A Chimeric Vaccine against Porcine Circovirus Type 2: Meta-Analysis of Comparative Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Data Collection
2.1.1. Average Daily Gain
2.1.2. Mortality
2.1.3. Market Classification as Full Value or Cull
2.2. Statistical Analyses
2.2.1. Sequence of Analyses
2.2.2. Meta-Analysis
3. Results
3.1. Data Collection
3.2. Meta-Analysis
3.2.1. Average Daily Gain
3.2.2. Mortality
3.2.3. Market Classification
3.2.4. Publication and Selection Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karuppannan, A.K.; Opriessnig, T. Porcine circovirus type 2 (PCV2) vaccines in the context of current molecular epidemiology. Viruses 2017, 9, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehan, B.M.; Mcneilly, F.; Todd, D.; Kennedy, S.; Jewhurst, V.A.; Ellis, J.A.; Hassard, L.E.; Clark, E.G.; Haines, D.M.; Allan, G.M. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J. Gen. Virol. 1998, 79, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Meng, X.J.; Halbur, P.G. Porcine Circovirus Type 2-associated disease: Update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J. Vet. Diagn. Investig. 2007, 19, 591–615. [Google Scholar] [CrossRef] [PubMed]
- Link, E.K.; Eddicks, M.; Nan, L.; Ritzmann, M.; Sutter, G.; Fux, R. Discriminating the eight genotypes of the Porcine Circovirus Type 2 with TaqMan-based real-time PCR. Virol. J. 2021, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Cortey, M.; Segalés, J.; Hughes, J.; Drigo, M. Phylodynamic analysis of porcine circovirus type 2 reveals global waves of emerging genotypes and the circulation of recombinant forms. Mol. Phylogenet. Evol. 2016, 100, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.; Halbur, P.G.; Opriessnig, T. Complete genome sequence of a novel porcine circovirus type 2b variant present in cases of vaccine failures in the United States. J. Virol. 2012, 86, 12469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, C.S.; Baadsgaard, N.P.; Toft, N.A. Meta-analysis comparing the effect of PCV2 vaccines on average daily weight gain and mortality rate in pigs from weaning to slaughter. Prev. Vet. Med. 2011, 98, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.; Carriquiry, A.; O’Neill, K.; Opriessnig, T.; O’Connor, A.M. Mixed treatment comparison meta-analysis of porcine circovirus type 2 (PCV2) vaccines used in piglets. Prev. Vet. Med. 2014, 117, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.R.D.; Nitzel, G.P.; Taylor, L.P. Meta-analysis of porcine circovirus type 2 (PCV2) vaccines. Prev. Vet. Med. 2015, 119, 93. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.R.H. Subgroup analyses. In Introduction to Meta Analysis; John and Wiley and Sons: West Sussex, UK, 2009; pp. 149–186. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, J. What is heterogeneity and is it important. Br. Med. J. 2007, 334, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Egger, M.; Smith, G.D. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. Br. Med. J. 2001, 323, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Um, H.; Yang, S.; Oh, T.; Park, K.; Cho, H.; Suh, J.; Min, K.D.; Chae, C. Comparative evaluation of growth performance between bivalent and trivalent vaccines containing porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae in a herd with subclinical PCV2d infection and enzootic pneumonia. Vaccines 2021, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Zoetis. Large Field Trial Showed Fostera Gold PCV MH was Effective against Prevalent PCV2d Genotype. Available online: https://pighealthtoday.com/?s=Fostera+gold&x=0&y=0 (accessed on 1 April 2022).
- Zoetis. Two-Dose Fostera Gold PCV MH Regimen Yields Performance Advantages. Available online: https://pighealthtoday.com/two-dose-fostera-gold-pcv-mh-regimen-yields-performance-advantages/ (accessed on 1 April 2022).
- Zoetis. Field Studies Demonstrate Safety of Fostera Gold PCV MH Vaccine. Available online: https://pighealthtoday.com/mobile/article/?id=7058 (accessed on 1 April 2022).
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Chae, C. Commercial porcine circovirus type 2 vaccines: Efficacy and clinical application. Vet. J. 2012, 194, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.R.H. Criticisms of meta-analysis. In Introduction to Meta-Analysis; John and Wiley and Sons: West Sussex, UK, 2009; pp. 377–387. [Google Scholar]
- Beller, E.M.; Chen, J.K.H.; Wang, U.L.H. Are systematic reviews up-to-date at the time of publication. Syst. Rev. 2013, 2, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Average Daily Gain | Mortality | Full Value | Culls | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Nursery | Finisher | Overall | Nursery | Finisher | |||||||||||
Vaccine (Doses) | N 1 | Mean (SD) | N 1 | Mean (SD) | N 1 | Mean (SD) | N 2 | Dead | N 2 | Dead | N 2 | Dead | N 3 | Full Value | N 3 | Culls |
Study: 16PRGBIO-01-01 (US) | ||||||||||||||||
FOS-G (D1) | 77 | 731.64 (70.31) | 97 | 454.05 (61.69) | 72 | 993.37 (86.18) | 110 | 9 | NR | NR | NR | NR | ||||
FOS-G (D2a) | 83 | 695.36 (91.63) | 104 | 434.54 (77.56) | 81 | 936.21 (121.56) | 110 | 4 | NR | NR | NR | NR | ||||
FOS-G (D2b) | 83 | 722.12 (59.87) | 98 | 452.68 (60.78) | 79 | 980.21 (97.07) | 110 | 6 | NR | NR | NR | NR | ||||
CV (D2a) | 80 | 709.42 (65.77) | 103 | 441.35 (64.86) | 80 | 962.07 (92.53) | 110 | 5 | NR | NR | NR | NR | ||||
IC + IM (D1) | 80 | 713.95 (71.67) | 102 | 444.07 (68.49) | 79 | 961.16 (108.86) | 110 | 6 | NR | NR | NR | NR | ||||
Study: 18PPTBIO-01-03 (US) | ||||||||||||||||
FOS-G (D1) | 697 | 793.79 (72.57) | NR | NR | 750 | 39 | NR | NR | 750 | 692 | 711 | 4 | ||||
IC + IM (D1) | 703 | 802.86 (72.57) | NR | NR | 750 | 36 | NR | NR | 750 | 698 | 714 | 0 |
Average Daily Gain (g/day) | Mortality | Full Value | Culls | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Nursery | Finisher | Overall | Nursery | Finisher | |||||||||||
Vaccine (Doses) | N 1 | Mean (SD) | N 1 | Mean (SD) | N 1 | Mean (SD) | N 2 | Dead | N 2 | Dead | N 2 | Dead | N 3 | Full Value | N 3 | Culls |
Study: 17PPTBIO-01-01 (US) | ||||||||||||||||
FOS-G (D2b) | 582 | 736.63 (77.11) | 596 | 369.22 (77.11) | 579 | 904.01 (99.79) | 618 | 31 | 618 | 19 | 599 | 12 | 618 | 578 | 581 | 3 |
CV (D2b) | 556 | 734.82 (81.65) | 574 | 369.68 (81.65) | 547 | 900.83 (104.33) | 623 | 45 | 623 | 26 | 597 | 19 | 623 | 565 | 571 | 6 |
Study: 17PPTBIO-01-02 (US) | ||||||||||||||||
FOS-G (D1) | 1262 | 752.96 (81.65) | 1296 | 353.80 (68.04) | 1257 | 920.79 (99.79) | 1322 | 39 | 1322 | 12 | 1310 | 27 | 1322 | 588 | 1261 | 82 |
CV (D1) | 1267 | 757.50 (81.65) | 1307 | 353.80 (72.57) | 1265 | 925.33 (99.79) | 1324 | 34 | 1324 | 12 | 1312 | 22 | 1324 | 611 | 1268 | 93 |
Study: 18PPTBIO-01-04 (US) | ||||||||||||||||
FOS-G (D1) | 1064 | 698.53 (91.63) | 1145 | 392.81 (85.28) | 1064 | 845.04 (119.29) | 1172 | 96 | 1172 | 27 | 1145 | 69 | 1172 | 1022 | 1042 | 20 |
IC + IM (D1) | 1072 | 696.72 (98.88) | 1137 | 387.82 (88.00) | 1072 | 845.04 (126.10) | 1177 | 98 | 1177 | 41 | 1136 | 57 | 1177 | 1014 | 1042 | 28 |
Study: 18PPTBIO-01-07 (US) | ||||||||||||||||
FOS-G (D2b) | NR | NR | NR | 2775 | 211 | NR | NR | NR | 2443 | 61 | ||||||
CV (D2b) | NR | NR | NR | 2774 | 207 | NR | NR | NR | 2428 | 66 | ||||||
Study: 18PPTBIO-01-08 (US) | ||||||||||||||||
FOS-G (D2b) | 923 | 799.68 (18.14) | 994 | 300.28 (22.68) | 923 | 979.31 (23.59) | 1042 | 85 | NR | NR | 1042 | 938 | 940 | 2 | ||
CV (D2b) | 850 | 796.51 (19.50) | 902 | 297.56 (29.03) | 850 | 974.77 (22.23) | 937 | 63 | NR | NR | 937 | 857 | 858 | 1 | ||
Um et al., 2021 (Republic of Korea) [15] | ||||||||||||||||
FOS-G (D1) | 117 | 656.06 (11.85) | 119 | 399.90 (25.44) | 117 | 775.62 (20.65) | 120 | 3 | 120 | 1 | 119 | 2 | NR | NR | ||
FOS-G (D2b) | 117 | 654.74 (11.38) | 119 | 401.89 (24.05) | 117 | 772.73 (18.45) | 120 | 3 | 120 | 1 | 119 | 2 | NR | NR | ||
POR (D1) | 115 | 647.65 (14.17) | 119 | 395.51 (24.20) | 115 | 765.23 (22.73) | 120 | 5 | 120 | 1 | 119 | 4 | NR | NR |
Average Daily Gain, g/day | Mortality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Analysis | n | Mean Difference | p-Value | I2, % | p-Value between * | n | Risk Ratio | p-Value | I2, % | p-Value between * |
Overall (from allocation until end of finisher) | ||||||||||
Primary analysis (1st subgroup and combined analysis) | ||||||||||
Experimental challenge (US) | 7 | −0.616 | 0.914 | 22.99 | 0.770 | 7 | 1.098 | 0.629 | 0.00 | 0.710 |
Environmental challenge (US) | 4 | 1.136 | 0.551 | 43.45 | 5 | 1.017 | 0.808 | 8.90 | ||
Combined | 11 | 0.960 | 0.595 | 45.19 | 0.003 | 12 | 1.026 | 0.695 | 0.00 | 0.370 |
Um et al., 2021 (Republic of Korea) [15] | 2 | 7.735 | <0.001 | 0.00 | 2 | 0.600 | 0.391 | 0.00 | ||
Secondary analysis (2nd subgroup analysis) | ||||||||||
FOS-G versus IC + IM (US) | 5 | −2.406 | 0.579 | 35.18 | 0.461 † | 5 | 1.012 | 0.919 | 0.00 | 0.889 † |
FOS-G versus CV (US) | 6 | 1.216 | 0.599 | 34.62 | 7 | 1.031 | 0.672 | 0.00 | ||
FOS-G versus POR (Republic of Korea) | 2 | 7.735 | <0.001 | 0.00 | 0.010 ‡ | 2 | 0.600 | 0.391 | 0.00 | 0.663 ‡ |
Nursery | ||||||||||
Primary analysis (1st subgroup and combined analysis) | ||||||||||
Experimental challenge (US) | 6 | 5.466 | 0.364 | 0.00 | 0.613 | NR | NA | |||
Environmental challenge (US) | 4 | 2.373 | 0.020 | 0.00 | 3 | 0.738 | 0.075 | 0.00 | ||
Combined | 10 | 2.459 | 0.015 | 0.00 | 0.313 | 3 | 0.738 | 0.075 | 0.00 | 0.805 |
Um et al., 2021 (Republic of Korea) [15] | 2 | 5.423 | 0.049 | 0.00 | 2 | 1.000 | 1.000 | 0.00 | ||
Secondary analysis (2nd subgroup analysis) | ||||||||||
FOS-G versus IC + IM (US) | 4 | 4.848 | 0.147 | 0.00 | 0.454 † | 1 | 0.661 | 0.091 | NA | 0.531 † |
FOS-G versus CV (US) | 6 | 2.221 | 0.035 | 0.00 | 2 | 0.820 | 0.406 | 0.00 | ||
FOS-G versus POR (Republic of Korea) | 2 | 5.423 | 0.049 | 0.00 | 0.454 ‡ | 2 | 1.000 | 1.000 | 0.00 | 0.797 ‡ |
Finisher | ||||||||||
Primary analysis (1st subgroup and combined analysis) | ||||||||||
Experimental challenge (US) | 6 | 11.932 | 0.249 | 0.00 | 0.334 | NR | NA | |||
Environmental challenge (US) | 4 | 1.665 | 0.491 | 44.27 | 3 | 1.070 | 0.699 | 27.44 | ||
Combined | 10 | 2.194 | 0.351 | 18.20 | 0.041 | 3 | 1.070 | 0.699 | 27.44 | 0.291 |
Um et al., 2021 (Republic of Korea) [15] | 2 | 8.847 | <0.001 | 0.00 | 2 | 0.500 | 0.321 | 0.00 | ||
Secondary analysis (2nd subgroup analysis) | ||||||||||
FOS-G versus IC + IM (US) | 4 | 1.321 | 0.792 | 0.00 | 0.894 † | 1 | 1.201 | 0.293 | NA | 0.467 † |
FOS-G versus CV (US) | 6 | 2.098 | 0.481 | 36.17 | 2 | 0.914 | 0.787 | 52.31 | ||
FOS-G versus POR (Republic of Korea) | 2 | 8.847 | <0.001 | 0.00 | 0.134 ‡ | 2 | 0.500 | 0.321 | 0.00 | 0.399 ‡ |
Market Classification | Full Value | Culls | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | RR | p-Value | I2, % | p-Value between * | n | RR | p-Value | I2, % | p-Value between * | |
Primary analysis (1st subgroup and combined analysis) | ||||||||||
Experimental challenge | 1 | 0.991 | 0.552 | NA | 0.504 | 1 | 9.038 | 0.139 | NA | 0.116 |
Environmental challenge | 4 | 1.004 | 0.736 | 47.17 | 5 | 0.867 | 0.166 | 0.00 | ||
Combined | 5 | 0.999 | 0.885 | 36.44 | NA | 6 | 0.876 | 0.200 | 0.00 | NA |
Secondary analysis (2nd subgroup analysis) | ||||||||||
FOS-G versus IC + IM | 2 | 1.001 | 0.954 | 0.00 | 0.971 | 2 | 1.668 | 0.669 | 64.24 | 0.602 |
FOS-G versus CV | 3 | 1.000 | 0.992 | 62.82 | 4 | 0.891 | 0.298 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poulsen Nautrup, B.; Van Vlaenderen, I.; Mellencamp, M.A. A Chimeric Vaccine against Porcine Circovirus Type 2: Meta-Analysis of Comparative Clinical Trials. Vaccines 2023, 11, 584. https://doi.org/10.3390/vaccines11030584
Poulsen Nautrup B, Van Vlaenderen I, Mellencamp MA. A Chimeric Vaccine against Porcine Circovirus Type 2: Meta-Analysis of Comparative Clinical Trials. Vaccines. 2023; 11(3):584. https://doi.org/10.3390/vaccines11030584
Chicago/Turabian StylePoulsen Nautrup, Barbara, Ilse Van Vlaenderen, and Martha A. Mellencamp. 2023. "A Chimeric Vaccine against Porcine Circovirus Type 2: Meta-Analysis of Comparative Clinical Trials" Vaccines 11, no. 3: 584. https://doi.org/10.3390/vaccines11030584