Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation Materials
2.2. Process Development and Optimization
2.3. Tangential Flow Filtration
2.4. Formulation Characterization
2.5. Antigen Integrity
2.5.1. Gel Electrophoresis
2.5.2. Circular Dichroism
2.5.3. Differential Scanning Fluorimetry
2.6. In Vivo Immunogenicity Evaluation of CMV gB Antigen with Emulsion Adjuvants
2.6.1. Ethics Statement
2.6.2. Study Design and Immunization Regime
2.6.3. Neutralizing Antibody Assay
2.6.4. Binding Antibody Assay
3. Results
3.1. Process Definition and Optimization for Emulsion Adjuvants Using Microfluidic Chip Platform
3.2. Antigen Stability on Mixing with Adjuvants
3.3. In Vivo Immunogenicity of Emulsion Adjuvants Using CMV gB Antigen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C. Squalene and squalane emulsions as adjuvants. Methods 1999, 19, 87–93. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, D.T.; Van Der Most, R.; Lodaya, R.N.; Coccia, M.; Lofano, G. “World in motion”—Emulsion adjuvants rising to meet the pandemic challenges. Npj Vaccines 2021, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Azevedo-Silva, J.; Fernandes, J.C. From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals 2022, 15, 265. [Google Scholar] [CrossRef]
- Bhangde, S.; Lodaya, R.N.; Amiji, M.M. Nanoscale Vaccines for Influenza. In Nanomedicines for the Prevention and Treatment of Infectious Diseases; Patravale, V.B., Date, A.A., Jindal, A.B., Eds.; Springer: Cham, Switzerland, 2023; pp. 331–347. [Google Scholar]
- Huang, Z.; Gong, H.; Sun, Q.; Yang, J.; Yan, X.; Xu, F. Research progress on emulsion vaccine adjuvants. Heliyon 2024, 10, e24662. [Google Scholar] [CrossRef]
- Mossad, S.B. Influenza update 2007–2008: Vaccine advances, pandemic preparation. Clevel. Clin. J. Med. 2007, 74, 889–894. [Google Scholar] [CrossRef]
- Partridge, J.; Kieny, M.P. Global production of seasonal and pandemic (H1N1) influenza vaccines in 2009–2010 and comparison with previous estimates and global action plan targets—PubMed. Vaccine 2010, 28, 4709–4712. [Google Scholar] [CrossRef]
- O’Hagan, D.; Ott, G.S.; De Gregorio, E.; Seubert, A. The mechanism of action of MF59—An innately attractive adjuvant formulation. Vaccine 2012, 30, 4341–4348. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Ott, G.S.; Nest, G.V.; Rappuoli, R.; Giudice, G.D. The history of MF59® adjuvant: A phoenix that arose from the ashes. Expert Rev. Vaccines 2013, 12, 13–30. [Google Scholar] [CrossRef]
- Rappuoli, R.; Dormitzer, P.R. Influenza: Options to improve pandemic preparation. Science 2012, 336, 1531–1533. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Russell, R.F.; Kinnear, E. Adjuvanted influenza vaccines. Hum. Vaccines Immunother. 2018, 14, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Shichinohe, S.; Watanabe, T. Advances in adjuvanted influenza vaccines. Vaccines 2023, 11, 1391. [Google Scholar] [CrossRef]
- Castrodeza-Sanz, J.; Sanz-Muñoz, I.; Eiros, J.M. Adjuvants for COVID-19 Vaccines. Vaccines 2023, 11, 902. [Google Scholar] [CrossRef] [PubMed]
- Volosnikova, E.A.; Volkova, N.V.; Ermolaev, V.V.; Borgoyakova, M.B.; Nesmeyanova, V.S.; Zaykovskaya, A.V.; Pyankov, O.V.; Zaitsev, B.N.; Belenkaya, S.V.; Isaeva, A.A.; et al. Use of Adjuvant Compositions Based on Squalene Ensures Induction of Neutralizing Antibodies against SARS-CoV-2. Bull. Exp. Biol. Med. 2024, 177, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Jasmina, H.; Džana, O.; Alisa, E.; Edina, V.; Ognjenka, R. Preparation of Nanoemulsions by High-Energy And Low Energy Emulsification Methods. In IFMBE Proceedings; Springer: Singapore, 2017; pp. 317–322. [Google Scholar]
- Haensler, J. Manufacture of oil-in-water emulsion adjuvants. In Vaccine Adjuvants: Methods and Protocols; Fox, C.B., Ed.; Humana Press: New York, NY, USA, 2017; pp. 165–180. [Google Scholar]
- Lodaya, R.N.; Kanitkar, A.P.; Ashraf, A.; Bamba, D.; Amiji, M.M.; O’Hagan, D.T. A Self-Emulsified Adjuvant System Containing the Immune Potentiator Alpha Tocopherol Induces Higher Neutralizing Antibody Responses than a Squalene-Only Emulsion When Evaluated with a Recombinant Cytomegalovirus (CMV) Pentamer Antigen in Mice. Pharmaceutics 2023, 15, 238. [Google Scholar] [CrossRef] [PubMed]
- Bishai, D.; McQuestion, M.; Chaudhry, R.; Wigton, A. The Costs of Scaling up Vaccination in the World’s Poorest Countries. Health Aff. 2006, 25, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Jetha, K.L.; Gogoi, N.R.; Kumar, A.; Shah, J.H.; Trivedi, D.U.; Bharadia, P.D.; Vora, L.K.; Valu, D.; Chavda, V.P. Parenteral vaccine delivery: From basic principles to new developments. In Advanced Vaccination Technologies for Infectious and Chronic Diseases; Chavda, V.P., Vora, L.K., Apostolopoulos, V., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 167–205. [Google Scholar] [CrossRef]
- Shah, R.R.; Dodd, S.; Schaefer, M.; Ugozzoli, M.; Singh, M.; Otten, G.R.; Amiji, M.M.; O’hagan, D.T.; Brito, L.A. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance. J. Pharm. Sci. 2015, 104, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.-X. Nanoemulsions for drug delivery. Particuology 2022, 64, 85–97. [Google Scholar] [CrossRef]
- Brito, L.A.; Malyala, P.; O’Hagan, D.T. Vaccine adjuvant formulations: A pharmaceutical perspective. Semin. Immunol. 2013, 25, 130–145. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, X.; Wang, J.; Tian, H.; Zhao, P.; Tian, Y.; Gu, Y.; Wang, L.; Wang, C. Droplet Microfluidics for the Production of Microparticles and Nanoparticles. Micromachines 2017, 8, 22. [Google Scholar] [CrossRef]
- Maeki, M.; Uno, S.; Niwa, A.; Okada, Y.; Tokeshi, M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 2022, 344, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Osouli-Bostanabad, K.; Puliga, S.; Serrano, D.R.; Bucchi, A.; Halbert, G.; Lalatsa, A. Microfluidic manufacture of lipid-based nanomedicines. Pharmaceutics 2022, 14, 1940. [Google Scholar] [CrossRef] [PubMed]
- Kisby, T.; Yilmazer, A.; Kostarelos, K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nat. Nanotechnol. 2021, 16, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Vladisavljević, G.T. Recent advances in the production of controllable multiple emulsions using microfabricated devices. Particuology 2016, 24, 1–17. [Google Scholar] [CrossRef]
- Younis, M.A.; Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022, 181, 114083. [Google Scholar] [CrossRef] [PubMed]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. An outlook on microfluidics: The promise and the challenge. Lab Chip 2022, 22, 530–536. [Google Scholar] [CrossRef]
- Shah, R.R.; Taccone, M.; Monaci, E.; Brito, L.A.; Bonci, A.; O’Hagan, D.T.; Amiji, M.M.; Seubert, A. The droplet size of emulsion adjuvants has significant impact on their potency, due to differences in immune cell-recruitment and-activation. Sci. Rep. 2019, 9, 11520. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine adjuvants: Mechanisms and platforms. Signal Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef]
- Tiscione, N.B.; Alford, I.; Yeatman, D.T.; Shan, X. Ethanol Analysis by Headspace Gas Chromatography with Simultaneous Flame-Ionization and Mass Spectrometry Detection. J. Anal. Toxicol. 2011, 35, 501–511. [Google Scholar] [CrossRef]
- Wei, Y.; Thyparambil, A.A.; Latour, R.A. Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochim. Biophys. Acta-Proteins Proteom. 2014, 1844, 2331–2337. [Google Scholar] [CrossRef]
- Wallace, B.A.; Lees, J.G.; Orry, A.J.; Lobley, A.; Janes, R.W. Analyses of circular dichroism spectra of membrane proteins. Protein Sci. 2003, 12, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Brahms, S.; Brahms, J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. Mol. Biol. 1980, 138, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Wachter, E.; Wallace, B.A. Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry 1982, 21, 4960–4968. [Google Scholar] [CrossRef] [PubMed]
- Animal Welfare Information Center (AWIC); USDA National Agricultural Library. Available online: https://www.nal.usda.gov/programs/awic (accessed on 10 November 2024).
- Interagency Collaborative Animal Research Education (ICARE) Project. PHS Policy on Humane Care and Use of Laboratory Animals 11 October 2024. Available online: https://olaw.nih.gov/education/icare-interagency (accessed on 10 November 2024).
- Gardner, T.J.; Tortorella, D. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: A Sticky Virus Makes a Slick Getaway. Microbiol. Mol. Biol. Rev. 2016, 80, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Vo, M.; Aguiar, A.; McVoy, M.A.; Hertel, L. Cytomegalovirus Strain TB40/E Restrictions and Adaptations to Growth in ARPE-19 Epithelial Cells. Microorganisms 2020, 8, 615. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Li, L.; Nelson, C.S.; Barfield, R.; Valencia, S.; Chan, C.; Muramatsu, H.; Lin, P.J.C.; Pardi, N.; An, Z.; et al. Multivalent cytomegalovirus glycoprotein B nucleoside modified mRNA vaccines did not demonstrate a greater antibody breadth. Npj Vaccines 2024, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Olivier, J.; Johnson, W.D.; Marshall, G.D. The logarithmic transformation and the geometric mean in reporting experimental IgE results: What are they and when and why to use them? Ann. Allergy Asthma Immunol. 2008, 100, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hedman, L.; Perdomo, M.F.; Elfaitouri, A.; Bölin-Wiener, A.; Kumar, A.; Lappalainen, M.; Söderlund-Venermo, M.; Blomberg, J.; Hedman, K.; et al. Microsphere-based antibody assays for human parvovirus B19V, CMV and T. gondii. BMC Infect. Dis. 2015, 16, 8. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Sannikova, N.; Guo, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Sci. Rep. 2021, 11, 72. [Google Scholar] [CrossRef]
- Vogelaar, A.; Marcotte, S.; Cheng, J.; Oluoch, B.; Zaro, J. Use of Microfluidics to Prepare Lipid-Based Nanocarriers. Pharmaceutics 2023, 15, 1053. [Google Scholar] [CrossRef]
- Ho, T.M.; Razzaghi, A.; Ramachandran, A.; Mikkonen, K.S. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence. Adv. Colloid Interface Sci. 2022, 299, 102541. [Google Scholar] [CrossRef] [PubMed]
- Sartipzadeh, O.; Naghib, S.M.; Seyfoori, A.; Rahmanian, M.; Fateminia, F.S. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size. Mater. Sci. Eng. C 2020, 109, 110606. [Google Scholar] [CrossRef] [PubMed]
- Yobas, L.; Martens, S.; Ong, W.-L.; Ranganathan, N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 2006, 6, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Malyala, P.; Singh, M. Endotoxin Limits in Formulations for Preclinical Research. J. Pharm. Sci. 2008, 97, 2041–2044. [Google Scholar] [CrossRef]
- Brito, L.A.; Singh, M. COMMENTARY: Acceptable Levels of Endotoxin in Vaccine Formulations During Preclinical Research. J. Pharm. Sci. 2011, 100, 34–37. [Google Scholar] [CrossRef]
- Payton, N.M.; Lodaya, R.N.; Padilla, A.M. Lyophilized vaccine development. In Practical Aspects of Vaccine Development; Kolhe, P., Ohtake, S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 297–327. [Google Scholar] [CrossRef]
- Iyer, V.; Cayatte, C.; Marshall, J.D.; Sun, J.; Schneider-Ohrum, K.; Maynard, S.K.; Rajani, G.M.; Bennett, A.S.; Remmele, R.L.; Bishop, S.M.; et al. Feasibility of Freeze-Drying Oil-in-Water Emulsion Adjuvants and Subunit Proteins to Enable Single-Vial Vaccine Drug Products. J. Pharm. Sci. 2017, 106, 1490–1498. [Google Scholar] [CrossRef]
- Guerrini, G.; Vivi, A.; Gioria, S.; Ponti, J.; Magrì, D.; Hoeveler, A.; Medaglini, D.; Calzolai, L. Physicochemical Characterization Cascade of Nanoadjuvant–Antigen Systems for Improving Vaccines. Vaccines 2021, 9, 544. [Google Scholar] [CrossRef]
- Huang, C.-H.; Huang, C.-Y.; Huang, M.-H. Impact of antigen-adjuvant associations on antigen uptake and antigen-specific humoral immunity in mice following intramuscular injection. Biomed. Pharmacother. 2019, 118, 109373. [Google Scholar] [CrossRef] [PubMed]
- Abebe, E.C.; Dejenie, T.A. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front. Immunol. 2023, 14, 1055457. [Google Scholar] [CrossRef]
- Burton, D.R.; Williamson, R.A.; Parren, P.W. Antibody and virus: Binding and neutralization. Virology 2000, 270, 1–3. [Google Scholar] [CrossRef]
- Murin, C.D.; Wilson, I.A.; Ward, A.B. Antibody responses to viral infections: A structural perspective across three different enveloped viruses. Nat. Microbiol. 2019, 4, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Lodaya, R.N.; Kanitkar, A.P.; Friedrich, K.; Henson, D.; Yamagata, R.; Nuti, S.; Mallett, C.P.; Bertholet, S.; Amiji, M.M.; O’Hagan, D.T. Formulation Design, Optimization and In Vivo Evaluations of an α-Tocopherol-Containing Self-Emulsified Adjuvant System using Inactivated Influenza Vaccine. J. Control. Release 2019, 316, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R.; Danaei, M.; Dehghankhold, M.; et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef]
- Koroleva, M.Y.; Yurtov, E.V. Ostwald ripening in macro- and nanoemulsions. Russ. Chem. Rev. 2021, 90, 293. [Google Scholar] [CrossRef]
- Bongard, N.; Le-Trilling, V.T.K.; Malyshkina, A.; Rückborn, M.; Wohlgemuth, K.; Wensing, I.; Windmann, S.; Dittmer, U.; Trilling, M.; Bayer, W. Immunization with a murine cytomegalovirus based vector encoding retrovirus envelope confers strong protection from Friend retrovirus challenge infection. PLoS Pathog. 2019, 15, e1008043. [Google Scholar] [CrossRef]
- Fox, C.B.; Haensler, J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev. Vaccines 2013, 12, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.S.; Huffman, T.; Jenks, J.A.; Cisneros de la Rosa, E.; Xie, G.; Vandergrift, N.; Pass, R.F.; Pollara, J.; Permar, S.R. HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions. Proc. Natl. Acad. Sci. USA 2018, 115, 6267–6272. [Google Scholar] [CrossRef]
- Pass, R.F.; Duliegè, A.-M.; Boppana, S.; Sekulovich, R.; Percell, S.; Britt, W.; Burke, R.L. A Subunit Cytomegalovirus Vaccine Based on Recombinant Envelope Glycoprotein B and a New Adjuvant. J. Infect. Dis. 1999, 180, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Schleiss, M.R.; Berencsi, K.; Gonczol, E.; Dickey, M.; Khoury, P.; Cadoz, M.; Meric, C.; Zahradnik, J.; Duliege, A.-M.; et al. Effect of Previous or Simultaneous Immunization with Canarypox Expressing Cytomegalovirus (CMV) Glycoprotein B (gB) on Response to Subunit gB Vaccine plus MF59 in Healthy CMV-Seronegative Adults. J. Infect. Dis. 2002, 185, 686–690. [Google Scholar] [CrossRef]
- Ott, G.; Radhakrishnan, R.; Fang, J.-H.; Hora, M. The adjuvant MF59: A 10-year perspective. In Vaccine Adjuvants; Springer: Totowa, NJ, USA, 2000; pp. 211–228. [Google Scholar]
Parameter | SEA160 | MC160 |
---|---|---|
Particle size (nm) | 179.8 ± 5.5 | 156.4 ± 3.4 |
Polydispersity index (PDI) | 0.169 ± 0.028 | 0.186 ± 0.004 |
Endotoxin (EU/mL) | <1.00 | <1.00 |
Osmolality (mOsm/kg) | 35.5 ± 2.1 | 50.5 ± 24.8 |
pH | 6.517 ± 0.043 | 6.557 ± 0.012 |
Squalene Content (mg/mL) | 30.92 ± 0.20 | 33.11 ± 00.29 |
Post TFF ethanol (ppm) | - | 36.77 ± 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhangde, S.; Fresnay-Murray, S.; Garretson, T.; Ashraf, A.; O’Hagan, D.T.; Amiji, M.M.; Lodaya, R.N. Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines. Vaccines 2024, 12, 1343. https://doi.org/10.3390/vaccines12121343
Bhangde S, Fresnay-Murray S, Garretson T, Ashraf A, O’Hagan DT, Amiji MM, Lodaya RN. Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines. Vaccines. 2024; 12(12):1343. https://doi.org/10.3390/vaccines12121343
Chicago/Turabian StyleBhangde, Shashank, Stephanie Fresnay-Murray, Tyler Garretson, Asma Ashraf, Derek T. O’Hagan, Mansoor M. Amiji, and Rushit N. Lodaya. 2024. "Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines" Vaccines 12, no. 12: 1343. https://doi.org/10.3390/vaccines12121343
APA StyleBhangde, S., Fresnay-Murray, S., Garretson, T., Ashraf, A., O’Hagan, D. T., Amiji, M. M., & Lodaya, R. N. (2024). Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines. Vaccines, 12(12), 1343. https://doi.org/10.3390/vaccines12121343