Effectiveness of Inactivated Vaccine against SARS-CoV-2 Delta Variant Infection in Xiamen, China—A Test-Negative Case-Control Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Definition of Study Participants
2.2.1. Case and Control Definition
2.2.2. Definition of Immune Status
2.3. Information Collection
2.4. Statistical Analysis
3. Results
3.1. Study Participant Recruitment
3.2. Characteristics of Cases
Description of Epidemiological and Clinical Characteristics
3.3. SARS-CoV-2 Vaccine Effectiveness
3.3.1. Characteristics of Cases and Controls
3.3.2. SARS-CoV-2 Vaccine Effectiveness
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants (accessed on 2 December 2022).
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard [EB/OL]. Available online: https://covid19.who.int (accessed on 2 December 2022).
- Science Media Centre. Expert Reaction to Cases of Variant B.1.617 (the ‘Indian variant’) being Investigated in the UK. Available online: https://www.sciencemediacentre.org/expert-reaction-to-cases-of-variant-b-1-617-the-indian-variant-being-investigated-in-the-uk/ (accessed on 19 April 2021).
- World Health Organization. 14.9 Million Excess Deaths Associated with the COVID-19 Pandemic in 2020 and 2021. 5 May 2022[EB/OL]. Available online: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021 (accessed on 2 February 2023).
- Campbell, F.; Archer, B.; Laurenson-Schafer, H. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance 2021, 26, 2100509. [Google Scholar] [CrossRef] [PubMed]
- Parodi, S.M.; Liu, V.X. From Containment to Mitigation of COVID-19 in the US. JAMA 2020, 323, 1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatchett, R.J.; Mecher, C.E.; Lipsitch, M. Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc. Natl. Acad. Sci. USA 2007, 104, 7582–7587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, C.; Vogels, C.B.F.; Yildirim, I.; Rothman, J.E.; Lu, P.; Monteiro, V.; Gehlhausen, J.R.; Campbell, M.; Silva, J.; Tabachnikova, A.; et al. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Fowlkes, A.; Gaglani, M.; Groover, K. Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance—Eight U.S. Locations, December 2020–August 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1167–1169. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Tseng, H.F.; Ackerson, B.K.; Luo, Y.; Sy, L.S.; Talarico, C.A.; Tian, Y.; Bruxvoort, K.J.; Tubert, J.E.; Florea, A.; Ku, J.H.; et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. 2022, 28, 1063–1071. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Tang, L. Effectiveness of Inactivated COVID-19 Vaccines Against Symptomatic, Pneumonia, and Severe Disease Caused by the Delta Variant: Real World Study and Evidence—China, 2021. China CDC Wkly. 2022, 4, 57–65. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [Google Scholar] [CrossRef]
- Xiamen Center for Disease Control and Prevention. Xiamen Immunization Planning and Management Cloud Platform [DB/OL]. Available online: http://xgydj.xmcdc.com.cn:10001/inoculation-system/ (accessed on 10 March 2022).
- Broome, C.V.; Facklam, R.R.; Fraser, D.W. Pneumococcal disease after pneumococcal vaccination: An alternative method to estimate the efficacy of pneumococcal vaccine. N. Engl. J. Med. 1980, 303, 549–552. [Google Scholar] [CrossRef]
- Skowronski, D.; Gilbert, M.; Tweed, S. Effectiveness of vaccine against medical consultation due to laboratory-confirmed influenza: Results from a sentinel physician pilot project in British Columbia, 2004–2005. Can. Commun. Dis. Rep. 2005, 31, 181–191. [Google Scholar]
- World Health Organization. Laboratory Testing of 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Cases: Interim Guidance. 17 January 2020[EB/OL]. Available online: https://www.who.int/publications/i/item/laboratory-testing-of-2019-novel-coronavirus-(-2019-ncov)-in-suspected-human-cases-interim-guidance-17-january-2020 (accessed on 20 November 2022).
- National Health Commission of the People’s Republic of China, Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 8). Available online: http://www.nhc.gov.cn/yzygj/s7653p/202203/b74ade1ba4494583805a3d2e40093d88/files/ef09aa4070244620b010951b088b8a27.pdf (accessed on 20 November 2022).
- National Health Commission of the People’s Republic of China, Prevention and Control Measures for the Novel Coronavirus Pneumonia (Trial Version 8). Available online: http://www.nhc.gov.cn/xcs/zhengcwj/202105/6f1e8ec6c4a540d99fafef52fc86d0f8/files/01f13e0ae31947ce8141a7b21439e285.pdf (accessed on 20 November 2022).
- World Health Organization. Vaccine Efficacy, Effectiveness and Protection. 14 July 2021[EB/OL]. Available online: https://www.who.int/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection (accessed on 2 February 2023).
- World Health Organization. Background Document on the Inactivated Vaccine Sinovac-CoronaVac against COVID-19: Background Document to the WHO Interim Recommendations for Use of the Inactivated COVID-19 Vaccine, CoronaVac, Developed by Sinovac, 24 May 2021. [EB/OL]. Available online: https://apps.who.int/iris/handle/10665/341455 (accessed on 20 November 2022).
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef]
- Zhang, M.X.; Deng, J.; Zhang, A. Notes from the field: Transmission dynamics of an outbreak of the COVID-19 delta variant B.1.617.2—Guangdong Province, China, May–June 2021. China CDC Wkly. 2021, 3, 584–586. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Hu, F. Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine 2021, 40, 101129. [Google Scholar] [CrossRef]
- Kang, M.M.; Yi, M.Y.; Li, Y.; Sun, B.L.; Deng, M.A.; Hu, M.T.; Zhang, M.J.; Liu, M.J.; Cheng, M.M.; Xie, M.S.; et al. Effectiveness of Inactivated COVID-19 Vaccines Against Illness Caused by the B.1.617.2 (Delta) Variant During an Outbreak in Guangdong, China. Ann. Intern. Med. 2022, 175, 533–540. [Google Scholar] [CrossRef]
- Li, X.N.; Huang, Y.; Wang, W. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect. 2021, 10, 1751–1759. [Google Scholar] [CrossRef]
- Ma, C.; Sun, W.; Tang, T.; Jia, M.; Liu, Y.; Wan, Y.; Han, J.; Rodewald, L.; Li, J.; Song, Y.; et al. Effectiveness of adenovirus type 5 vectored and inactivated COVID-19 vaccines against symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the B.1.617.2 (Delta) variant: Evidence from an outbreak in Yunnan, China, 2021. Vaccine 2022, 40, 2869–2874. [Google Scholar] [CrossRef]
- Belayachi, J.; Obtel, M.; Mhayi, A. Long term effectiveness of inactivated vaccine BBIBP-CorV (Vero Cells) against COVID-19 associated severe and critical hospitalization in Morocco. PLoS ONE 2022, 17, e0278546. [Google Scholar] [CrossRef]
- Suah, J.L.; Husin, M.; Tok, P.S.K.; Tng, B.H.; Thevananthan, T.; Low, E.V.; Appannan, M.R.; Zin, F.M.; Zin, S.M.; Yahaya, H.; et al. Waning COVID-19 Vaccine Effectiveness for BNT162b2 and CoronaVac in Malaysia: An Observational Study. Int. J. Infect. Dis. 2022, 119, 69–76. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; Zubizarreta, J.R. Effectiveness of homologous and heterologous booster doses for an inactivated SARS-CoV-2 vaccine: A large-scale prospective cohort study. Lancet Glob Health 2022, 10, e798–e806. [Google Scholar] [CrossRef] [PubMed]
- A COVID-19 Vaccine may be Only 50% Effective. Is that Good Enough? WBEZ Chicago. Available online: https://www.wbez.org/stories/a-covid-19-vaccine-may-be-only-50-effective-is-that-good-enough/d1fe8f3b-09c8-4064-a44f-5503debd28bd (accessed on 20 November 2022).
Overall [N (%)] | Unvaccinated [N (%)] | Vaccinated [N (%)] | p Value | |
---|---|---|---|---|
Age (year) | ||||
<=18 | 30 (12.71) | 20 (60.61) | 10 (4.93) | <0.001 |
18~60 | 193 (81.78) | 8 (24.24) | 185 (91.13) | |
>60 | 13 (5.51) | 5 (15.15) | 8 (3.94) | |
Gender | ||||
male | 116 (49.15) | 21 (63.64) | 95 (46.80) | 0.108 |
female | 120 (50.85) | 12 (36.36) | 108 (53.20) | |
Vaccination status | ||||
Unvaccinated | 35 (14.83) | 33 (100.00) | 2 (0.99) | <0.001 |
Partially vaccinated | 36 (15.25) | 0 (0.00) | 36 (17.73) | |
Fully vaccinated | 165 (69.92) | 0 (0.00) | 165 (81.28) | |
Vaccine type | ||||
Inactivated vaccine | 194 (82.20) | 0 (0.00) | 194 (95.57) | <0.001 |
Ad5-nCoV vaccine | 8 (3.39) | 0 (0.00) | 8 (3.94) | |
Unvaccinated/Unknown | 34 (14.41) | 33 (100.00) | 1 (0.49) | |
Source | ||||
Quarantine site test | 138 (58.47) | 22 (66.67) | 116 (57.14) | 0.236 |
High-risk regions screening | 58 (24.58) | 3 (9.09) | 55 (27.09) | |
Full screening | 18 (7.63) | 4 (12.12) | 14 (6.90) | |
Key population screening | 6 (2.54) | 1 (3.03) | 5 (2.46) | |
Initiative to see a doctor | 16 (6.78) | 3 (9.09) | 13 (6.40) | |
Type of epidemic transmission | ||||
Factory transmission | 102 (43.22) | 5 (15.15) | 97 (47.78) | <0.001 |
Family transmission | 65 (27.54) | 17 (51.52) | 48 (23.65) | |
Community transmission | 69 (29.24) | 11 (33.33) | 58 (28.57) | |
Time from symptom onset to nucleic acid testing (day) | ||||
<=0 | 113 (47.88) | 17 (51.52) | 96 (47.29) | 0.490 |
1~3 | 110 (46.61) | 13 (39.39) | 97 (47.78) | |
>=4 | 13 (5.51) | 3 (9.09) | 10 (4.93) | |
PCR cycle threshold (Ct value, copies/mL) | ||||
<=24 | 112 (47.46) | 14 (42.42) | 98 (48.28) | 0.371 |
24~35 | 88 (37.29) | 11 (33.33) | 77 (37.93) | |
35~40 | 30 (12.71) | 6 (18.18) | 24 (11.82) | |
negative | 6 (2.54) | 2 (6.06) | 4 (1.97) | |
ORF1ab gene (open reading frame 1ab) | 26.78 (6.94) | 28.45 (7.79) | 26.51 (6.77) | 0.137 |
N gene (nucleocapsid protein) | 25.89 (7.18) | 27.67 (8.32) | 25.60 (6.96) | 0.126 |
Transfer time(hours) | 17.73 (11.97) | 12.58 (9.53) | 18.57 (12.14) | 0.007 |
Clinical symptoms | ||||
No | 44 (18.64) | 8 (24.24) | 36 (17.73) | 0.516 |
Yes | 192 (81.36) | 25 (75.76) | 167 (82.27) | |
Clinical severity | ||||
Mild | 50 (21.19) | 11 (33.33) | 39 (19.21) | 0.012 |
Moderate | 176 (74.58) | 21 (63.64) | 155 (76.35) | |
Severe | 9 (3.81) | 0 (0.00) | 9 (4.43) | |
Critical | 1 (0.42) | 1 (3.03) | 0 (0.00) | |
Length of stay (day) | 19.99 (8.07) | 21.45 (7.36) | 19.75 (8.17) | 0.261 |
Overall [N (%)] | Positive Cases [N (%)] | Negative Controls [N (%)] | p Value | |
---|---|---|---|---|
Age group (years) | ||||
<18 | 444 (11.00) | 10 (5.13) | 434 (11.30) | <0.001 |
18–40 | 2033 (50.38) | 80 (41.03) | 1953 (50.86) | |
40–60 | 1427 (35.37) | 96 (49.23) | 1331 (34.66) | |
>=60 | 131 (3.25) | 9 (4.62) | 122 (3.18) | |
Gender | ||||
Male | 2074 (51.40) | 90 (46.15) | 1984 (51.67) | 0.153 |
Female | 1961 (48.60) | 105 (53.85) | 1856 (48.33) | |
Clinical severity | ||||
Mild | 149 (3.69) | 37 (18.97) | - | |
Moderate | 37 (0.92) | 149 (76.41) | - | |
Severe | 9 (0.22) | 9 (4.62) | - | |
Vaccinated status | ||||
Unvaccinated | 24 (0.59) | 3 (1.54) | 21 (0.55) | 0.190 |
Partially vaccinated | 680 (16.85) | 35 (17.95) | 645 (16.80) | |
Fully vaccinated | 3331 (82.55) | 157 (80.51) | 3174 (82.66) | |
Vaccine brand | ||||
Unvaccinated | 1 (0.02) | 1 (0.51) | 0 (0.00) | <0.001 |
BBIBP-CorV | 715 (17.72) | 36 (18.46) | 679 (17.68) | |
CoronaVac | 1577 (39.08) | 78 (40.00) | 1499 (39.04) | |
Mixed vaccine # | 1742 (43.17) | 80 (41.03) | 1662 (43.28) | |
Duration of vaccination until the outbreak * (days) | ||||
42.63 (45.06) | 44.73 (44.42) | 42.52 (45.10) | 0.503 | |
Total | 4035 | 195 | 3840 |
Unvaccinated | Partially Vaccinated | ORadj (95% CI) | VEadj (%, 95% CI) | Fully Vaccinated | ORadj (95% CI) | VEadj (%, 95% CI) | ||
---|---|---|---|---|---|---|---|---|
The whole population | Control | 21 | 645 | Reference | 3175 | Reference | ||
Overall case | 3 | 35 | 0.43 (0.14, 1.91) | 57.01 (−91.44, 86.39) | 157 | 0.34 (0.11, 1.49) | 65.72 (−48.69, 88.63) | |
Mild case | 1 | 3 | 0.08 (0.01, 1.68) | 91.95 (−67.87, 99.04) | 33 | 0.24 (0.05, 4.4) | 75.97 (−339.82, 95.29) | |
Moderate case | 2 | 30 | 0.61 (0.16, 4.08) | 39.09 (−308.39, 84.3) | 117 | 0.41 (0.11, 2.66) | 59.45 (−165.87, 89.06) | |
Severe case * | 0 | 2 | - | - | 7 | 0.62 (0.15, 4.15) | 38.48 (−314.82, 85.24) | |
Male | Control | 13 | 369 | Reference | 1602 | Reference | ||
Overall case | 1 | 12 | 0.41 (0.07, 7.74) | 59.11 (−674.18, 92.86) | 77 | 0.54 (0.1, 9.86) | 46.26 (−885.99, 89.63) | |
Mild case * | 0 | 2 | - | - | 20 | 2.99 (0.83, 19.18) | −199.25 (−1817.92, 16.54) | |
Moderate case | 1 | 9 | 0.29 (0.05, 5.53) | 71.36 (−452.7, 95.29) | 53 | 0.32 (0.06, 6.01) | 67.53 (−501.04, 93.9) | |
Severe case * | 0 | 1 | - | - | 4 | 0.77 (0.11, 15.21) | 22.79 (−1420.85, 88.72) | |
Female | Control | 8 | 276 | Reference | 1572 | Reference | ||
Overall case | 2 | 23 | 0.48 (0.1, 3.42) | 52.47 (−241.68, 89.52) | 80 | 0.26 (0.06, 1.81) | 73.99 (−81.47, 93.95) | |
Mild case | 1 | 1 | 0.02 (0, 0.47) | 98.34 (52.94, 99.94) | 13 | 0.05 (0.01, 1.01) | 94.85 (−1.21, 99.21) | |
Moderate case | 1 | 21 | 1.1 (0.17, 22.1) | −10.18 (−2110.26, 83.11) | 64 | 0.52 (0.08, 10.22) | 48.13 (−921.83, 91.66) | |
Severe case | 0 | 1 | - | - | 3 | 0.47 (0.06, 9.49) | 53.21 (−848.76, 94.05) | |
12~18 years | Control | 0 | 209 | Reference | 155 | Reference | ||
Overall case * | 0 | 1 | - | - | 9 | 7.31 (1.35, 135.52) | −631.16 (−13451.89, −35.42) | |
Mild case | 0 | 0 | - | - | 6 | - | - | |
Moderate case * | 0 | 1 | - | - | 3 | 2.32 (0.29, 47.16) | −131.83 (−4615.9, 70.7) | |
Severe case | 0 | 0 | - | - | 0 | - | - | |
19~40 years | Control | 16 | 285 | Reference | 1726 | Reference | ||
Overall case | 3 | 12 | 0.22 (0.06, 1.02) | 78.36 (−2.03, 93.94) | 75 | 0.21 (0.07, 0.93) | 78.75 (6.79, 93.17) | |
Mild case | 1 | 2 | 0.11 (0.01, 2.51) | 88.71 (−150.5, 98.97) | 19 | 0.18 (0.03, 3.31) | 82.15 (−231.27, 96.67) | |
Moderate case | 2 | 10 | 0.26 (0.06, 1.79) | 74.00 (−79.23, 93.9) | 53 | 0.21 (0.06, 1.37) | 78.78 (−37.4, 94.27) | |
Severe case | 0 | 0 | - | - | 3 | - | - | |
41~60 years | Control | 3 | 117 | Reference | 1118 | Reference | ||
Overall case * | 0 | 21 | - | - | 66 | 0.34 (0.2, 0.58) | 66.33 (41.86, 79.8) | |
Mild case * | 0 | 1 | - | - | 8 | 0.84 (0.15, 15.71) | 15.71 (−1471.3, 84.75) | |
Moderate case * | 0 | 18 | - | - | 54 | 0.31 (0.18, 0.57) | 68.59 (43.31, 81.86) | |
Severe case * | 0 | 2 | - | - | 4 | 0.21 (0.04, 1.53) | 79.02 (−52.65, 95.95) | |
more than 60 years | Control | 2 | 34 | Reference | 75 | Reference | ||
Overall case | 0 | 1 | - | - | 7 | 4.17 (0.71, 79.5) | −317.39 (−7850.35, 28.53) | |
Mild case | 0 | 0 | - | - | 0 | - | - | |
Moderate case | 0 | 1 | - | - | 7 | 3.68 (0.6, 71.43) | -268.44 (−7043.2, 40.14) | |
Severe case | 0 | 0 | - | - | 0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Wang, M.; Mi, H.; Xu, L.; Lu, W.; Ouyang, X.; Guo, Z.; Su, C. Effectiveness of Inactivated Vaccine against SARS-CoV-2 Delta Variant Infection in Xiamen, China—A Test-Negative Case-Control Study. Vaccines 2023, 11, 532. https://doi.org/10.3390/vaccines11030532
He T, Wang M, Mi H, Xu L, Lu W, Ouyang X, Guo Z, Su C. Effectiveness of Inactivated Vaccine against SARS-CoV-2 Delta Variant Infection in Xiamen, China—A Test-Negative Case-Control Study. Vaccines. 2023; 11(3):532. https://doi.org/10.3390/vaccines11030532
Chicago/Turabian StyleHe, Tingjuan, Meixia Wang, Hongfei Mi, Liansheng Xu, Wenkui Lu, Xue Ouyang, Zhinan Guo, and Chenghao Su. 2023. "Effectiveness of Inactivated Vaccine against SARS-CoV-2 Delta Variant Infection in Xiamen, China—A Test-Negative Case-Control Study" Vaccines 11, no. 3: 532. https://doi.org/10.3390/vaccines11030532
APA StyleHe, T., Wang, M., Mi, H., Xu, L., Lu, W., Ouyang, X., Guo, Z., & Su, C. (2023). Effectiveness of Inactivated Vaccine against SARS-CoV-2 Delta Variant Infection in Xiamen, China—A Test-Negative Case-Control Study. Vaccines, 11(3), 532. https://doi.org/10.3390/vaccines11030532