Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines
Abstract
:1. Introduction
2. Methods
3. PRRS MLV Vaccines
3.1. The Status of MLV Vaccines
Species | Vaccine | Parental Strain | Lineage | Usage | Producer | Heterologous Protection |
---|---|---|---|---|---|---|
PRRSV-1 | Ingelvac PRRSFLEX EU | 94881 | subtype 1 | Piglet | Boehringer Ingelheim | Provide protection against virulent, heterologous PRRSV-1 challenge [25]. |
ReproCyc PRRS EU | 94881 | subtype 1 | Sow | Boehringer Ingelheim | Reduce viremia, fetal damage, and transplacental transmission caused by a heterologous PRRSV-1 strain [28]. | |
Unistrain PRRS | VP-046 BIS | subtype 1 | Piglet, Sow | Hipra | Provide partial protection when the pigs are challenged the subtype 3 PRRSV strain, Lena [31]; can reduce the levels of type 1 but not type 2 PRRSV viremia [33]; only provided partial protection against HP-PRRSV [34]. | |
Amervac PRRS | VP-046 | subtype 1 | Piglet, Sow | Hipra | Induce relatively slow cell-mediated immunity (CMI), increase production of IL-10, and low lung lesions against co-challenge with PRRSV-1 and PRRSV-2 [54]. | |
Porcilis PRRS | DV | subtype 1 | Piglet, Sow | MSD Animal Health | Induce efficient CMI responses and had a protective effect on a heterologous European (Italian cluster) field strain [29,30]; pProvide partial protection when the pigs are challenged the subtype 3 PRRSV strain, Lena [31]; iInduce relatively slow CMI, increased production of IL-10, and low lung lesions against co-challenge with PRRSV-1 and PRRSV-2 [54]. | |
Suvaxyn PRRS MLV | 96V198 | subtype 1 | Piglet, Sow | Zoetis | Unable to mount sufficient heterologous protection against heterologous challenge with the PRRSV NADC20 strain [35]. | |
PRRSV-2 | Prevacent PRRS | RFLP 184 | lineage 1 | Piglet, Sow | Elanco | Can partially protect against heterologous and phylogenetically distant strains of PRRSV-2, including NC174 or NADC30 (both lineage 1), VR2332 (lineage 5), or NADC20 (lineage 8) [45]. |
Ingelvac PRRS MLV | VR-2332 | lineage 5 | Piglet, Sow | Boehringer Ingelheim | Provide a limited cross-protection against the HP-PRRSV strain or NADC34-like strain infection [44,51,55]; induce relatively slow CMI, increased production of IL-10, and low lung lesions against co-challenge with PRRSV-1 and PRRSV-2 [54]. | |
R98 | R98 | lineage 5 | Piglet, Sow | Nanjing Agricultural University | Is not effective against NADC34-like strains [44]. | |
Prime Pac PRRS | Neb-1 | lineage 7 | Piglet, Sow | MSD Animal Health | Induce relatively slow CMI, increased production of IL-10, and low lung lesions against co-challenge with PRRSV-1 and PRRSV-2 [54]. | |
Ingelvac PRRS ATP | JA-142 | lineage 8 | Piglet, Sow | Boehringer Ingelheim | Induce relatively slow CMI, increased production of IL-10, and low lung lesions against co-challenge with PRRSV-1 and PRRSV-2 [54]. | |
Fostera PRRS | P129 | lineage 8 | Piglet, Sow | Zoetis | Confer partial cross-protection against heterologous challenge of PRRSV-1 and PRRSV-2 (lineage-1 (SNUVR090851), 3, 8 (HP-PRRSV), 9 (NADC20)) strains under experimental conditions [30,33,46,47,48,49,50]; provide incomplete cross-protection against a heterologous variant strain that resulted from the recombination between NADC30-like, NADC34-like, and JXA1-like viruses [56]; induce relatively slow CMI, increase production of IL-10, and low lung lesions against co-challenge with PRRSV-1 and PRRSV-2 [54]. | |
CH-1R | CH-1a | lineage 8 | Piglet, Sow | Harbin Veterinary Research Institute, | Provide better cross-protection than HP-PRRSV MLV vaccines against NADC30-like strains [52,53]. | |
HuN4-F112 | HuN4 | lineage 8 | Piglet, Sow | Harbin Veterinary Research Institute, | Cannot provide full protection against a recombinant virus from lineage 8 and 3 [55]. | |
JXA1-R | JXA1 | lineage 8 | Piglet, Sow | Chinese Center for Animal Disease Control and Prevention | Provide efficacious protection against the HP-PRRSV strain infection [51]; can confer protection against the heterologous PRRSV strain NADC-20 [57]; provide limited cross-protection against NADC30-like strain [53]. | |
TJM-F92 | TJ | lineage 8 | Piglet, Sow | Institute of Special Animal and Plant Sciences, CAAS | Provide efficacious protection against the HP-PRRSV strain infection [51]; provide limited cross-protection against NADC30-like strain [53,58]. |
3.2. The Challenges of MLV Vaccines
Vaccine Strain | Wild or Vaccine Strain | Recombinant Virus | Recombinant Virulence | Place | References |
---|---|---|---|---|---|
Ingelvac PRRSFLEX EU MLV | PRRSV-1 subtype 1 | GER18-258 | Leads to symptoms such as, conjunctivitis, enlarged joints, respiratory distress, stillbirths, weak piglets born, and elevated pre-weaning mortality | Germany | [59] |
Ingelvac PRRSFLEX EU MLV | PRRSV-1 subtype 1 | AUT20-1664 and AUT22-97 | Respiratory distress, wasting, and increased mortality | Austrian | [59] |
Amervac-PRRS MLV | PRRSV-1 subtype 1 | HLJB1 | Cause fever, reddened conjunctiva, and respiratory symptoms | China | [60] |
CH-1R | PRRSV-2 lineage 8 (HP-PRRSV WUH1 strain) | Em2007 | Obvious clinical signs, including inappetence, lethargy, high and continuous fever, red discolorations in the body, and blue ears; mild interstitial pneumonia and nonsuppurative encephalitis; no deaths | China | [61] |
RespPRRS MLV/Ingelvac PRRS MLV | PRRSV-2 lineage 3 (QYYZ) | GM2 | Induce severe respiratory problems, diarrhea, poor growth and persistent higher fever | China | [62,63] |
RespPRRS MLV | PRRSV-2 lineage 1 (NADC30-like) and 8 (HP-PRRSV JXA1-like strain) | SCN17 | Exhibit moderate virulence, causing a persistent fever, moderate interstitial pneumonia, high level of viremia and antibodies | China | [64] |
HP-PRRSV MLV (JXA1-R) | PRRSV-2 lineage 1 (NADC30-like) | FJXS15 | Cause severe histopathological lung lesions and is highly virulent | China | [65] |
RespPRRS MLV | PRRSV-2 lineage 1 (NADC30-like) | PRRSV-HB-16-China-2019 | Is moderately virulent | China | [66] |
HP-PRRSV MLV (JXA1 P80) | PRRSV-2 lineage 1 (NADC30-like) | TJnh1501, SDyt1401, SDwh1601 | Cause a protracted fever, moderate respiratory symptoms, elevated viremia, and visible lung lesions in piglets | China | [67,68] |
HP-PRRSV MLV (JXA1-R) | PRRSV-2 lineage 1 (NADC30) and 8 (HP-PRRSV TJ strain) | DJY-19 | Cause high fever and other symptoms of PRRS | China | [70] |
Ingelvac PRRS MLV | Prevacent PRRS | USA/IN105404/2021 | Induce microscopic lesions | Indiana, USA | [71] |
Unistrain PRRS MLV | Porcilis PRRS MLV | PRRS-FR-2014-56-11-1, PRRS-FR-2016-56-11-1 | No significant clinical signs; increased excretion and transmission capacities compared to parental vaccine strains | France | [72] |
Amervac-PRRS MLV | Suvaxyn PRRS MLV (96V198 strain) | “Horsens” virus | Highly transmissible; cause severe disease in infected herds | Danish | [73] |
Ingelvac PRRS MLV | PRRSV-2 lineage 8 (HP-PRRSV JXA1 similar strain) | SD2020 | Cause high fever, dyspnea, and depression, with a mortality rate of 60% | Shandong, China | [74] |
Prevacent MLV | PRRSV-2 lineage 1 | 5606R-S6-L001/IA/2015/ISU-9 | Cause typical symptoms | USA | [75] |
Fostera PRRSV vaccine | PRRSV-2 Lineage 1 (IA76950-WT) | IA70388-R | Exhibit coughing and had interstitial pneumonia | Iowa, USA | [76] |
Fostera PRRS MLV | PRRSV-2 lineage 1 | 20D160-1, 21R2-63-1 | Causes pigs to develop abdominal breathing and coughing | Korea | [77] |
HP-PRRSV MLV (TJM-F92) | PRRSV-2 lineages 1 (NADC30-like), 3 (QYYZ-like), and 8.7 (HP-PRRSV JXA1-like strain) | PRRSV2/CN/SS0/2020, PRRSV2/CN/SS1/2021, PRRSV2/CN/L3/2021, PRRSV2/CN/L4/2020 | Is high pathogenicity in pigs | China | [78] |
HP-PRRSV MLV (TJM-F92) | HP-PRRSV MLV (HuN4-F112) | HeN1301 | Mild clinical symptoms | China | [79] |
Amervac-PRRS MLV | Porcilis PRRS MLV (DV strain) | TZJ2134 | Cause mild clinical symptoms | China | [80] |
4. Inactivated Vaccines
Measure | Specific Method | Virus Strain | Immune Efficacy | References |
---|---|---|---|---|
Optimization of inactivation procedures | UV-killed | Lelystad | Induces virus-specific antibodies and strongly prime the virus-neutralizing (VN) antibody response. | [83] |
binary ethylenimine (BEI)-killed | Lelystad | Induces high titers (3.4 log2) of VN antibodies and, after challenge, neutralizing antibody titers rise to a mean value of 5.5 log2, and the duration of the viremia is reduced to an average of 1 week. | [83] | |
Addition of Adjuvants | Radix pseudostellariae polysaccharide (RPP) | CH-1a | Significantly increases the concentrations of PRRSV GP5 protein antibody, interleukin (IL)-2, IL-4, IL-10, and interferon (IFN)-γ through interactions with the microbiome and metabolom. | [84] |
Emulsion | 07V063 | Montanide ISA28RVG induces specific antibody responses; squalene in water emulsion (SWE) induces a specific T cell IFN-γ response. | [85] | |
IFNα | PRRSV KV | Significantly increases the levels of PRRSV-specific antibodies, neutralizing antibodies, IL-4, IFN-γ, and lymphocytes. | [86] | |
IFN-γ and GM-CSF | PRRSV KV | Significantly increases neutralizing antibody titers, accelerates viral clearance, reduces clinical symptoms, and prevents highly pathogenic PRRSV infection. | [87] | |
Toll-like receptor agonists | 07V063 | TLR9 agonist reduces viremia, and induces a non-antigen-specific IFN-γ and an anamnestic antibody response after a homologous challenge. | [88] | |
Purified fraction of Albizia julibrissin saponins | CH-1R IAV | Elicits both Th1/Th2 and Tc1/Tc2 response. | [89] | |
A PRRSV-specific IgM monoclonal antibody (Mab)-PR5nf1 | VR2332 | Significantly improves serum IFN-γ, overall survival rate, and cell-mediated immunity (CMI) after challenge with HP-PRRSV. | [90] | |
Nanoparticles (NPs) | VLP-NPs with heat-labile enterotoxin subunit B (LTB) and dimethyldioctadecylammonium bromide (DDA) | S1/17 MA2-2 0117 ORF5US | Induces high levels of IFN-γ-producing cells, IgG, IgA, and viral neutralizing titers; low levels of IL-10, PRRSV RNA, and macro- and microscopic lung lesions. | [93] |
Mannose modified gelatin nanoparticle (MnGNP) | TJ-F10 | Induce maturation of MoDCs and significantly enhance the expression of markers on MoDCs, the secretion of cytokines in MoDCs, the activation and proliferation of T cells, and function to kill PRRSV-infected cells. | [94] | |
PLGA-NPs | VR2332 | Increases the number of NK cells and γδ cells, secretion of IFNα and cytokines; response of CD8+ T cells and IFN-γ, and protection against homologous and heterologous challenge. | [95,96] | |
PLGA-NPs with M. tuberculosis WCL | VR2332 | Elicit strong antibody and cell-mediated reactions; enhanced heterologous protection. | [97,98] | |
Modification of viral proteins | Deglycosylation of GP5 | FL12 | Enhances the immunogenicity of the inactivated PRRSV, and double administrations confer protection against the homologous challenge. | [99] |
5. Vector Vaccines
6. Subunit Vaccines
Antigens | Expression System | Modify | Pigs Age | Adjuvants | Route | Results | References |
---|---|---|---|---|---|---|---|
GP3 and GP5 | Baculovirus/Sf9 cells | / | pregnant sows | / | IM | Provide specific protective effects | [117] |
GP2, GP4, and GP5 | Baculovirus/Sf9 cells | Ectodomain of fusion proteins | 3 weeks | Montanide ISA201 | IM | Induces elevated levels of IFN-γ, IL-4, neutralizing and ELISA-specific antibodies. | [118] |
GP5 | plant binary vector pGKU/tobacco leaves | / | 6 weeks | / | Orally | Triggers specific mucosal, humoral, and cellular immune responses | [118] |
GP5 | plant binary vector pGKU/banana | / | 6 weeks | / | Orally | Causes significantly low levels of viraemia and tissue viral load. | [119] |
GP4 and GP5 | plant transformation vector pGreenII0229/Arabidopsis | Codon-optimized and transmembrane-deleted | 4 weeks | / | Orally | Has high levels of PRRSV-specific antibodies, pro-inflammatory cytokines (TNF-α and IL-12), and IFN-γ-producing cells, and low levels of regulatory T cells. | [120] |
GP5 | Escherichia coli | combined with two hydrophilic fragments by a four-aa-linker (GGSG) | 3 weeks | Astragalus/Bacillus | IM | Enhances humoral immune and cell-mediated immune responses; has low viremia, slight clinical signs, and less pathological lung lesions. | [121] |
GP5 | Escherichia coli BL21 | combined with two hydrophilic fragments by a four-aa-linker (GGSG) | 3 weeks | Taishan Pinus massoniana pollen polysaccharide (TPPPS) | IM | Has high titers of specific antibodies, neutralizing antibodies, T lymphocyte proliferation, and the percentage of the CD3(+) T lymphocyte subpopulation; has low viremia, few clinical signs, and few pathological lung lesions. | [122] |
GP3 and GP5 | adenoviruses/HEK-293A cells | / | 3 weeks | porcine CD40 ligand | IM | Provides significant high specific anti-PRRSV ELISA antibody, neutralizing antibody, IFN-γ, and IL-4; shows lighter clinical signs and lower viremia following homologous challenge. | [123] |
GP5, GP4, GP3, GP2a and M proteins | Baculovirus/Sf9 cells | Entrapped in PLGA nanoparticles | 4~6 weeks | M. tuberculosis WCL | IN | Boosts IgG and IFN-γ production; a two-log reduction in the lung viral load; offers partial protection after challenge with heterologous virus. | [124] |
N, M, GP5 and E proteins | Baculovirus/Sf9 cells | Entrapped in VLP nanoparticles | 3 weeks | 2′,3′-cGAMP VacciGrade™ (Invivogen, USA) | IN | Enhanced viremia associated with IFN-α, IFN-γ, and IL-10. | [125] |
GP5 | pcDNA3.1/Hela cells | Entrapped in PLGA nanoparticles of modified GP5 (inserting a Pan DR T-helper cell epitope (PADRE) between the neutralizing epitope and the decoy epitope) | 3 weeks | Ulex europaeus agglutinin 1 (UEA-1) | Orally | Increased serum IgG levels and augmented intestinal IgA levels. | [126] |
GP5 | Baculovirus/Sf9 cells | Fusion expression of modified GP5 (Replace the decoy epitope of GP5 by the neutralizing epitope and replaced the asparagine triplet (AAC) at positions N34, N44, and N51 of GP5 with the alanine triplet (GCC)) and ferritin, and entrapped in VLP nanoparticles | 2 weeks/4 weeks | ISA-201/aluminum hydroxide adjuvant | IM | High serum antibody levels, neutralizing antibody titers, T lymphocyte proliferation index, and IFN-γ levels; effectively protected piglets against a highly pathogenic PRRSV challenge. | [127,128] |
GP4, GP5, and N proteins | synthesized | Fusion expression of two B-cell epitopes, seven T cell epitopes, with a Pan DR T-helper cell epitope | 4 weeks | N-terminal 22-355 aa of heat shock proteinGp96 (Gp96N) | IM | Causes mild clinical symptoms, low viremia, and little pathological lesions in the lungs following challenge with HP-PRRSV, but cannot provide lasting and effective protection against HP-PRRSV infection. | [129] |
ORF7, ORF1b, and GP5&M proteins | pET23 vector/Escherichia coli | Fusion expression of 10 PRRSV-specific CTL epitopes in ORF7, ORF1b, and ORF6&5, with a modified porcine Fc | 4 weeks/sows | Pseudo monas exotoxin A (PE) | IM | Induces PRRSV-specific INF-γ cellular immunity and neutralizing antibodies in pigs; enhances sow reproductive performance and activates maternal immune defenses to prevent piglets from inflicting viremia. | [130] |
7. Nucleic Acid Vaccines
7.1. DNA Vaccines for PRRSV
7.2. RNA Vaccines for PRRSV
8. Discussion and Some Strategies
- Vaccine preparation
- Vaccine combination immunization
- Vaccine administration
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Li, Z.; Li, H.; Yang, S.; Ren, F.; Bian, T.; Sun, L.; Zhou, B.; Zhou, L.; Qu, X. The economic impact of porcine reproductive and respiratory syndrome outbreak in four Chinese farms: Based on cost and revenue analysis. Front. Vet. Sci. 2022, 9, 1024720. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, N.; Duinhof, T.F.; van Nes, A. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet. Rec. 2012, 170, 225. [Google Scholar] [CrossRef]
- Kappes, M.A.; Faaberg, K.S. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015, 479–480, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, L.; Yang, M.; Wu, W.; Feng, W.; Chen, Z. The Function of the PRRSV-Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines 2021, 9, 364. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Faaberg, K.S. Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res. 2006, 122, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.Z.; Zhou, Y.J.; Hao, X.F.; Tian, Z.J.; An, T.Q.; Qiu, H.J. Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg. Infect. Dis. 2007, 13, 1434–1436. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Q.; Cao, Z.; Tang, Y.D.; Xia, D.; Wang, G.; Shan, H. Recent Advances in Porcine Reproductive and Respiratory Syndrome Virus NADC30-Like Research in China: Molecular Characterization, Pathogenicity, and Control. Front. Microbiol. 2021, 12, 791313. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Wang, F.X.; Han, X.Y.; Guo, H.; Liu, C.Y.; Hou, L.N.; Wang, Y.X.; Zheng, H.; Wang, L.; Wen, Y.J. Recent advances in the study of NADC34-like porcine reproductive and respiratory syndrome virus in China. Front. Microbiol. 2022, 13, 950402. [Google Scholar] [CrossRef]
- Stadejek, T.; Stankevicius, A.; Murtaugh, M.P.; Oleksiewicz, M.B. Molecular evolution of PRRSV in Europe: Current state of play. Vet. Microbiol. 2013, 165, 21–28. [Google Scholar] [CrossRef]
- Ruedas-Torres, I.; Rodríguez-Gómez, I.M.; Sánchez-Carvajal, J.M.; Larenas-Muñoz, F.; Pallarés, F.J.; Carrasco, L.; Gómez-Laguna, J. The jigsaw of PRRSV virulence. Vet. Microbiol. 2021, 260, 109168. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Feng, W. Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines 2021, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, W.H. Porcine Reproductive and Respiratory Syndrome Virus Evades Antiviral Innate Immunity via MicroRNAs Regulation. Front. Microbiol. 2021, 12, 804264. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zhang, H.; Cheng, H.; Liu, M.; Wen, S.; Ren, J. Progress in PRRSV Infection and Adaptive Immune Response Mechanisms. Viruses 2023, 15, 1442. [Google Scholar] [CrossRef] [PubMed]
- Chae, C. Commercial PRRS Modified-Live Virus Vaccines. Vaccines 2021, 9, 185. [Google Scholar] [CrossRef]
- Maes, D.; Van Soom, A.; Appeltant, R.; Arsenakis, I.; Nauwynck, H. Porcine semen as a vector for transmission of viral pathogens. Theriogenology 2016, 85, 27–38. [Google Scholar] [CrossRef]
- Nathues, C.; Perler, L.; Bruhn, S.; Suter, D.; Eichhorn, L.; Hofmann, M.; Nathues, H.; Baechlein, C.; Ritzmann, M.; Palzer, A.; et al. An Outbreak of Porcine Reproductive and Respiratory Syndrome Virus in Switzerland Following Import of Boar Semen. Transbound. Emerg. Dis. 2016, 63, e251–e261. [Google Scholar] [CrossRef]
- Papakonstantinou, G.; Meletis, E.; Christodoulopoulos, G.; Tzika, E.D.; Kostoulas, P.; Papatsiros, V.G. Heterologous Challenge with PRRSV-1 MLV in Pregnant Vaccinated Gilts: Potential Risk on Health and Immunity of Piglets. Animals 2022, 12, 450. [Google Scholar] [CrossRef]
- Papakonstantinou, G.I.; Psalla, D.; Pourlis, A.; Stylianaki, I.; Athanasiou, L.V.; Tzika, E.; Meletis, E.; Kostoulas, P.; Maragkakis, G.; Christodoulopoulos, G.; et al. Histopathological Pulmonary Lesions in 1st-Day Newborn Piglets Derived from PRRSV-1 MLV Vaccinated Sows at the Last Stage of Gestation. Life 2023, 13, 1609. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, X.X.; Li, R.; Qiao, S.; Zhang, G. The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: A molecular epidemiological perspective. Virol. J. 2018, 15, 2. [Google Scholar] [CrossRef]
- Nan, Y.; Wu, C.; Gu, G.; Sun, W.; Zhang, Y.J.; Zhou, E.M. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front. Microbiol. 2017, 8, 1635. [Google Scholar] [CrossRef]
- Rathkjen, P.H.; Dall, J. Control and eradication of porcine reproductive and respiratory syndrome virus type 2 using a modified-live type 2 vaccine in combination with a load, close, homogenise model: An area elimination study. Acta Vet. Scand. 2017, 59, 4. [Google Scholar] [CrossRef] [PubMed]
- Pertich, A.; Barna, Z.; Makai, O.; Farkas, J.; Molnár, T.; Bálint, Á.; Szabó, I.; Albert, M. Elimination of porcine reproductive and respiratory syndrome virus infection using an inactivated vaccine in combination with a roll-over method in a Hungarian large-scale pig herd. Acta Vet. Scand. 2022, 64, 12. [Google Scholar] [CrossRef] [PubMed]
- Kraft, C.; Hennies, R.; Dreckmann, K.; Noguera, M.; Rathkjen, P.H.; Gassel, M.; Gereke, M. Evaluation of PRRSv specific, maternally derived and induced immune response in Ingelvac PRRSFLEX EU vaccinated piglets in the presence of maternally transferred immunity. PLoS ONE 2019, 14, e0223060. [Google Scholar] [CrossRef] [PubMed]
- Duerlinger, S.; Knecht, C.; Sawyer, S.; Balka, G.; Zaruba, M.; Ruemenapf, T.; Kraft, C.; Rathkjen, P.H.; Ladinig, A. Efficacy of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) Vaccine against Experimental Infection with PRRSV AUT15-33 in Weaned Piglets. Vaccines 2022, 10, 934. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.; Piontkowski, M.; Kraft, C.; Coll, T.; Gomez-Duran, O. Initial vaccination and revaccination with Type I PRRS 94881 MLV reduces viral load and infection with porcine reproductive and respiratory syndrome virus. Porc. Health Manag. 2018, 4, 23. [Google Scholar] [CrossRef]
- Balka, G.; Dreckmann, K.; Papp, G.; Kraft, C. Vaccination of piglets at 2 and 3 weeks of age with Ingelvac PRRSFLEX® EU provides protection against heterologous field challenge in the face of homologous maternally derived antibodies. Porc. Health Manag. 2016, 2, 24. [Google Scholar] [CrossRef]
- Stadler, J.; Zoels, S.; Eddicks, M.; Kraft, C.; Ritzmann, M.; Ladinig, A. Assessment of safety and reproductive performance after vaccination with a modified live-virus PRRS genotype 1 vaccine in pregnant sows at various stages of gestation. Vaccine 2016, 34, 3862–3866. [Google Scholar] [CrossRef]
- Kreutzmann, H.; Stadler, J.; Knecht, C.; Sassu, E.L.; Ruczizka, U.; Zablotski, Y.; Vatzia, E.; Balka, G.; Zaruba, M.; Chen, H.W.; et al. Phenotypic Characterization of a Virulent PRRSV-1 Isolate in a Reproductive Model With and Without Prior Heterologous Modified Live PRRSV-1 Vaccination. Front. Vet. Sci. 2022, 9, 820233. [Google Scholar] [CrossRef]
- Martelli, P.; Cordioli, P.; Alborali, L.G.; Gozio, S.; De Angelis, E.; Ferrari, L.; Lombardi, G.; Borghetti, P. Protection and immune response in pigs intradermally vaccinated against porcine reproductive and respiratory syndrome (PRRS) and subsequently exposed to a heterologous European (Italian cluster) field strain. Vaccine 2007, 25, 3400–3408. [Google Scholar] [CrossRef]
- Martelli, P.; Gozio, S.; Ferrari, L.; Rosina, S.; De Angelis, E.; Quintavalla, C.; Bottarelli, E.; Borghetti, P. Efficacy of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs naturally exposed to a heterologous European (Italian cluster) field strain: Clinical protection and cell-mediated immunity. Vaccine 2009, 27, 3788–3799. [Google Scholar] [CrossRef]
- Bonckaert, C.; van der Meulen, K.; Rodríguez-Ballarà, I.; Pedrazuela Sanz, R.; Martinez, M.F.; Nauwynck, H.J. Modified-live PRRSV subtype 1 vaccine UNISTRAIN(®) PRRS provides a partial clinical and virological protection upon challenge with East European subtype 3 PRRSV strain Lena. Porc. Health Manag. 2016, 2, 12. [Google Scholar] [CrossRef]
- Trus, I.; Bonckaert, C.; van der Meulen, K.; Nauwynck, H.J. Efficacy of an attenuated European subtype 1 porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs upon challenge with the East European subtype 3 PRRSV strain Lena. Vaccine 2014, 32, 2995–3003. [Google Scholar] [CrossRef]
- Choi, K.; Park, C.; Jeong, J.; Kang, I.; Park, S.J.; Chae, C. Comparison of commercial type 1 and type 2 PRRSV vaccines against heterologous dual challenge. Vet. Rec. 2016, 178, 291. [Google Scholar] [CrossRef] [PubMed]
- Madapong, A.; Saeng-Chuto, K.; Chaikhumwang, P.; Tantituvanont, A.; Saardrak, K.; Pedrazuela Sanz, R.; Miranda Alvarez, J.; Nilubol, D. Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet. Microbiol. 2020, 244, 108655. [Google Scholar] [CrossRef]
- Cao, Q.M.; Ni, Y.Y.; Cao, D.; Tian, D.; Yugo, D.M.; Heffron, C.L.; Overend, C.; Subramaniam, S.; Rogers, A.J.; Catanzaro, N.; et al. Recombinant Porcine Reproductive and Respiratory Syndrome Virus Expressing Membrane-Bound Interleukin-15 as an Immunomodulatory Adjuvant Enhances NK and γδ T Cell Responses and Confers Heterologous Protection. J. Virol. 2018, 92, e00007-18. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.I.; Kim, J.J.; Cha, S.H.; Yoon, K.J. Different biological characteristics of wild-type porcine reproductive and respiratory syndrome viruses and vaccine viruses and identification of the corresponding genetic determinants. J. Clin. Microbiol. 2008, 46, 1758–1768. [Google Scholar] [CrossRef]
- Mengeling, W.L.; Lager, K.M.; Vorwald, A.C.; Clouser, D.F. Comparative safety and efficacy of attenuated single-strain and multi-strain vaccines for porcine reproductive and respiratory syndrome. Vet. Microbiol. 2003, 93, 25–38. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, K.; Kang, I.; Park, C.; Chae, C. Evaluation of a 20year old porcine reproductive and respiratory syndrome (PRRS) modified live vaccine (Ingelvac(®) PRRS MLV) against two recent type 2 PRRS virus isolates in South Korea. Vet. Microbiol. 2016, 192, 102–109. [Google Scholar] [CrossRef]
- Li, X.; Galliher-Beckley, A.; Pappan, L.; Trible, B.; Kerrigan, M.; Beck, A.; Hesse, R.; Blecha, F.; Nietfeld, J.C.; Rowland, R.R.; et al. Comparison of host immune responses to homologous and heterologous type II porcine reproductive and respiratory syndrome virus (PRRSV) challenge in vaccinated and unvaccinated pigs. BioMed Res. Int. 2014, 2014, 416727. [Google Scholar] [CrossRef]
- Cano, J.P.; Dee, S.A.; Murtaugh, M.P.; Pijoan, C. Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate. Vaccine 2007, 25, 4382–4391. [Google Scholar] [CrossRef]
- Wei, C.; Dai, A.; Fan, J.; Li, Y.; Chen, A.; Zhou, X.; Luo, M.; Yang, X.; Liu, J. Efficacy of Type 2 PRRSV vaccine against challenge with the Chinese lineage 1 (NADC30-like) PRRSVs in pigs. Sci. Rep. 2019, 9, 10781. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wubshet, A.K.; Ding, X.; Zhang, Z.; Li, Q.; Dai, J.; Hou, Q.; Hu, Y.; Zhang, J. Evaluation of Four Commercial Vaccines for the Protection of Piglets against the Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (hp-PRRSV) QH-08 Strain. Vaccines 2021, 9, 1020. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, B.; Xu, L.; Jin, H.; Ge, X.; Guo, X.; Han, J.; Yang, H. Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like. Vet. Microbiol. 2017, 207, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, C.; Hu, Y.; Fang, S.; Li, X.; Zhang, C.; Huang, L.; Qian, J.; Wang, G.; Fan, A.; et al. Protective evaluation of the commercialized porcine reproductive and respiratory syndrome virus vaccines in piglets challenged by NADC34-like strain. Front. Microbiol. 2024, 15, 1422335. [Google Scholar] [CrossRef] [PubMed]
- Proctor, J.; Wolf, I.; Brodsky, D.; Cortes, L.M.; Frias-De-Diego, A.; Almond, G.W.; Crisci, E.; Negrão Watanabe, T.T.; Hammer, J.M.; Käser, T. Heterologous vaccine immunogenicity, efficacy, and immune correlates of protection of a modified-live virus porcine reproductive and respiratory syndrome virus vaccine. Front. Microbiol. 2022, 13, 977796. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Seo, H.W.; Han, K.; Kang, I.; Chae, C. Evaluation of the efficacy of a new modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Fostera PRRS) against heterologous PRRSV challenge. Vet. Microbiol. 2014, 172, 432–442. [Google Scholar] [CrossRef]
- Hou, F.H.; Lee, W.C.; Liao, J.W.; Chien, M.S.; Kuo, C.J.; Chung, H.P.; Chia, M.Y. Evaluation of a type 2 modified live porcine reproductive and respiratory syndrome vaccine against heterologous challenge of a lineage 3 highly virulent isolate in pigs. PeerJ 2020, 8, e8840. [Google Scholar] [CrossRef]
- Calvert, J.G.; Keith, M.L.; Pearce, D.S.; Lenz, M.C.; King, V.L.; Diamondidis, Y.A.; Ankenbauer, R.G.; Martinon, N.C. Vaccination against porcine reproductive and respiratory syndrome virus (PRRSV) reduces the magnitude and duration of viremia following challenge with a virulent heterologous field strain. Vet. Microbiol. 2017, 205, 80–83. [Google Scholar] [CrossRef]
- Do, D.T.; Nguyen, T.T.; Nguyen, N.T.H.; Nguyen, M.H.P.; Le, H.T.; Nguyen, N.T.T.; Nguyen, N.T.P.; Chae, C.; Mah, C.K. The efficacy and performance impact of Fostera PRRS in a Vietnamese commercial pig farm naturally challenged by a highly pathogenic PRRS virus. Trop. Anim. Health Prod. 2020, 52, 1725–1732. [Google Scholar] [CrossRef]
- Charoenchanikran, P.; Kedkovid, R.; Sirisereewan, C.; Woonwong, Y.; Arunorat, J.; Sitthichareonchai, P.; Sopipan, N.; Jittimanee, S.; Kesdangsakonwut, S.; Thanawongnuwech, R. Efficacy of Fostera® PRRS modified live virus (MLV) vaccination strategy against a Thai highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection. Trop. Anim. Health Prod. 2016, 48, 1351–1359. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z.; Li, J.; Yibo, K.; Yang, L.; Mah, C.K.; Liu, G.; Yu, B.; Wang, K. Efficacy evaluation of three modified-live PRRS vaccines against a local strain of highly pathogenic porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 2019, 229, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Liu, Z.; Sun, Z.; Su, L.; Zhang, C.; Huang, L. Efficacy of two porcine reproductive and respiratory syndrome (PRRS) modified-live virus (MLV) vaccines against heterologous NADC30-like PRRS virus challenge. Vet. Microbiol. 2020, 248, 108805. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, K.; Wang, Y.; Wang, Z.; Peng, J.; Ren, S.; Zhang, Y.; Guo, L.; Liu, F.; Lv, T.; et al. Comparison of the cross-protection of PPRSV sublineage 8.7 MLV vaccines against the recombinant NADC30-like strain. Vet. Microbiol. 2023, 281, 109724. [Google Scholar] [CrossRef]
- Madapong, A.; Saeng-Chuto, K.; Boonsoongnern, A.; Tantituvanont, A.; Nilubol, D. Cell-mediated immune response and protective efficacy of porcine reproductive and respiratory syndrome virus modified-live vaccines against co-challenge with PRRSV-1 and PRRSV-2. Sci. Rep. 2020, 10, 1649. [Google Scholar] [CrossRef]
- Han, G.; Xu, H.; Wang, Y.; Liu, Z.; He, F. Efficacy Evaluation of Two Commercial Vaccines Against a Recombinant PRRSV2 Strain ZJnb16-2 From Lineage 8 and 3 in China. Pathogens 2020, 9, 59. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Jiao, D.; Zheng, Z.; Chen, Z.; Jing, Y.; Li, Z.; Ma, Z.; Feng, Y.; Guo, X.; et al. Genomic similarity and antibody-dependent enhancement of immune serum potentially affect the protective efficacy of commercial MLV vaccines against NADC30-like PRRSV. Virol. Sin. 2023, 38, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Galliher-Beckley, A.; Li, X.; Bates, J.T.; Madera, R.; Waters, A.; Nietfeld, J.; Henningson, J.; He, D.; Feng, W.; Chen, R.; et al. Pigs immunized with Chinese highly pathogenic PRRS virus modified live vaccine are protected from challenge with North American PRRSV strain NADC-20. Vaccine 2015, 33, 3518–3525. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, M.; Wang, W.; Ju, D.; Cao, L.; Wu, B.; Wang, X.; Wu, Y.; Song, N.; Hu, J.; et al. An Attenuated Highly Pathogenic Chinese PRRS Viral Vaccine Confers Cross Protection to Pigs against Challenge with the Emerging PRRSV NADC30-Like Strain. Virol. Sin. 2018, 33, 153–161. [Google Scholar] [CrossRef]
- Mötz, M.; Stadler, J.; Kreutzmann, H.; Ladinig, A.; Lamp, B.; Auer, A.; Riedel, C.; Rümenapf, T. A Conserved Stem-Loop Structure within ORF5 Is a Frequent Recombination Hotspot for Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) with a Particular Modified Live Virus (MLV) Strain. Viruses 2023, 15, 258. [Google Scholar] [CrossRef]
- Chen, N.; Liu, Q.; Qiao, M.; Deng, X.; Chen, X.; Sun, M. Whole genome characterization of a novel porcine reproductive and respiratory syndrome virus 1 isolate: Genetic evidence for recombination between Amervac vaccine and circulating strains in mainland China. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017, 54, 308–313. [Google Scholar] [CrossRef]
- Li, B.; Fang, L.; Xu, Z.; Liu, S.; Gao, J.; Jiang, Y.; Chen, H.; Xiao, S. Recombination in vaccine and circulating strains of porcine reproductive and respiratory syndrome viruses. Emerg. Infect. Dis. 2009, 15, 2032–2035. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.H.; Tun, H.M.; Sun, B.L.; Mo, J.; Zhou, Q.F.; Deng, Y.X.; Xie, Q.M.; Bi, Y.Z.; Leung, F.C.; Ma, J.Y. Re-emerging of porcine respiratory and reproductive syndrome virus (lineage 3) and increased pathogenicity after genomic recombination with vaccine variant. Vet. Microbiol. 2015, 175, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Wenhui, L.; Zhongyan, W.; Guanqun, Z.; Zhili, L.; JingYun, M.; Qingmei, X.; Baoli, S.; Yingzuo, B. Complete genome sequence of a novel variant porcine reproductive and respiratory syndrome virus (PRRSV) strain: Evidence for recombination between vaccine and wild-type PRRSV strains. J. Virol. 2012, 86, 9543. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, R.; Yu, J.; Xie, B.; Chen, C.; Li, X.; Xie, J.; Ye, Y.; Xiao, L.; Zhang, J.; et al. Genetic Characterization and Pathogenicity of a Novel Recombined Porcine Reproductive and Respiratory Syndrome Virus 2 among Nadc30-Like, Jxa1-Like, and Mlv-Like Strains. Viruses 2018, 10, 551. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, X.; Zhai, J.; Wei, C.; Dai, A.; Yang, X.; Luo, M. Recombination in JXA1-R vaccine and NADC30-like strain of porcine reproductive and respiratory syndrome viruses. Vet. Microbiol. 2017, 204, 110–120. [Google Scholar] [CrossRef]
- Xie, C.Z.; Wang, Z.; Ha, Z.; Zhang, Y.; Xie, Y.B.; Zhang, H.; Nan, F.L.; Zhang, J.Y.; Zhao, G.Y.; Li, Z.X.; et al. Genetic characterization of a new NSP2-deletion porcine reproductive and Respiratory Syndrome Virus in China. Microb. Pathog. 2021, 150, 104729. [Google Scholar] [CrossRef] [PubMed]
- Bian, T.; Sun, Y.; Hao, M.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. A recombinant type 2 porcine reproductive and respiratory syndrome virus between NADC30-like and a MLV-like: Genetic characterization and pathogenicity for piglets. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017, 54, 279–286. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, X.; Zhang, H.; Tang, X.; Bian, T.; Sun, Y.; Zhou, M.; Ren, F.; Wu, P. Evolutionary and recombination analysis of porcine reproductive and respiratory syndrome isolates in China. Virus Genes 2020, 56, 354–360. [Google Scholar] [CrossRef]
- Wang, H.M.; Liu, Y.G.; Tang, Y.D.; Liu, T.X.; Zheng, L.L.; Wang, T.Y.; Liu, S.G.; Wang, G.; Cai, X.H. A natural recombinant PRRSV between HP-PRRSV JXA1-like and NADC30-like strains. Transbound. Emerg. Dis. 2018, 65, 1078–1086. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, L.; Huang, J.; Yang, Z.; Xu, L.; Gu, S.; Huang, Y.; Zhang, R.; Sun, X.; Zhou, Y.; et al. Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet. Med. Sci. 2021, 7, 697–704. [Google Scholar] [CrossRef]
- Trevisan, G.; Magstadt, D.; Woods, A.; Sparks, J.; Zeller, M.; Li, G.; Krueger, K.M.; Saxena, A.; Zhang, J.; Gauger, P.C. A recombinant porcine reproductive and respiratory syndrome virus type 2 field strain derived from two PRRSV-2-modified live virus vaccines. Front. Vet. Sci. 2023, 10, 1149293. [Google Scholar] [CrossRef] [PubMed]
- Eclercy, J.; Renson, P.; Lebret, A.; Hirchaud, E.; Normand, V.; Andraud, M.; Paboeuf, F.; Blanchard, Y.; Rose, N.; Bourry, O. A Field Recombinant Strain Derived from Two Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-1) Modified Live Vaccines Shows Increased Viremia and Transmission in SPF Pigs. Viruses 2019, 11, 296. [Google Scholar] [CrossRef]
- Kvisgaard, L.K.; Kristensen, C.S.; Ryt-Hansen, P.; Pedersen, K.; Stadejek, T.; Trebbien, R.; Andresen, L.O.; Larsen, L.E. A recombination between two Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-1) vaccine strains has caused severe outbreaks in Danish pigs. Transbound. Emerg. Dis. 2020, 67, 1786–1796. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, T.; Gong, D.; Qi, J.; Jiang, S.; Yang, H.; Zhu, X.; Gan, Y.; Zhang, Y.; Han, Y.; et al. Recombination and Mutation in a New HP-PRRSV Strain (SD2020) from China. Viruses 2023, 15, 16. [Google Scholar] [CrossRef]
- Trevisan, G.; Zeller, M.; Li, G.; Zhang, J.; Gauger, P.; Linhares, D.C.L. Implementing a user-friendly format to analyze PRRSV next-generation sequencing results and associating breeding herd production performance with number of PRRSV strains and recombination events. Transbound. Emerg. Dis. 2022, 69, e2214–e2229. [Google Scholar] [CrossRef]
- Wang, A.; Chen, Q.; Wang, L.; Madson, D.; Harmon, K.; Gauger, P.; Zhang, J.; Li, G. Recombination between Vaccine and Field Strains of Porcine Reproductive and Respiratory Syndrome Virus. Emerg. Infect. Dis. 2019, 25, 2335–2337. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.E.; Park, J.Y.; Lee, K.K.; Ku, B.K.; Park, C.K.; Jeoung, H.Y. Recombination between the Fostera MLV-like Strain and the Strain Belonging to Lineage 1 of Porcine Reproductive and Respiratory Syndrome Virus in Korea. Viruses 2022, 14, 1153. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lai, L.; Xu, Y.; Yang, Y.; Li, J.; Liu, C.; Hunag, C.; Wei, C. Evolutionary Analysis of Four Recombinant Viruses of the Porcine Reproductive and Respiratory Syndrome Virus From a Pig Farm in China. Front. Vet. Sci. 2022, 9, 933896. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. Evolutionary analysis of six isolates of porcine reproductive and respiratory syndrome virus from a single pig farm: MLV-evolved and recombinant viruses. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2018, 66, 111–119. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, H.; Li, C.; Gong, B.; Li, Z.; Tian, Z.J.; Zhang, H. Emergence of a novel PRRSV-1 strain in mainland China: A recombinant strain derived from the two commercial modified live viruses Amervac and DV. Front. Vet. Sci. 2022, 9, 974743. [Google Scholar] [CrossRef]
- Meier, W.A.; Galeota, J.; Osorio, F.A.; Husmann, R.J.; Schnitzlein, W.M.; Zuckermann, F.A. Gradual development of the interferon-gamma response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination. Virology 2003, 309, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.L.; Nielsen, J.; Have, P.; Baekbo, P.; Hoff-Jørgensen, R.; Bøtner, A. Examination of virus shedding in semen from vaccinated and from previously infected boars after experimental challenge with porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 1997, 54, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Vanhee, M.; Delputte, P.L.; Delrue, I.; Geldhof, M.F.; Nauwynck, H.J. Development of an experimental inactivated PRRSV vaccine that induces virus-neutralizing antibodies. Vet. Res. 2009, 40, 63. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; You, Z.; Zheng, Y.; Feng, Q.; Luo, S.; Xu, L.; Bao, S.; Wang, Q. Integrated microbiome and metabolome analysis reveals that new insight into Radix pseudostellariae polysaccharide enhances PRRSV inactivated vaccine. Front. Immunol. 2024, 15, 1352018. [Google Scholar] [CrossRef] [PubMed]
- Kheirollahpour, M.; Mehrabi, M.; Dounighi, N.M.; Mohammadi, M.; Masoudi, A. Nanoparticles and Vaccine Development. Pharm. Nanotechnol. 2020, 8, 6–21. [Google Scholar] [CrossRef]
- Vreman, S.; Stockhofe-Zurwieden, N.; Popma-de Graaf, D.J.; Savelkoul, H.F.J.; Barnier-Quer, C.; Collin, N.; Collins, D.; McDaid, D.; Moore, A.C.; Rebel, J.M.J. Immune responses induced by inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in neonatal pigs using different adjuvants. Vet. Immunol. Immunopathol. 2021, 232, 110170. [Google Scholar] [CrossRef]
- Yu, H.Y.; Qu, M.S.; Zhang, J.L.; Gan, L.; Zhao, Y.; Shan, X.Q.; Zhou, W.; Xia, B.B.; Chen, J.; Wang, M.L.; et al. Recombinant Porcine Interferon Alpha Enhances Immune Responses to Killed Porcine Reproductive and Respiratory Syndrome Virus Vaccine in Pigs. Viral Immunol. 2019, 32, 383–392. [Google Scholar] [CrossRef]
- Wang, B.L.; Zhang, S.; Liu, Y.; Zhao, Y.H.; Wang, C.W.; Li, Y.; Zuo, Y.Z.; Fan, J.H. Enhancing immunogenicity and antiviral protection of inactivated porcine reproductive and respiratory syndrome virus vaccine in piglets. Am. J. Vet. Res. 2024, 85, ajvr.24.02.0025. [Google Scholar] [CrossRef]
- Vreman, S.; McCaffrey, J.; Popma-de Graaf, D.J.; Nauwynck, H.; Savelkoul, H.F.J.; Moore, A.; Rebel, J.M.J.; Stockhofe-Zurwieden, N. Toll-like receptor agonists as adjuvants for inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Vet. Immunol. Immunopathol. 2019, 212, 27–37. [Google Scholar] [CrossRef]
- Zhu, B.; He, T.; Gao, X.; Shi, M.; Sun, H. Evaluation and characteristics of immunological adjuvant activity of purified fraction of Albizia julibrissin saponins. Immunol. Investig. 2019, 48, 283–302. [Google Scholar] [CrossRef]
- Wu, C.; Gu, G.; Zhai, T.; Wang, Y.; Yang, Y.; Li, Y.; Zheng, X.; Zhao, Q.; Zhou, E.M.; Nan, Y. Broad neutralization activity against both PRRSV-1 and PRRSV-2 and enhancement of cell mediated immunity against PRRSV by a novel IgM monoclonal antibody. Antivir. Res. 2020, 175, 104716. [Google Scholar] [CrossRef]
- Kamboj, A.; Dumka, S.; Saxena, M.K.; Singh, Y.; Kaur, B.P.; da Silva, S.J.R.; Kumar, S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024, 16, 833. [Google Scholar] [CrossRef]
- Chaikhumwang, P.; Madapong, A.; Saeng-Chuto, K.; Nilubol, D.; Tantituvanont, A. Intranasal delivery of inactivated PRRSV loaded cationic nanoparticles coupled with enterotoxin subunit B induces PRRSV-specific immune responses in pigs. Sci. Rep. 2022, 12, 3725. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.; Wang, M.; Bai, X.; Cao, J.; Zhang, Z.; Wang, Q. Mannosylated gelatin nanoparticles enhanced inactivated PRRSV targeting dendritic cells and increased T cell immunity. Vet. Immunol. Immunopathol. 2021, 235, 110237. [Google Scholar] [CrossRef]
- Dwivedi, V.; Manickam, C.; Binjawadagi, B.; Joyappa, D.; Renukaradhya, G.J. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs. PLoS ONE 2012, 7, e51794. [Google Scholar] [CrossRef]
- Dwivedi, V.; Manickam, C.; Binjawadagi, B.; Renukaradhya, G.J. PLGA nanoparticle entrapped killed porcine reproductive and respiratory syndrome virus vaccine helps in viral clearance in pigs. Vet. Microbiol. 2013, 166, 47–58. [Google Scholar] [CrossRef]
- Binjawadagi, B.; Dwivedi, V.; Manickam, C.; Ouyang, K.; Torrelles, J.B.; Renukaradhya, G.J. An innovative approach to induce cross-protective immunity against porcine reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted nanotechnology-based vaccination. Int. J. Nanomed. 2014, 9, 1519–1535. [Google Scholar] [CrossRef]
- Binjawadagi, B.; Dwivedi, V.; Manickam, C.; Ouyang, K.; Wu, Y.; Lee, L.J.; Torrelles, J.B.; Renukaradhya, G.J. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int. J. Nanomed. 2014, 9, 679–694. [Google Scholar] [CrossRef]
- Lee, J.A.; Kwon, B.; Osorio, F.A.; Pattnaik, A.K.; Lee, N.H.; Lee, S.W.; Park, S.Y.; Song, C.S.; Choi, I.S.; Lee, J.B. Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5. Vaccine 2014, 32, 3617–3622. [Google Scholar] [CrossRef]
- McCann, N.; O’Connor, D.; Lambe, T.; Pollard, A.J. Viral vector vaccines. Curr. Opin. Immunol. 2022, 77, 102210. [Google Scholar] [CrossRef] [PubMed]
- de Brito, R.C.F.; Holtham, K.; Roser, J.; Saunders, J.E.; Wezel, Y.; Henderson, S.; Mauch, T.; Sanz-Bernardo, B.; Frossard, J.P.; Bernard, M.; et al. An attenuated herpesvirus vectored vaccine candidate induces T-cell responses against highly conserved porcine reproductive and respiratory syndrome virus M and NSP5 proteins that are unable to control infection. Front. Immunol. 2023, 14, 1201973. [Google Scholar] [CrossRef]
- Wang, S.; Fang, L.; Fan, H.; Jiang, Y.; Pan, Y.; Luo, R.; Zhao, Q.; Chen, H.; Xiao, S. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 2007, 25, 8220–8227. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, L.; Xiao, S.; Zhang, H.; Pan, Y.; Luo, R.; Li, B.; Chen, H. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine 2007, 25, 547–560. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, P.; Li, Y.; Wang, X.; Du, Y. Analysis of immunogenicity of minor envelope protein GP3 of porcine reproductive and respiratory syndrome virus in mice. Virus Genes 2007, 35, 695–704. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xue, J.D.; Yu, T.; Zhang, J.B.; Liu, Y.; Jiang, N.; Li, Y.L.; Hu, R.L. Immune responses in pigs induced by recombinant canine adenovirus 2 expressing the glycoprotein 5 of porcine reproductive and respiratory syndrome virus. Vet. Res. Commun. 2010, 34, 371–380. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, P.; Li, Y.; Tang, J.; Wang, X.; Ma, S. Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Vet. Immunol. Immunopathol. 2006, 113, 169–180. [Google Scholar] [CrossRef]
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral vectored vaccines: Design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef]
- Pei, Y.; Hodgins, D.C.; Wu, J.; Welch, S.K.; Calvert, J.G.; Li, G.; Du, Y.; Song, C.; Yoo, D. Porcine reproductive and respiratory syndrome virus as a vector: Immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs. Virology 2009, 389, 91–99. [Google Scholar] [CrossRef]
- Gao, F.; Jiang, Y.; Li, G.; Li, L.; Zhang, Y.; Yu, L.; Zheng, H.; Tong, W.; Zhou, Y.; Liu, C.; et al. Evaluation of immune efficacy of recombinant PRRSV vectored vaccine rPRRSV-E2 in piglets with maternal derived antibodies. Vet. Microbiol. 2020, 248, 108833. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Cao, Z.; Cao, Y.; Guo, Z.; Tong, W.; Zhou, Y.; Li, G.; Jiang, Y.; Liu, C.; et al. Recombinant Bivalent Live Vectored Vaccine Against Classical Swine Fever and HP-PRRS Revealed Adequate Heterogeneous Protection Against NADC30-Like Strain. Front. Microbiol. 2021, 12, 822749. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, R.; He, S.; Zhang, X.; Xia, X.; Sun, H. Additive inhibition of porcine reproductive and respiratory syndrome virus infection with the soluble sialoadhesin and CD163 receptors. Virus Res. 2014, 179, 85–92. [Google Scholar] [CrossRef]
- Liu, X.; Xia, W.; Zhang, X.; Xia, X.; Sun, H. Fusion expression of the two soluble viral receptors of porcine reproductive and respiratory syndrome virus with a single adeno-associated virus vector. Res. Vet. Sci. 2021, 135, 78–84. [Google Scholar] [CrossRef]
- Renukaradhya, G.J.; Meng, X.J.; Calvert, J.G.; Roof, M.; Lager, K.M. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. Vaccine 2015, 33, 3065–3072. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Ma, Z.; Wang, Y.; Feng, W.H. Recombinant Kluyveromyces lactis expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP5 elicits mucosal and cell-mediated immune responses in mice. J. Vet. Sci. 2014, 15, 199–208. [Google Scholar] [CrossRef]
- Bastos, R.G.; Dellagostin, O.A.; Barletta, R.G.; Doster, A.R.; Nelson, E.; Zuckermann, F.; Osorio, F.A. Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 2004, 22, 467–474. [Google Scholar] [CrossRef]
- Plana Duran, J.; Climent, I.; Sarraseca, J.; Urniza, A.; Cortés, E.; Vela, C.; Casal, J.I. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection. Virus Genes 1997, 14, 19–29. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Jang, Y.; Huang, W.R.; Wang, C.Y.; Wen, H.W.; Tsai, P.C.; Yang, C.Y.; Munir, M.; Liu, H.J. Development of Polycistronic Baculovirus Surface Display Vectors to Simultaneously Express Viral Proteins of Porcine Reproductive and Respiratory Syndrome and Analysis of Their Immunogenicity in Swine. Vaccines 2023, 11, 1666. [Google Scholar] [CrossRef]
- Chia, M.Y.; Hsiao, S.H.; Chan, H.T.; Do, Y.Y.; Huang, P.L.; Chang, H.W.; Tsai, Y.C.; Lin, C.M.; Pang, V.F.; Jeng, C.R. Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Vet. Immunol. Immunopathol. 2010, 135, 234–242. [Google Scholar] [CrossRef]
- Chan, H.T.; Chia, M.Y.; Pang, V.F.; Jeng, C.R.; Do, Y.Y.; Huang, P.L. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana. Plant Biotechnol. J. 2013, 11, 315–324. [Google Scholar] [CrossRef]
- An, C.H.; Nazki, S.; Park, S.C.; Jeong, Y.J.; Lee, J.H.; Park, S.J.; Khatun, A.; Kim, W.I.; Park, Y.I.; Jeong, J.C.; et al. Plant synthetic GP4 and GP5 proteins from porcine reproductive and respiratory syndrome virus elicit immune responses in pigs. Planta 2018, 247, 973–985. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, Y.; Shen, S.; Niu, Z.; Du, Y.; Wu, J.; Li, J.; Yu, J.; Wang, T.; Wang, J. Immunopotentiation of four natural adjuvants co-administered with a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit. Virus Genes 2016, 52, 261–269. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, Y.; Du, Y.; Wu, J.; Li, B.; Li, J.; Yu, J.; Hu, L.; Shen, S.; Wang, J.; et al. Potentiation of Taishan Pinus massoniana pollen polysaccharide on the immune response and protection elicited by a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit in pigs. Mol. Cell. Probes 2016, 30, 83–92. [Google Scholar] [CrossRef]
- Cao, J.; Wang, X.; Du, Y.; Li, Y.; Wang, X.; Jiang, P. CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine 2010, 28, 7514–7522. [Google Scholar] [CrossRef]
- Binjawadagi, B.; Lakshmanappa, Y.S.; Longchao, Z.; Dhakal, S.; Hiremath, J.; Ouyang, K.; Shyu, D.L.; Arcos, J.; Pengcheng, S.; Gilbertie, A.; et al. Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch. Virol. 2016, 161, 1579–1589. [Google Scholar] [CrossRef]
- Van Noort, A.; Nelsen, A.; Pillatzki, A.E.; Diel, D.G.; Li, F.; Nelson, E.; Wang, X. Intranasal immunization of pigs with porcine reproductive and respiratory syndrome virus-like particles plus 2′, 3′-cGAMP VacciGrade™ adjuvant exacerbates viremia after virus challenge. Virol. J. 2017, 14, 76. [Google Scholar] [CrossRef]
- Du, L.; Yu, Z.; Pang, F.; Xu, X.; Mao, A.; Yuan, W.; He, K.; Li, B. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses. Front. Cell. Infect. Microbiol. 2018, 8, 7. [Google Scholar] [CrossRef]
- Ma, H.; Li, X.; Li, J.; Zhao, Z.; Zhang, H.; Hao, G.; Chen, H.; Qian, P. Immunization with a recombinant fusion of porcine reproductive and respiratory syndrome virus modified GP5 and ferritin elicits enhanced protective immunity in pigs. Virology 2021, 552, 112–120. [Google Scholar] [CrossRef]
- Chang, X.; Ma, J.; Zhou, Y.; Xiao, S.; Xiao, X.; Fang, L. Development of a Ferritin Protein Nanoparticle Vaccine with PRRSV GP5 Protein. Viruses 2024, 16, 991. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Bi, Y.; Yang, L.; Meng, S.; Zhou, Y.; Jia, X.; Meng, S.; Sun, L.; Liu, W. Synthetic B- and T-cell epitope peptides of porcine reproductive and respiratory syndrome virus with Gp96 as adjuvant induced humoral and cell-mediated immunity. Vaccine 2013, 31, 1838–1847. [Google Scholar] [CrossRef]
- Lei, X.; Ban, J.; Wu, Z.; Cao, S.; Zhou, M.; Zhang, L.; Zhu, R.; Lu, H.; Zhu, S. Boosting PRRSV-Specific Cellular Immunity: The Immunological Profiling of an Fc-Fused Multi-CTL Epitope Vaccine in Mice. Vet. Sci. 2024, 11, 274. [Google Scholar] [CrossRef]
- Yang, H.P.; Wang, T.C.; Wang, S.J.; Chen, S.P.; Wu, E.; Lai, S.Q.; Chang, H.W.; Liao, C.W. Recombinant chimeric vaccine composed of PRRSV antigens and truncated Pseudomonas exotoxin A (PE-K13). Res. Vet. Sci. 2013, 95, 742–751. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Y. Epitope screening and vaccine molecule design of PRRSV GP3 and GP5 protein based on immunoinformatics. J. Cell. Mol. Med. 2024, 28, e18103. [Google Scholar] [CrossRef]
- Lu, B.; Lim, J.M.; Yu, B.; Song, S.; Neeli, P.; Sobhani, N.; Pavithra, K.; Bonam, S.R.; Kurapati, R.; Zheng, J.; et al. The next-generation DNA vaccine platforms and delivery systems: Advances, challenges and prospects. Front. Immunol. 2024, 15, 1332939. [Google Scholar] [CrossRef]
- Disis, M.L.N.; Guthrie, K.A.; Liu, Y.; Coveler, A.L.; Higgins, D.M.; Childs, J.S.; Dang, Y.; Salazar, L.G. Safety and Outcomes of a Plasmid DNA Vaccine Encoding the ERBB2 Intracellular Domain in Patients With Advanced-Stage ERBB2-Positive Breast Cancer: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 71–78. [Google Scholar] [CrossRef]
- Melo, A.; de Macêdo, L.S.; Invenção, M.; de Moura, I.A.; da Gama, M.; de Melo, C.M.L.; Silva, A.J.D.; Batista, M.V.A.; Freitas, A.C. Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency. Genes 2022, 13, 2287. [Google Scholar] [CrossRef]
- Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The promise of mRNA vaccines: A biotech and industrial perspective. NPJ Vaccines 2020, 5, 11. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Gao, L.; Mu, L.; Zhang, L.; Cong, Y.; Ding, Z. Positive inductive effect of IL-18 on virus-specific immune responses induced by PRRSV-GP5 DNA vaccine in swine. Res. Vet. Sci. 2013, 94, 346–353. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Ma, Z.; Wang, Y.; Feng, W.H. CTLA4 mediated targeting enhances immunogenicity against PRRSV in a DNA prime/killed virus boost strategy. Vet. Immunol. Immunopathol. 2013, 154, 121–128. [Google Scholar] [CrossRef]
- Du, L.; Li, B.; Pang, F.; Yu, Z.; Xu, X.; Fan, B.; Tan, Y.; He, K.; Huang, K. Porcine GPX1 enhances GP5-based DNA vaccination against porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol. 2017, 183, 31–39. [Google Scholar] [CrossRef]
- Du, Y.; Qi, J.; Lu, Y.; Wu, J.; Yoo, D.; Liu, X.; Zhang, X.; Li, J.; Sun, W.; Cong, X.; et al. Evaluation of a DNA vaccine candidate co-expressing GP3 and GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) with interferon α/γ in immediate and long-lasting protection against HP-PRRSV challenge. Virus Genes 2012, 45, 474–487. [Google Scholar] [CrossRef]
- Cui, J.; O’Connell, C.M.; Hagen, C.; Sawicki, K.; Smyth, J.A.; Verardi, P.H.; Kruiningen, H.J.V.; Garmendia, A.E. Broad Protection of Pigs against Heterologous PRRSV Strains by a GP5-Mosaic DNA Vaccine Prime/GP5-Mosaic rVaccinia (VACV) Vaccine Boost. Vaccines 2020, 8, 106. [Google Scholar] [CrossRef]
- Jiang, Y.; Xiao, S.; Fang, L.; Yu, X.; Song, Y.; Niu, C.; Chen, H. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine 2006, 24, 2869–2879. [Google Scholar] [CrossRef]
- Kwang, J.; Zuckermann, F.; Ross, G.; Yang, S.; Osorio, F.; Liu, W.; Low, S. Antibody and cellular immune responses of swine following immunisation with plasmid DNA encoding the PRRS virus ORF’s 4, 5, 6 and 7. Res. Vet. Sci. 1999, 67, 199–201. [Google Scholar] [CrossRef]
- Cho, Y.; Heo, Y.; Choi, H.; Park, K.H.; Kim, S.; Jang, Y.; Lee, H.J.; Kim, M.; Kim, Y.B. Porcine endogenous retrovirus envelope coated baculoviral DNA vaccine against porcine reproductive and respiratory syndrome virus. Anim. Biotechnol. 2020, 31, 32–41. [Google Scholar] [CrossRef]
- Chia, M.Y.; Hsiao, S.H.; Chan, H.T.; Do, Y.Y.; Huang, P.L.; Chang, H.W.; Tsai, Y.C.; Lin, C.M.; Pang, V.F.; Jeng, C.R. The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs. Vet. Microbiol. 2010, 146, 189–199. [Google Scholar] [CrossRef]
- Porter, K.R.; Raviprakash, K. DNA Vaccine Delivery and Improved Immunogenicity. Curr. Issues Mol. Biol. 2017, 22, 129–138. [Google Scholar] [CrossRef]
- Bernelin-Cottet, C.; Urien, C.; McCaffrey, J.; Collins, D.; Donadei, A.; McDaid, D.; Jakob, V.; Barnier-Quer, C.; Collin, N.; Bouguyon, E.; et al. Electroporation of a nanoparticle-associated DNA vaccine induces higher inflammation and immunity compared to its delivery with microneedle patches in pigs. J. Control. Release Off. J. Control. Release Soc. 2019, 308, 14–28. [Google Scholar] [CrossRef]
- Démoulins, T.; Schulze, K.; Ebensen, T.; Techakriengkrai, N.; Nedumpun, T.; Englezou, P.C.; Gerber, M.; Hlushchuk, R.; Toledo, D.; Djonov, V.; et al. Coatsome-replicon vehicles: Self-replicating RNA vaccines against infectious diseases. Nanomed. Nanotechnol. Biol. Med. 2023, 49, 102655. [Google Scholar] [CrossRef]
- Zhou, L.; Wubshet, A.K.; Zhang, J.; Hou, S.; Yao, K.; Zhao, Q.; Dai, J.; Liu, Y.; Ding, Y.; Zhang, J.; et al. The mRNA Vaccine Expressing Single and Fused Structural Proteins of Porcine Reproductive and Respiratory Syndrome Induces Strong Cellular and Humoral Immune Responses in BalB/C Mice. Viruses 2024, 16, 544. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Qiao, S.; Li, R.; Wang, J.; Li, X.; Zhang, G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front. Microbiol. 2023, 14, 1140449. [Google Scholar] [CrossRef] [PubMed]
- Roques, E.; Lessard, M.; Archambault, D. The Cholera Toxin B Subunit (CTB) Fused to the Porcine Arterivirus Matrix M and GP5 Envelope Proteins Fails to Enhance the GP5-Specific Antibody Response in Pigs Immunized with Adenovectors. Mol. Biotechnol. 2015, 57, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Bernelin-Cottet, C.; Urien, C.; Fretaud, M.; Langevin, C.; Trus, I.; Jouneau, L.; Blanc, F.; Leplat, J.J.; Barc, C.; Boulesteix, O.; et al. A DNA Prime Immuno-Potentiates a Modified Live Vaccine against the Porcine Reproductive and Respiratory Syndrome Virus but Does Not Improve Heterologous Protection. Viruses 2019, 11, 576. [Google Scholar] [CrossRef] [PubMed]
- Sirisereewan, C.; Nedumpun, T.; Kesdangsakonwut, S.; Woonwong, Y.; Kedkovid, R.; Arunorat, J.; Thanawongnuwech, R.; Suradhat, S. Positive immunomodulatory effects of heterologous DNA vaccine- modified live vaccine, prime-boost immunization, against the highly-pathogenic PRRSV infection. Vet. Immunol. Immunopathol. 2017, 183, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Z.; Chen, K.; Qian, J.; Hu, Y.; Fang, S.; Sun, Z.; Zhang, C.; Huang, L.; Zhang, J.; et al. Efficacy of the Synergy Between Live-Attenuated and Inactivated PRRSV Vaccines Against a NADC30-Like Strain of Porcine Reproductive and Respiratory Syndrome Virus in 4-Week Piglets. Front. Vet. Sci. 2022, 9, 812040. [Google Scholar] [CrossRef]
- Madapong, A.; Saeng-Chuto, K.; Tantituvanont, A.; Nilubol, D. Safety of PRRSV-2 MLV vaccines administrated via the intramuscular or intradermal route and evaluation of PRRSV transmission upon needle-free and needle delivery. Sci. Rep. 2021, 11, 23107. [Google Scholar] [CrossRef]
Characteristics of a “Perfect” PRRS Vaccine | Key Challenges for PRRS Vaccines | Possible Solutions |
---|---|---|
Broad-spectrum protection | High genetic variability | Reverse vaccinology |
The vaccine should provide protection against all known genetic variants and subtypes of the PRRSV. | PRRSV is highly diverse, meaning that the main targets for the host immune response have significant differences between strains. The virus constantly mutates, leading to the emergence of new variants that escape the immunity conferred by existing vaccines. And the new PRRSV variants can quickly spread and cause disease outbreaks, even in herds that have been previously vaccinated. | Modification of viral proteins: mutating or modifying the genes involved in immune modulations to enhance immune responses. Chimeras: constructing chimeric vaccines of several strains can broaden the antigenic cross-reactivity. Codon pair de-optimization: the marked sequence divergence between codon pair de-optimized viruses and circulating strains reduces the chances of recombination and virulence reversal. |
Highly effective immunological protection. | Insufficient immune protection. | Adjuvant- and nanoparticle-based vaccines. |
The vaccine should quickly and strongly stimulate both the innate and adaptive immune responses, and also induce a long lasting memory response. | Immune evasion: inhibit interferon (IFN) production and signaling; infect and modify the function of antigen-presenting cells such as macrophages and dendritic cells. Dysregulation of cellular immune responses: causes thymus lesions and a delayed induction of effector T cells. Delayed production of neutralizing antibodies (NAs): can be detected at around 28–42 days after infection when the viremia has subsided, but they cannot prevent the establishment of chronic infection, which lingers in tissues for months. Non-neutralizing antibodies and antibody dependence enhancement (ADE) [11,12,13]. | Vaccine adjuvants: improve immunological effective and protective capabilities, and reduce the amount of immune substances to lower the cost of vaccine manufacturing. Nanoparticles: can protect the antigens from degradation and target them to specific immune cells; can also be modified to carry multiple antigens from different PRRSV strains; can be conjugated with adjuvants to enhance the immune response, providing a more effective vaccine solution for the highly variable PRRSV. |
Safety | Safety concerns with PRRS MLV vaccines | Combined immunization or multivalent vaccine |
The vaccine should have no risk of causing disease or any other adverse side effects; have no chance to revert to a virulent form for PRRS MLV vaccines. | Vaccine viruses shed and persist in vaccinated animals, which may lead to the spread of vaccine viruses to unvaccinated animals; vaccine viruses can cross the placental barrier in pregnant sows, thereby infecting the developing fetuses and subsequently transmitting the virus to naive newborn piglets during lactation; the vaccine virus may recombine with field strains or other vaccine strains, resulting in the creation of potentially novel genetically distinct PRRSV variants, which may increase virulence and disease incidence [15,16,17,18,19]. | Combination of PRRS MLV vaccines and inactivated/subunit/DNA vaccines: MLV vaccines are required for effective primary immunization, and other vaccines are used for booster to maintain a prolonged immune response. Selection of antigens or epitopes: identify conserved antigens or epitopes across different PRRSV strains and designed vaccines to target the conserved regions, which is more likely to be effective against a wide range of PRRSV strains. |
Ease of administration, good stability, and cost-effectiveness | Inadequacies in inoculation, storage, and cost | Vaccination in combination with other control strategies |
The vaccine should be easy to administer, preferably through a single-dose injection or an even more convenient route such as intranasal or oral administration, and have a high level of stability during storage and transportation; the production costs should be low enough to ensure that it is affordable for pig farmers. | The efficacy of PRRS vaccines can vary depending on factors such as the pig’s age, immune status, and the prevalent PRRSV strain, leading to the need for additional booster vaccinations; the vaccines should be stored in a constant temperature environment between 2 and 8 °C to ensure the biological activity of the antigen; incorrect injection could lead to poor vaccine absorption, abscess formation, or even injection site reactions that may affect the heathy of pigs and the efficacy of vaccines; the development of effective PRRS vaccines requires extensive research and it is needed to constantly update the vaccine to match the evolving PRRSV strains, which further adds to the research and development expenses [20]. | Appropriate vaccination strategies: MLV vaccines should be used more carefully for PRRSV control, especially to avoid the use of two or more live multiplex PRRSV vaccine strains in the location. Moreover, the optimal immunization schedule should be prepared to strictly control the immunization dose and the interval between booster immunization and select an appropriate vaccination route. Erea elimination: utilizing a combination of load, close, homogenise (LCH) with PRRSV-2 MLV, optimized pig flow, and “10 Golden Rules” for biosecurity management to successfully eradicate PRRSV from all 12 herds on the Horne Peninsula, Denmark [21]. And using an inactivated vaccine and performing segregated rearing of the offspring are successful in eliminating PRRSV in a large-scale pig farm during the National PRRS Eradication Programme of Hungary [22]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Feng, W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines 2024, 12, 1387. https://doi.org/10.3390/vaccines12121387
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines. 2024; 12(12):1387. https://doi.org/10.3390/vaccines12121387
Chicago/Turabian StyleWang, Honglei, and Wenhai Feng. 2024. "Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines" Vaccines 12, no. 12: 1387. https://doi.org/10.3390/vaccines12121387
APA StyleWang, H., & Feng, W. (2024). Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines, 12(12), 1387. https://doi.org/10.3390/vaccines12121387