |
Influenza viruses |
| Annual vaccine effectiveness fluctuates; strain mismatch reduces protection; designing a “universal flu vaccine” that elicits broadly neutralizing and durable immunity remains very hard. |
Staphylococcus aureus |
| Many vaccine candidates have failed in late-phase trials despite promising early immunogenicity; vaccines need to induce the right kind of immune response (e.g., functional antibodies, T cell responses) rather than just high antibody titers. |
Monkeypox (MPXV) |
| Vaccine strain selection and delivery, plus boosting innate immune recognition, are areas of active study; but immune evasion challenges mean vaccine responses may be less robust or durable in some hosts. |
Aspect | mRNA-1010 (Moderna) | Pfizer mRNA | Combo mRNA-1083 (Moderna) |
---|---|---|---|
Immunogenicity | Superior/non-inferior (A/B) | Non-inferior; B gap | Higher immunity (A/B + COVID) |
Safety | Mild reactions; no concern | Comparable to standard | Similarly to separate vaccines |
Status | Phase 3, nearing approval | Promising, under optimization | Phase 3 passed; FDA requested more data |
Type | Name | Technology | Approved Age Group | Efficacy |
---|---|---|---|---|
mRNA | mRNA-1345 (Moderna) | mRNA (pre-fusion F protein) | ≥60 y (expansion 18–59) | ~84% |
Protein | Arexvy (GSK) | Recombinant F protein + adjuvant | ≥60 y | ~83% |
Protein | Abrysvo (Pfizer) | Pre-fusion RSV-A/B proteins | ≥60 y + maternal use | 67–85% |
Candidate | Phase | Target | Strategy | Status |
---|---|---|---|---|
mRNA-1644 | 1 | bnAbs (germline) | Sequential prime-boost | Ongoing |
IAVI G001 | 1 | B-cell precursor activation | eOD-GT8 targeting | Completed |
mRNA-1574 | 1 | Broad immune response | Multivalent mRNA design | Ongoing |
Vaccine | Study | Efficacy Against Symptomatic COVID-19 |
---|---|---|
Pfizer-BioNTech | Polack et al., NEJM 2020 [11] | 95% |
Moderna | Baden et al., NEJM 2021 [12] | 94.1% |
(a) | |||
Type | Frequency | Description | Duration |
Local reactions | ~80% | Pain, swelling, redness | 1–3 days |
Systemic | 60–70% | Fever, fatigue, headache | 1–3 days |
(b) | |||
Event | Frequency (per Million) | Notes | |
Myocarditis/pericarditis | 12–40 cases | Mainly young males; usually mild | |
Anaphylaxis | 2–5 cases | Treatable with epinephrine | |
Immune thrombocytopenia | Very rare | Reported more often post-AstraZeneca |
Parameter | Value |
---|---|
Baseline hospitalizations (no vax) | 1000 |
Hospitalizations (with vax) | 550 |
Deaths avoided | 48 |
Incremental QALYs gained | 248 |
ICER (€/QALY) | −5664 (cost-saving) |
Cost per hospitalization avoided | −3122 € |
Cost per death avoided | −29,270 € |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovese, G.; Rizzo, C.E.; Genovese, C. Health Technology Assessment of mRNA Vaccines: Clinical, Economic, and Public Health Implications. Vaccines 2025, 13, 1045. https://doi.org/10.3390/vaccines13101045
Genovese G, Rizzo CE, Genovese C. Health Technology Assessment of mRNA Vaccines: Clinical, Economic, and Public Health Implications. Vaccines. 2025; 13(10):1045. https://doi.org/10.3390/vaccines13101045
Chicago/Turabian StyleGenovese, Giovanni, Caterina Elisabetta Rizzo, and Cristina Genovese. 2025. "Health Technology Assessment of mRNA Vaccines: Clinical, Economic, and Public Health Implications" Vaccines 13, no. 10: 1045. https://doi.org/10.3390/vaccines13101045
APA StyleGenovese, G., Rizzo, C. E., & Genovese, C. (2025). Health Technology Assessment of mRNA Vaccines: Clinical, Economic, and Public Health Implications. Vaccines, 13(10), 1045. https://doi.org/10.3390/vaccines13101045