Real-World Safety and Efficacy Clinical Data of an Improved Allergen-Specific Immunotherapy Product for the Treatment of Bee Venom Allergy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- Demographic data of the patients (age, gender, profession, and clinical history) (Table 1).
- Initial reaction to the bee field sting (Müller grades) (Table 1).
- Immunotherapy initiation protocol used. Four different protocols were used in the study, which are shown in Table 2, grouped according to the weeks employed in the buildup phase.
- Skin prick test to Apis mellifera.
- Total IgE, tryptase, and specific IgE to Apis mellifera and the different molecular components upon each hospital’s availability. IgEs were measured by InmunoCAPTM (Table 3).
- Adverse reactions during the immunotherapy and its classification.
- Spontaneous re-sting after initiating the immunotherapy.
2.2. Venom Extract
2.3. Statistical Analysis
3. Results
3.1. Safety of the Immunotherapy
3.1.1. Adverse Reactions during Immunotherapy
3.1.2. Safety Associated to Demographic Data and Sensitization Profiles
3.2. Efficacy, Field Re-Stings during Immunotherapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Hospital | Principal Investigator | N Patients Recruited |
---|---|---|
H. Lucus Augusti (Lugo) | Dr Francisco Carvallada | 61 |
H. Provincial de Pontevedra | Dra Elena Escudero Arias | 10 |
H. do Meixoeiro (Complejo Hospitalario U de Vigo) | Dr Luis Arenas Villaroel | 16 |
H. Clinic | Dr Federico de la Roca | 4 |
H. Universitario Nuestra Señora de Candelaria (Tenerife) | Dr Jose Carlos Garcia Robaina | 13 |
H. General Universitari de Castellón | Dra Raquel Cervera Aznar | 3 |
H. Virgen de la Luz (Cuenca) | Dra Lizette Miguel Polo | 1 |
Description of Previous Diseases | Total n (%) |
---|---|
66 (100.0%) | |
Acute myocardial infarction | 4 (6.06%) |
Atrial fibrilation | 2 (3.0%) |
Asthma | 3 (4.5%) |
Asthma-COPD overlap syndrome | 1 (1.5%) |
Cataract | 1 (1.5%) |
Colon neoplasm | 1 (1.5%) |
Conjunctivitis | 4 (6.06%) |
Chronic obstructive pulmonary disease | 2 (3.0%) |
Diabetes mellitus | 3 (4.5%) |
Drug intolerance | 1 (1.5%) |
Dyslipidemia | 7 (10.6%) |
Epilepsy | 2 (3.0%) |
HIV | 1 (1.5%) |
Hypertension | 15 (22.7%) |
Hypothyroidism | 2 (3.0%) |
Mastocytosis | 4 (6.1%) |
Peripheric venous disease | 1 (1.5%) |
Psoriasis | 1 (1.5%) |
Psoriatic arthropathy | 1 (1.5%) |
Rhinitis | 2 (3.0%) |
Sleep apnea syndrome | 3 (4.5%) |
Smoker | 1 (1.5%) |
Splenectomy | 1 (1.5%) |
Ulcerative colitis | 1 (1.5%) |
Ulcerative proctitis | 1 (1.5%) |
Urticaria | 2 (3.0%) |
IgE Total (kUA/L) | Tryptase (g/L) | IgE Apis mellifera (kUA/L) | IgE Api m 1 (kUA/L) | IgE Api m 2 (kUA/L) | IgE Api m 3 (kUA/L) | IgE Api m 5 (kUA/L) | IgE Api m 10 (kUA/L) | CCDs (kUA/L) | Müller Grade Initial Reaction | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 307 | 5.27 | 68.9 | 33.8 | 17.5 | 0.19 | 3.62 | 1.75 | 1.29 | 3 |
2 | 23 | 3.85 | 10.1 | 7.44 | 4.52 | 0.19 | 0 | <0.10 | 0 | 2 |
3 | 60.7 | 6.03 | 6.48 | 0.99 | 0.55 | 0.23 | 0 | 0.58 | 0 | 3 |
4 | 96.4 | 4.98 | 2.59 | 0.3 | 0.88 | 0 | 0.11 | 0.92 | 0 | 1 |
5 | 42.1 | 4.56 | 32.7 | 5.65 | 0 | 0 | 3.28 | 20.5 | 0.48 | 3 |
6 | 13.4 | 4.13 | 3.63 | 1.36 | 0 | 0 | 0 | 0.62 | 0 | 2 |
7 | 87.6 | 5.95 | 3.4 | 1.34 | 2.27 | 0 | 2.51 | 1.02 | 0 | 2 |
8 | 93.2 | 2.95 | 3.64 | 1.7 | 0.75 | 0 | 0 | 0.36 | 0 | 4 |
9 | 160 | ND | 90.8 | 2.77 | 0 | 0.16 | 0 | 70.8 | 0 | 3 |
10 | 23.3 | 2.97 | 5.22 | 4.65 | 0 | 0.2 | 0.16 | 0.54 | 0 | 1 |
11 | 20.8 | 7.67 | 1.42 | 0.07 | 0.29 | 0.06 | 0.37 | ND | 0 | 2 |
12 | 47.1 | 3.92 | 11.2 | 7.72 | 0 | 0 | 0 | 2.17 | 0.12 | 1 |
13 | 270 | 5.73 | 100 | 81.2 | ND | ND | ND | 15.2 | 0 | 2 |
14 | 12 | 5.25 | 1.62 | 0.41 | 0.18 | 0 | 0 | 2.15 | 0 | 2 |
15 | 86.7 | 3.02 | 9.9 | 2.44 | 4.32 | 0 | 5.09 | 0.7 | 0 | 2 |
16 | 28 | 5.3 | 4.16 | 1.98 | 0.02 | 0.01 | 0.03 | 0.81 | 0.03 | 1 |
17 | 1.46 | 5.36 | 5.38 | 1.36 | 0 | 0.36 | 3.77 | 1.36 | 0 | 2 |
18 | 51 | 14.7 | 24.8 | 24.9 | 0 | 0 | 0 | 2.57 | 0.77 | 2 |
19 | 56 | 4.27 | 0.25 | 0.11 | 0.13 | 0 | 0 | 0.01 | 0 | 1 |
20 | 264 | 5.62 | 185 | 95 | 30.9 | 5.88 | 4.8 | 1.4 | 0.2 | 4 |
21 | 40 | 4.98 | 1.43 | 1.14 | 0.1 | 0.1 | 0.97 | 1.14 | 0.1 | 2 |
22 | 201.6 | 4.7 | 24.6 | ND | ND | ND | ND | ND | ND | 1 |
23 | 169 | 4.3 | 29.4 | 20.4 | 0 | 0.73 | 9.83 | 6.9 | ND | 3 |
24 | 47.5 | 3.58 | 9.32 | 5.8 | 0.48 | 0.24 | 0.62 | 1.95 | ND | 2 |
25 | 48.9 | ND | 3.17 | 0.29 | 1.57 | 0.06 | ND | ND | <0.01 | 2 |
26 | 85.4 | 5.7 | 9.95 | 3.91 | 0 | 0 | 1.56 | 6.2 | ND | 3 |
27 | 1237 | 4.4 | 100 | 42.7 | ND | ND | 21.9 | 7.42 | ND | 3 |
28 | 128 | 3.6 | 9.45 | 2.55 | 1.08 | 0.24 | 1.91 | 0.37 | ND | 1 |
29 | 193 | 1.9 | 1.17 | 0.51 | 0.22 | 0 | 0.36 | 0.47 | ND | 3 |
30 | 129 | 5.6 | 9.82 | 2.23 | ND | ND | ND | 23.6 | ND | 4 |
31 | 93.7 | 11.2 | 0.48 | <0.15 | ND | ND | ND | <0.10 | ND | 3 |
32 | 53 | ND | 5.79 | ND | ND | ND | ND | ND | ND | 2 |
33 | 157 | 3.23 | 14.2 | ND | ND | ND | ND | ND | ND | 1 |
34 | 275 | 4.48 | >100 | ND | ND | ND | ND | ND | ND | 2 |
References
- Nevot Falcó, S.; Ferré Ybarz, L. Hipersensibilidad a veneno de himenópteros. Protoc. Diagn. Pediatr. 2013, 1, 135–144. [Google Scholar]
- Piñeiro Pérez, R.; Carabaño Aguado, I. Manejo práctico de las picaduras de insecto en Atención Primaria. Rev. Pediatría Atención Primaria 2015, 17, 159–166. [Google Scholar] [CrossRef]
- Biló, B.M.; Rueff, F. Diagnosis of Hymenoptera Venom. Allergy 2005, 60, 1339–1349. [Google Scholar] [CrossRef]
- Bonifazi, F.; Jutel, M.; Biló, B.M.; Birnbaum, J.; Muller, U.; the EAACI Interest Group on Insect Venom Hypersensitivity. Prevention and treatment of hymenoptera venom allergy: Guidelines for clinical practice. Allergy 2005, 60, 1459–1470. [Google Scholar] [CrossRef]
- Sturm, G.J.; Varga, E.-M.; Roberts, G.; Mosbech, H.; Bilò, M.B.; Akdis, C.A.; Antolín-Amérigo, D.; Cichocka-Jarosz, E.; Gawlik, R.; Jakob, T.; et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy 2017, 73, 744–764. [Google Scholar] [CrossRef] [PubMed]
- Feás, X. Human Fatalities Caused by Hornet, Wasp and Bee Stings in Spain: Epidemiology at State and Sub-State Level from 1999 to 2018. Biology 2021, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Vega Castro, A.; Antolín Amerigo, D. Diagnóstico y tratamiento de la alergia al veneno de los himenópteros. In Tratado Alergología, 2nd ed.; ERGON: Madrid, Spain, 2017; pp. 1249–1265. [Google Scholar]
- Pérez-Pimiento, A.; Prieto-Lastra, L.; Rodríguez-Cabreros, M.; Reaño-Martos, M.; García-Cubero, Á.; García-Loria, J. Work-related anaphylaxis to wasp sting. Occup. Med. 2007, 57, 602–604. [Google Scholar] [CrossRef]
- Krishna, M.T.; Ewan, P.W. Diagnosis and management of hymenoptera venom allergy: British Society for Allergy and Clinical Immunology (BSACI) guidelines. Clin. Exp. Allergy 2011, 41, 1201–1220. [Google Scholar] [CrossRef]
- Golden, D.B.K.; Kelly, D. Venom immunotherapy reduces large local reactions to insect stings. J. Allergy Clin. Immunol. 2009, 123, 1371–1375. [Google Scholar] [CrossRef]
- Müller, U.; Mosbech, H. Position Paper: Immunotherapy with Hymenoptera venoms. Allergy 2008, 14, 37–46. [Google Scholar] [CrossRef]
- Park, J.H.; Yim, B.K. Risk Associated with Bee Venom Therapy: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0126971. [Google Scholar] [CrossRef]
- Mosbech, H.; Müller, U. Side-effects of insect venom immunotherapy:results from an EAACI multicenter study. Allergy 2000, 55, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Nataf, P.; Guinnepain, M.T. Rush venom immunotherapy: A 3-day programme for hymenoptera sting allergy. Clin. Exp. Allergy 1984, 14, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Machín, I.; Moreno, C. Safety of a 2-visit cluster schedule of venom immunotherapy in outpatients at risk of life-threatening anaphylaxis. J. Investig. Allergol. Clin. Immunol. 2010, 20, 91–92. [Google Scholar] [PubMed]
- Blank, S.; Etzold, S.; Darsow, U.; Schiener, M.; Eberlein, B.; Russkamp, D.; Wolf, S.; Graessel, A.; Biedermann, T.; Ollert, M.; et al. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy. Hum. Vaccines Immunother. 2017, 13, 2482–2489. [Google Scholar] [CrossRef] [PubMed]
- Prymula, R.; Simko, R. Varicella vaccine without human serum albumin versus licensed varicella vaccine in children during the second year of life: A randomized, double-blind, non-inferiority trial. BMC Pediatr. 2016, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Offit, P.A.; Jew, R.K. Addressing parents’ concerns: Do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics 2003, 112, 1394–1397. [Google Scholar] [CrossRef]
- Gallego, R. Optimization and Characterization of Apis Mellifera Venom for Application. Master’s Thesis, Biología Molecular y Biomedicina, Universidad Complutense de Madrid, Madrid, Spain, 2018. [Google Scholar]
- Di Lorenzo, G.; Mansueto, P.; Pacor, M.L.; Rizzo, M.; Castello, F.; Martinelli, N.; Ditta, V.; Bianco, C.L.; Leto-Barone, M.S.; D’Alcamo, A.; et al. Evaluation of serum s-IgE/total IgE ratio in predicting clinical response to allergen-specific immunotherapy. J. Investig. Allergy Clin. Immunol. 2009, 123, 1103–1110.e4. [Google Scholar] [CrossRef]
- Pascal, M.; Moreno, C.; Dávila, I.; Tabar, A.I.; Bartra, J.; Labrador, M.; Luengo, O. Integration of in vitro allergy test results and ratio analysis for the diagnosis and treatment of allergic patients (INTEGRA). Clin. Transl. Allergy 2021, 11, e12052. [Google Scholar] [CrossRef]
- Vega-Castro, A.; Rodríguez-Gil, D.; Martínez-Gomariz, M.; Gallego, R.; Peña, M.; Palacios, R. Api m 6 and Api m 10 as Major Allergens in Patients With Honeybee Venom Allergy. J. Investig. Allergol. Clin. Immunol. 2022, 32, 116–123. [Google Scholar] [CrossRef]
- Frick, M.; Fischer, J. Predominant Api m 10 sensitinantion as risk factor for treatment failure in honey bee venom immunotherapy. J. Investig. Allergol. Clin. Immunol. 2016, 138, 1663–1671.e9. [Google Scholar] [CrossRef]
- Górska, A.; Niedoszytko, M. The prevalence of Api m 10 sensitization and the modification of immunotherapy in bee venom allergy. Postep. Dermatol. I Alergol. 2021, 38, 699–700. [Google Scholar] [CrossRef]
- Jakob, T.; Rafei-Shamsabadi, D.; Spillner, E.; Müller, S. Diagnostics in Hymenoptera venom allergy: Current concepts and developments with special focus on molecular allergy diagnostics. Allergo J. Int. 2017, 26, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Bilò, M.B.; Pravettoni, V. Hymenoptera Venom Allergy: Management of Children and Adults in Clinical Practice. J. Investig. Allergol. Clin. Immunol. 2019, 29, 180–205. [Google Scholar] [CrossRef] [PubMed]
- Pospischil, I.M.; Kagerer, M.; Cozzio, A.; Angelova-Fischer, I.; Guenova, E.; Ballmer-Weber, B.; Hoetzenecker, W. Comparison of the Safety Profiles of 3 Different Hymenoptera Venom Immunotherapy Protocols: A Retrospective 2-Center Study of 143 Patients. Int. Arch. Allergy Immunol. 2020, 181, 783–789. [Google Scholar] [CrossRef]
- Goldberg, A.; Confino-Cohen, R. Rush venom immunotherapy in patients experiencing recurrent systemic reactions to conventional venom immunotherapy. Ann. Allergy Asthma Immunol. 2003, 91, 405–410. [Google Scholar] [CrossRef]
- Ruëff, F.; Kroth, J.; Przybilla, B. Risk factors in Hymenoptera venom allergy. Allergol. Select. 2017, 1, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Antolín-Amérigo, D.; Aguilar, C.M.; Vega, A.; Álvarez-Mon, M. Venom Immunotherapy: An Updated Review. Curr. Allergy Asthma Rep. 2014, 14, 449. [Google Scholar] [CrossRef]
- Ruëff, F.; Przybilla, B.; Biló, M.B.; Müller, U.; Scheipl, F.; Aberer, W.; Birnbaum, J.; Lukaszyk, A.B.; Bonifazi, F.; Bucher, C.; et al. Predictors of side effects during the buildup phase of venom immunotherapy for Hymenoptera venom allergy: The importance of baseline serum tryptase. J. Allergy Clin. Immunol. 2010, 126, 105–111.e5. [Google Scholar] [CrossRef]
- Carballada, F.; Boquete, M.; Núñez, R.; Lombardero, M.; De La Torre, F. Follow-up of venom immunotherapy (VIT) based on conventional techniques and monitoring of immunoglobulin E to individual venom allergens. J. Investig. Allergol. Clin. Immunol. 2010, 20, 506–513. [Google Scholar]
- Carballada, F.; Alonso, M. Serum tryptase concentrations in beekeepers with and without Hymenoptera venom allergy. J. Investig. Allergol. Clin. Immunol. 2013, 23, 30–36. [Google Scholar]
- Pucci, S.; Ciccarelli, F. Maintenance venom immunotherapy administered at 12-week intervals in patients with high basal tryptase. Ann. Allergy Asthma Immunol. 2022, 128, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Carballada, F.-J.; Gonzalez-Quintela, A.; Nuñez, R.; Vidal, C.; Boquete, M. Low prevalence of IgE to cross-reactive carbohydrate determinants in beekeepers. J. Allergy Clin. Immunol. 2011, 128, 1350–1352.e2. [Google Scholar] [CrossRef] [PubMed]
- Carballada, F.J.; Gonzalez-Quintela, A.; Núñez-Orjales, R.; Vizcaino, L.; Boquete, M. Double (honeybee and wasp) immunoglobulin E reactivity in patients allergic to Hymenoptera venom: The role of cross-reactive carbohydrates and alcohol consumption. J. Investig. Allergol. Clin. Immunol. 2010, 20, 484–489. [Google Scholar] [PubMed]
- Mesquita, A.M.; Carneiro-Leão, L.; Amaral, L.; Coimbra, A. Hymenoptera Venom Allergy Re-Sting reactions. Eur. Ann. Allergy Clin. Immunol. 2021, 53, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Sözener, Z.Ç.; Çerçi, R. Field sting reactions in patients receiving Hymenoptera venom immunotherapy: Real-life experience. Asian Pac. J. Allergy Immunol. 2022, 2022, 1221–1282. [Google Scholar]
- Dhami, S.; Zaman, H. Allergen immunotherapy for insect venom allergy: A systematic review and meta-analysis. Allergy 2017, 72, 342–365. [Google Scholar] [CrossRef] [PubMed]
Demographic Data | |||||
---|---|---|---|---|---|
Age (years) | |||||
Mean (SD) | 52.12 (14.63) | ||||
95% CI | (49.32; 54.93) | ||||
Mediana (P25; P75) | 53 (41; 62) | ||||
(Min; Max) | (20; 85) | ||||
N | 107 | ||||
Sex N (%) | 107 (100%) | ||||
Men | 76 (71%) | ||||
Women | 31 (29%) | ||||
Profession 1 n (%) | 105 (100%) | ||||
Beekeeper | 55 (52.38%) | ||||
Other | 50 (47.7%) | ||||
Previous diseases 2 | 107 (100%) | ||||
Yes | 41 (38.3%) | ||||
No | 66 (61.7%) | ||||
Initial field-sting reaction | 107 (100%) | ||||
Local | 0 (0%) | ||||
Systemic | 107 (100%) | ||||
Immediate (<one hour) | 107 (100%) | ||||
Late onset (>one hour) | 0 (0%) | ||||
Grade of systemic reaction (Müller grades) | N | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
107 (100%) | 23 (21.5%) | 42 (39.2%) | 25 (23.4%) | 17 (15.9%) |
Schedule | Patient per Protocol | |||
---|---|---|---|---|
Dose, mL | Dose, µg | |||
Protocol 1 | Week 1 | 0.1 mL | 10 µg | 22 patients |
Week 2 | 0.2 + 0.3 mL | 20 µg + 30 µg | ||
Week 3 | 0.5 + 0.5 mL | 50 µg + 50 µg | ||
Week 4 | 1 mL | 100 µg | ||
Protocol 2 | Week 1 | 0.1 + 0.1 mL | 10 µg + 20 µg | 48 patients |
Week 2 | 0.2 + 0.3 mL | 20 µg + 30 µg | ||
Week 3 | 0.5 + 0.5 mL | 50 µg + 50 µg | ||
Protocol 3 | Week 1 | 0.1 + 0.2 + 0.2 mL | 10 µg + 10 µg + 20 µg | 18 patients |
Week 2 | 0.5 + 0.5 mL | 50 µg + 50 µg | ||
Protocol 4 | Week 1 | 0.1 + 0.1 mL | 10 µg + 10 µg | 19 patients |
Week 2 | 0.2 + 0.3 mL | 20 µg + 30 µg | ||
Week 3 | 0.5 + 0.5 mL | 50 µg + 50 µg | ||
Week 4 | 0.75 + 0.75 mL | 75 µg + 75 µg | ||
Week 5 | 1 + 1 mL | 100 µg + 100 µg |
Total IgE (kUA/L) | IgE Apis mellifera (kUA/L) | IgE Api m 1 (kUA/L) | IgE Api m 2 (kUA/L) | IgE Api m 3 (kUA/L) | IgE Api m 5 (kUA/L) | IgE Api m 10 (kUA/L) | Tryptase (g/L) | |
---|---|---|---|---|---|---|---|---|
Mean (SD) | 203.32 (520.30) | 21.44 (29.38) | 9.95 (20.51) | 3.36 (13.29) | 0.97 (2.99) | 4.05 (12.65) | 7.12 (13.85) | 5.41 (2.84) |
95% CI | (102.14; 304.51) | (15.79; 27.10) | (5.68; 14.22) | (0.09; 6.62) | (0.24; 1.71) | (0.87; 7.24) | (4; 10.24) | (4.84; 5.98) |
Median (P25; P75) | 81.77 (34.50; 194.50) | 9.30 (2.44; 24.80) | 1.74 (0.34; 6.03) | 0.08 (0; 0.88) | 0.06 (0; 0.30) | 0.10 (0; 2.05) | 1.08 (0.34; 7.09) | 4.85 (3.60; 6.20) |
Min; max | (1.46; 4945) | (0; 100) | (0; 95) | (0; 100) | (0; 16.3) | (0; 83) | (0; 70.80) | (1.80; 19.80) |
N | 104 | 106 | 91 | 66 | 66 | 63 | 78 | 90 |
AR | Protocol 1 | Protocol 2 | Protocol 3 | Protocol 4 | Total |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | N (%) | |
Local AR | 7 (6.5%) | 0 | 4 (3.7%) | 2 (1.9%) | 13 (12.1%) |
Systemic AR | 2 (1.9%) | 5 (4.7%) | 0 | 1 (0.9%) | 8 (7.5%) |
General | No AR | Systemic AR | Systemic AR Grade 1 | Systemic AR Grade 2 | ||
---|---|---|---|---|---|---|
Age (years) | 52.12 | 52.3 | 57.7 | 54.75 | 63.5 | |
p-value | 0.7496 | 0.3416 | 0.7160 | 0.2688 | ||
Gender | Male | 71% (76) | 82.9% (63) | 9.2% (7) | 5.3% (4) | 4% (3) |
Female | 29% (31) | 83.9% (26) | 3.2% (1) | 3.2% (1) | 0% | |
p-value | 0.9025 | 0.6699 | 1.000 | 1.0000 | ||
Profession | Beekeeper | 52% (55) | 56% (49) | 3.6% (2) | 1.8% (1) | 1.8% (1) |
Non Beekeeper | 48% (50) | 44% (39) | 8% (4) | 6% (3) | 2% (1) | |
p-value | 0.2513 | 0.5963 | 0.4654 | 0.4258 | ||
Severity of sting reaction (Müller) | Grade 1 | 21.5% (23) | 20.2% (18) | 4.3% (1) | 4.3% (1) | 0% |
Grade 2 | 39.3% (42) | 39.3% (35) | 4.7% (2) | 4.7% (2) | 0% | |
Grade 3 | 23.4% (25) | 27% (24) | 4% (1) | 4% (1) | 0% | |
Grade 4 | 15.9% (17) | 13.5% (12) | 11.7% (2) | 0% | 11.7% (2) | |
p-value | 0.1536 | 0.1898 | 0.8468 | 0.0129 |
Mean/Ratio ¶ | |||||
---|---|---|---|---|---|
General | No AR | Systemic AR | Grade 1 | Grade 2 | |
IgE total (kU/L) | 203.32/NA | 226/NA | 102.4/NA | 81.52/NA | 144.3/NA |
IgE Apis mellifera (kU/L) | 21.4/10.5 | 23.1/10.2 | 26.5/11.7 | 31.78/39 | 15.98/11 |
IgE Api m 1 (kU/L) | 9.95/4.9 | 10.8/4.8 | 0.83/0.8 | 0.83/1.01 | - |
IgE Api m 2 (kU/L) | 3.36/1.65 | 3.8/1.7 | 0.22/0.2 | 0.22/0.27 | - |
IgE Api m 3 (kU/L) | 0.97/0.48 | 1.1/0.48 | 0.18/0.18 | 0.18/0.22 | - |
IgE Api m 5 (kU/L) | 4.05/2 | 4.46/2 | 1.89/1.8 | 1.89/2.3 | - |
IgE Api m 10 (kU/L) | 7.12/3.5 | 7.86/3.5 | 0.94/0.9 | 0.94/1.15 | - |
CCD’s (kU/L) | 0.48/NA | 0.48/NA | 0/NA | 0/NA | -/NA |
Triptasa (g/L) | 5.41/NA | 5.33/NA | 7.49/NA | 8.82/NA | 2.2/NA |
sIgE | Apis mellifera | Api m 1 | Api m 2 | Api m 3 | Api m 5 | Api m 10 | CCD’s |
---|---|---|---|---|---|---|---|
N total | 107 | 93 | 68 | 66 | 65 | 80 | 51 |
Positive | 107 | 82 | 33 | 29 | 31 | 69 | 17 |
Monosensitized | 2 | 3 | 0 | 1 | 6 | 0 |
Total IgE (kUA/L) | IgE Apis mellifera (kUA/L) | IgE Api m 1 (kUA/L) | IgE Api m 2 (kUA/L) | IgE Api m 3 (kUA/L) | IgE Api m 5 (kUA/L) | IgE Api m 10 (kUA/L) | Tryptase (g/L) | |
---|---|---|---|---|---|---|---|---|
Mean (SD) | 135.35 (212.05) | 23.94 (40.53) | 12.23 (23.55) | 2.53 (6.76) | 0.33 (1.14) | 2.34 (4.62) | 6.59 (14.5) | 5.14 (2.43) |
Min; max | (1.46; 4945) | (0.25; 100) | (0.07; 95) | (0; 30.9) | (0; 5.88) | (0; 21.9) | (0.01; 70.80) | (1.9; 14.7) |
Percentage of sensitization | NA | 100% | 100% | 65.4% | 53.85% | 65.4% | 100% | NA |
N | 34 | 34 | 29 | 26 | 26 | 26 | 26 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Guzman, L.A.; García Robaina, J.C.; Barrios Recio, J.; Escudero Arias, E.; Liñares Mata, T.; Cervera Aznar, R.; De La Roca Pinzón, F.; Miguel Polo, L.d.C.; Arenas Villarroel, L.; López Couso, V.P.; et al. Real-World Safety and Efficacy Clinical Data of an Improved Allergen-Specific Immunotherapy Product for the Treatment of Bee Venom Allergy. Vaccines 2023, 11, 979. https://doi.org/10.3390/vaccines11050979
Gonzalez Guzman LA, García Robaina JC, Barrios Recio J, Escudero Arias E, Liñares Mata T, Cervera Aznar R, De La Roca Pinzón F, Miguel Polo LdC, Arenas Villarroel L, López Couso VP, et al. Real-World Safety and Efficacy Clinical Data of an Improved Allergen-Specific Immunotherapy Product for the Treatment of Bee Venom Allergy. Vaccines. 2023; 11(5):979. https://doi.org/10.3390/vaccines11050979
Chicago/Turabian StyleGonzalez Guzman, Luis Alfredo, Jose Carlos García Robaina, Javier Barrios Recio, Elena Escudero Arias, Tania Liñares Mata, Raquel Cervera Aznar, Federico De La Roca Pinzón, Lissette del Carmen Miguel Polo, Luis Arenas Villarroel, Verónica P. López Couso, and et al. 2023. "Real-World Safety and Efficacy Clinical Data of an Improved Allergen-Specific Immunotherapy Product for the Treatment of Bee Venom Allergy" Vaccines 11, no. 5: 979. https://doi.org/10.3390/vaccines11050979
APA StyleGonzalez Guzman, L. A., García Robaina, J. C., Barrios Recio, J., Escudero Arias, E., Liñares Mata, T., Cervera Aznar, R., De La Roca Pinzón, F., Miguel Polo, L. d. C., Arenas Villarroel, L., López Couso, V. P., Alcover Diaz, J., Rodriguez Gil, D., Pelaez, R. P., & Carballada Gonzalez, F. J. (2023). Real-World Safety and Efficacy Clinical Data of an Improved Allergen-Specific Immunotherapy Product for the Treatment of Bee Venom Allergy. Vaccines, 11(5), 979. https://doi.org/10.3390/vaccines11050979