Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor
Abstract
:1. Introduction
1.1. Cell-Based Cancer Vaccines
1.2. DNA-Based Vaccine
1.3. RNA-Based Vaccine
1.4. Peptide-Based Cancer Vaccines
1.5. Virus-Based Cancer Vaccines
1.6. Novel Bioactive Nanovaccines
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TSAs | tumor-specific antigens |
TAAs | tumor-associated antigens |
TME | tumor microenvironment |
DC | dendritic cell |
TAMs | tumor-associated macrophages |
MDSCs | myelogenous inhibitory cells |
Tregs | regulatory T cells |
MoDCs | monocyte-derived DCs |
ICIs | immune checkpoint inhibitors |
ID | intradermal |
IM | intramuscular |
CpG ODN | CpG oligonucleotide |
GM-CSF | granulocyte/macrophage colony-stimulating factor |
LNP | lipid nanoparticles |
PEG | polyethylene glycol |
PRR | pattern recognition receptor |
PAMP | pathogen-associated molecular patterns |
HBV | hepatitis B virus |
HCV | hepatitis C virus |
HPV | human papillomavirus |
MCV | merkel cell polyomavirus |
EBV | Epstein–Barr virus |
HHV-8 | human herpesvirus type 8 |
HTLV-1 | human T cell lymphotropic virus type 1 |
HIV | human immunodeficiency virus |
HSV | herpes simplex virus |
T-VEC | talimogene laherparepvec |
CSF1-R | colony stimulating factor 1 receptor |
ECM | extracellular matrix |
HA | hyaluronan |
CAFs | cancer-associated fibroblasts |
FAP | fibroblast activation protein-α |
FAPCAFs | FAP-positive CAFs |
eNVs-FAP | FAP gene-engineered tumor cell-derived exosome-like nanovesicles |
ICD | immunogenic cell death |
EPI | encapsulating epirubicin |
Gox | glucose oxidase |
ZIF-8 | hemin in zeolitic imidazolate framework |
CRT | calreticulin |
References
- Jhaveri, R. The COVID-19 mRNA Vaccines and the Pandemic: Do They Represent the Beginning of the End or the End of the Beginning? Clin. Ther. 2021, 43, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Wahi, A.; Sharma, P.; Nagpal, R.; Raina, N.; Kaurav, M.; Bhattacharya, J.; Rodrigues Oliveira, S.M.; Dolma, K.G.; Paul, A.K.; et al. Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines 2022, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D.I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016, 37, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Tang, F.; Wei, Y.Q.; Wei, X.W. Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J. Hematol. Oncol. 2022, 15, 61. [Google Scholar] [CrossRef]
- Kim, C.G.; Sang, Y.B.; Lee, J.H.; Chon, H.J. Combining Cancer Vaccines with Immunotherapy: Establishing a New Immunological Approach. Int. J. Mol. Sci. 2021, 22, 8035. [Google Scholar] [CrossRef]
- Joshi, S.; Durden, D.L. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. J. Oncol. 2019, 2019, 5245034. [Google Scholar] [CrossRef]
- Gibney, G.T.; Kudchadkar, R.R.; DeConti, R.C.; Thebeau, M.S.; Czupryn, M.P.; Tetteh, L.; Eysmans, C.; Richards, A.; Schell, M.J.; Fisher, K.J.; et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin. Cancer Res. 2015, 21, 712–720. [Google Scholar] [CrossRef]
- Randolph, G.J. Dendritic cells: The first step. J. Exp. Med. 2021, 218, e20202077. [Google Scholar] [CrossRef]
- Mildner, A.; Jung, S. Development and function of dendritic cell subsets. Immunity 2014, 40, 642–656. [Google Scholar] [CrossRef]
- Baldin, A.V.; Savvateeva, L.V.; Bazhin, A.V.; Zamyatnin, A.A., Jr. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers 2020, 12, 590. [Google Scholar] [CrossRef] [Green Version]
- Handy, C.E.; Antonarakis, E.S. Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Future Oncol. 2018, 14, 907–917. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Ma, Y.; Shurin, G.V.; Peiyuan, Z.; Shurin, M.R. Dendritic cells in the cancer microenvironment. J. Cancer 2013, 4, 36–44. [Google Scholar] [CrossRef]
- Fu, C.; Jiang, A. Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment. Front. Immunol. 2018, 9, 3059. [Google Scholar] [CrossRef]
- Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019, 110, 2080–2089. [Google Scholar] [CrossRef]
- Laureano, R.S.; Sprooten, J.; Vanmeerbeerk, I.; Borras, D.M.; Govaerts, J.; Naulaerts, S.; Berneman, Z.N.; Beuselinck, B.; Bol, K.F.; Borst, J.; et al. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022, 11, 2096363. [Google Scholar] [CrossRef]
- Yang, J.; Shangguan, J.; Eresen, A.; Li, Y.; Wang, J.; Zhang, Z. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies. Pathol. Res. Pract. 2019, 215, 152691. [Google Scholar] [CrossRef]
- Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 2006, 6, 476–483. [Google Scholar] [CrossRef]
- Kaur, A.; Baldwin, J.; Brar, D.; Salunke, D.B.; Petrovsky, N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr. Opin. Chem. Biol. 2022, 70, 102172. [Google Scholar] [CrossRef]
- Sprooten, J.; Ceusters, J.; Coosemans, A.; Agostinis, P.; De Vleeschouwer, S.; Zitvogel, L.; Kroemer, G.; Galluzzi, L.; Garg, A.D. Trial watch: Dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019, 8, e1638212. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, L.; Jia, M.; Liao, Q.; Peng, G.; Luo, G.; Zhou, Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Constantino, J.; Gomes, C.; Falcao, A.; Neves, B.M.; Cruz, M.T. Dendritic cell-based immunotherapy: A basic review and recent advances. Immunol. Res. 2017, 65, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Sabado, R.L.; Bhardwaj, N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy 2010, 2, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jeang, J.; Yang, A.; Wu, T.C.; Hung, C.F. DNA vaccine for cancer immunotherapy. Hum. Vaccin. Immunother. 2014, 10, 3153–3164. [Google Scholar] [CrossRef]
- Vellios, N.; van der Zee, K. Dataset on cigarette smokers in six South African townships. Data Brief 2020, 32, 106260. [Google Scholar] [CrossRef]
- Cui, Z. DNA vaccine. Adv. Genet. 2005, 54, 257–289. [Google Scholar] [CrossRef]
- Lopes, A.; Vandermeulen, G.; Preat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 146. [Google Scholar] [CrossRef]
- Jorritsma, S.H.T.; Gowans, E.J.; Grubor-Bauk, B.; Wijesundara, D.K. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine 2016, 34, 5488–5494. [Google Scholar] [CrossRef]
- Eusebio, D.; Neves, A.R.; Costa, D.; Biswas, S.; Alves, G.; Cui, Z.; Sousa, A. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov. Today 2021, 26, 2575–2592. [Google Scholar] [CrossRef]
- Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Pappa, A.; Chlichlia, K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol. Ther. 2016, 165, 32–49. [Google Scholar] [CrossRef]
- Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D.M. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 2011, 10, 499–511. [Google Scholar] [CrossRef]
- Chen, Y.P.; Lin, C.C.; Xie, Y.X.; Chen, C.Y.; Qiu, J.T. Enhancing immunogenicity of HPV16 E(7) DNA vaccine by conjugating codon-optimized GM-CSF to HPV16 E(7) DNA. Taiwan J. Obstet. Gynecol. 2021, 60, 700–705. [Google Scholar] [CrossRef]
- Shrestha, A.C.; Wijesundara, D.K.; Masavuli, M.G.; Mekonnen, Z.A.; Gowans, E.J.; Grubor-Bauk, B. Cytolytic Perforin as an Adjuvant to Enhance the Immunogenicity of DNA Vaccines. Vaccines 2019, 7, 38. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Lee, S.S. From COVID-19 to Cancer mRNA Vaccines: Moving from Bench to Clinic in the Vaccine Landscape. Front. Immunol. 2021, 12, 679344. [Google Scholar] [CrossRef]
- Xu, S.; Yang, K.; Li, R.; Zhang, L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int. J. Mol. Sci. 2020, 21, 6582. [Google Scholar] [CrossRef]
- Lorentzen, C.L.; Haanen, J.B.; Met, O.; Svane, I.M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022, 23, e450–e458. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 41. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T. Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives. Pharm. Res. 2021, 38, 473–478. [Google Scholar] [CrossRef]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharmaceut. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef]
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef]
- mRNA-4157 Cancer Vaccine. Available online: https://www.precisionvaccinations.com/vaccines/mrna-4157-cancer-vaccine (accessed on 5 November 2021).
- Bidram, M.; Zhao, Y.; Shebardina, N.G.; Baldin, A.V.; Bazhin, A.V.; Ganjalikhany, M.R.; Zamyatnin, A.A., Jr.; Ganjalikhani-Hakemi, M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines 2021, 9, 1060. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [PubMed]
- Bol, K.F.; Figdor, C.G.; Aarntzen, E.H.; Welzen, M.E.; van Rossum, M.M.; Blokx, W.A.; van de Rakt, M.W.; Scharenborg, N.M.; de Boer, A.J.; Pots, J.M.; et al. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology 2015, 4, e1019197. [Google Scholar] [CrossRef] [PubMed]
- Kyte, J.A.; Aamdal, S.; Dueland, S.; Saeboe-Larsen, S.; Inderberg, E.M.; Madsbu, U.E.; Skovlund, E.; Gaudernack, G.; Kvalheim, G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 2016, 5, e1232237. [Google Scholar] [CrossRef]
- Liu, W.; Tang, H.; Li, L.; Wang, X.; Yu, Z.; Li, J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif. 2021, 54, e13025. [Google Scholar] [CrossRef]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef]
- Bijker, M.S.; van den Eeden, S.J.; Franken, K.L.; Melief, C.J.; Offringa, R.; van der Burg, S.H. CD8 + CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J. Immunol. 2007, 179, 5033–5040. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Q.; Li, K.; Yin, H.; Zheng, J.N. Composite peptide-based vaccines for cancer immunotherapy (Review). Int. J. Mol. Med. 2015, 35, 17–23. [Google Scholar] [CrossRef]
- Maisonneuve, C.; Bertholet, S.; Philpott, D.J.; de Gregorio, E. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc. Natl. Acad. Sci. USA 2014, 111, 12294–12299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fan, J.; Skwarczynski, M.; Stephenson, R.J.; Toth, I.; Hussein, W.M. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int. J. Nanomed. 2022, 17, 869–900. [Google Scholar] [CrossRef]
- Liang, Z.; Cui, X.; Yang, L.; Hu, Q.; Li, D.; Zhang, X.; Han, L.; Shi, S.; Shen, Y.; Zhao, W.; et al. Co-assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy. Int. J. Pharm. 2021, 608, 121091. [Google Scholar] [CrossRef]
- Ammi, R.; de Waele, J.; Willemen, Y.; van Brussel, I.; Schrijvers, D.M.; Lion, E.; Smits, E.L. Poly(I:C) as cancer vaccine adjuvant: Knocking on the door of medical breakthroughs. Pharmacol. Ther. 2015, 146, 120–131. [Google Scholar] [CrossRef]
- Kano, Y.; Iguchi, T.; Matsui, H.; Adachi, K.; Sakoda, Y.; Miyakawa, T.; Doi, S.; Hazama, S.; Nagano, H.; Ueyama, Y.; et al. Combined adjuvants of poly(I:C) plus LAG-3-Ig improve antitumor effects of tumor-specific T cells, preventing their exhaustion. Cancer Sci. 2016, 107, 398–406. [Google Scholar] [CrossRef]
- Tanaka, Y.; Wada, H.; Goto, R.; Osada, T.; Yamamura, K.; Fukaya, S.; Shimizu, A.; Okubo, M.; Minamiguchi, K.; Ikizawa, K.; et al. TAS0314, a novel multi-epitope long peptide vaccine, showed synergistic antitumor immunity with PD-1/PD-L1 blockade in HLA-A*2402 mice. Sci. Rep. 2020, 10, 17284. [Google Scholar] [CrossRef]
- Larocca, C.; Schlom, J. Viral vector-based therapeutic cancer vaccines. Cancer J. 2011, 17, 359–371. [Google Scholar] [CrossRef]
- Guo, Z.S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W.J.; He, Y.; Liu, Z.; et al. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J. Immunother. Cancer 2019, 7, 6. [Google Scholar] [CrossRef]
- De Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef]
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef]
- Tashiro, H.; Brenner, M.K. Immunotherapy against cancer-related viruses. Cell Res. 2017, 27, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Ciesielska, U.; Nowinska, K.; Podhorska-Okolow, M.; Dziegiel, P. The role of human papillomavirus in the malignant transformation of cervix epithelial cells and the importance of vaccination against this virus. Adv. Clin. Exp. Med. 2012, 21, 235–244. [Google Scholar] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Pattyn, J.; Hendrickx, G.; Vorsters, A.; van Damme, P. Hepatitis B Vaccines. J. Infect. Dis. 2021, 224, S343–S351. [Google Scholar] [CrossRef]
- Glebe, D.; Goldmann, N.; Lauber, C.; Seitz, S. HBV evolution and genetic variability: Impact on prevention, treatment and development of antivirals. Antivir. Res. 2021, 186, 104973. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.F.; Qi, W.X.; Liu, M.Y.; Li, Y. The combination of NK and CD8+T cells with CCL20/IL15-armed oncolytic adenoviruses enhances the growth suppression of TERT-positive tumor cells. Cell Immunol. 2017, 318, 35–41. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Ye, J.; Ge, Y.; Wang, H.; Dai, E.; Ren, J.; Liu, W.; Ma, C.; Ju, S.; et al. Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent antitumor effects on multiple tumor models via tumor microenvironment modulation. Theranostics 2021, 11, 6668–6681. [Google Scholar] [CrossRef]
- Nakao, S.; Arai, Y.; Tasaki, M.; Yamashita, M.; Murakami, R.; Kawase, T.; Amino, N.; Nakatake, M.; Kurosaki, H.; Mori, M.; et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci. Transl. Med. 2020, 12, eaax7992. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Chen, K.; Qian, L.; Wang, P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int. 2021, 21, 262. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Johnson, D.B.; Puzanov, I.; Kelley, M.C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015, 7, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Bommareddy, P.K.; Patel, A.; Hossain, S.; Kaufman, H.L. Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am. J. Clin. Dermatol. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef] [PubMed]
- Semmrich, M.; Marchand, J.B.; Fend, L.; Rehn, M.; Remy, C.; Holmkvist, P.; Silvestre, N.; Svensson, C.; Kleinpeter, P.; Deforges, J.; et al. Vectorized Treg-depleting alphaCTLA-4 elicits antigen cross-presentation and CD8(+) T cell immunity to reject ‘cold’ tumors. J. Immunother. Cancer 2022, 10, e003488. [Google Scholar] [CrossRef] [PubMed]
- Ju, F.; Luo, Y.; Lin, C.; Jia, X.; Xu, Z.; Tian, R.; Lin, Y.; Zhao, M.; Chang, Y.; Huang, X.; et al. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J. Immunother. Cancer 2022, 10, e004762. [Google Scholar] [CrossRef] [PubMed]
- Draghiciu, O.; Boerma, A.; Hoogeboom, B.N.; Nijman, H.W.; Daemen, T. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development. Oncoimmunology 2015, 4, e1029699. [Google Scholar] [CrossRef]
- Pellom, S.T.; Smalley Rumfield, C.; Morillon, Y.M., 2nd; Roller, N.; Poppe, L.K.; Brough, D.E.; Sabzevari, H.; Schlom, J.; Jochems, C. Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight 2021, 6, e141912. [Google Scholar] [CrossRef]
- Crosby, E.J.; Gwin, W.; Blackwell, K.; Marcom, P.K.; Chang, S.; Maecker, H.T.; Broadwater, G.; Hyslop, T.; Kim, S.; Rogatko, A.; et al. Vaccine-Induced Memory CD8(+) T Cells Provide Clinical Benefit in HER2 Expressing Breast Cancer: A Mouse to Human Translational Study. Clin. Cancer Res. 2019, 25, 2725–2736. [Google Scholar] [CrossRef]
- Xie, X.; Feng, Y.; Zhang, H.; Su, Q.; Song, T.; Yang, G.; Li, N.; Wei, X.; Li, T.; Qin, X.; et al. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy. Bioact. Mater. 2022, 16, 107–119. [Google Scholar] [CrossRef]
- Huang, D.; Wu, T.; Lan, S.; Liu, C.; Guo, Z.; Zhang, W. In situ photothermal nano-vaccine based on tumor cell membrane-coated black phosphorus-Au for photo-immunotherapy of metastatic breast tumors. Biomaterials 2022, 289, 121808. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, L.; Chen, J.; Maruyama, A.; Tian, H.; Chen, X. Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials 2020, 252, 120114. [Google Scholar] [CrossRef]
- Hu, S.; Ma, J.; Su, C.; Chen, Y.; Shu, Y.; Qi, Z.; Zhang, B.; Shi, G.; Zhang, Y.; Zhang, Y.; et al. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 2021, 135, 567–581. [Google Scholar] [CrossRef]
- Li, J.; Huang, D.; Cheng, R.; Figueiredo, P.; Fontana, F.; Correia, A.; Wang, S.; Liu, Z.; Kemell, M.; Torrieri, G.; et al. Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak-Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Adv. Mater. 2022, 34, e2108012. [Google Scholar] [CrossRef]
- Chen, J.; Fang, H.; Hu, Y.; Wu, J.; Zhang, S.; Feng, Y.; Lin, L.; Tian, H.; Chen, X. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioact. Mater. 2022, 7, 167–180. [Google Scholar] [CrossRef]
- Li, Z.; Cai, H.; Li, Z.; Ren, L.; Ma, X.; Zhu, H.; Gong, Q.; Zhang, H.; Gu, Z.; Luo, K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact. Mater. 2023, 21, 299–312. [Google Scholar] [CrossRef]
- Li, T.; Chen, G.; Xiao, Z.; Li, B.; Zhong, H.; Lin, M.; Cai, Y.; Huang, J.; Xie, X.; Shuai, X. Surgical Tumor-Derived Photothermal Nanovaccine for Personalized Cancer Therapy and Prevention. Nano Lett. 2022, 22, 3095–3103. [Google Scholar] [CrossRef]
- Liu, S.; Wu, J.; Feng, Y.; Guo, X.; Li, T.; Meng, M.; Chen, J.; Chen, D.; Tian, H. CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy. Bioact. Mater. 2023, 22, 211–224. [Google Scholar] [CrossRef]
- Achmad, H.; Saleh Ibrahim, Y.; Mohammed Al-Taee, M.; Gabr, G.A.; Waheed Riaz, M.; Hamoud Alshahrani, S.; Alexis Ramirez-Coronel, A.; Turki Jalil, A.; Setia Budi, H.; Sawitri, W.; et al. Nanovaccines in cancer immunotherapy: Focusing on dendritic cell targeting. Int. Immunopharmacol. 2022, 113, 109434. [Google Scholar] [CrossRef]
- Shi, W.; Yang, X.; Xie, S.; Zhong, D.; Lin, X.; Ding, Z.; Duan, S.; Mo, F.; Liu, A.; Yin, S.; et al. A new PD-1-specific nanobody enhances the antitumor activity of T-cells in synergy with dendritic cell vaccine. Cancer Lett. 2021, 522, 184–197. [Google Scholar] [CrossRef]
- Xia, J.; Miao, Y.; Wang, X.; Huang, X.; Dai, J. Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomed. Pharmacother. 2022, 152, 113250. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.; Wu, Y.; Wang, J.; Li, F.; Guo, G. Tumor Cell-associated Exosomes Robustly Elicit Anti-tumor Immune Responses through Modulating Dendritic Cell Vaccines in Lung Tumor. Int. J. Biol. Sci. 2020, 16, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Ohshio, Y.; Teramoto, K.; Hanaoka, J.; Tezuka, N.; Itoh, Y.; Asai, T.; Daigo, Y.; Ogasawara, K. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine. Cancer Sci. 2015, 106, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiu, Y.; Zhang, Y. Research Progress on Therapeutic Targeting of Cancer-Associated Fibroblasts to Tackle Treatment-Resistant NSCLC. Pharmaceuticals 2022, 15, 1411. [Google Scholar] [CrossRef] [PubMed]
- Mhaidly, R.; Mechta-Grigoriou, F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin. Immunol. 2020, 48, 101417. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lai, X.; Fu, S.; Ren, L.; Cai, H.; Zhang, H.; Gu, Z.; Ma, X.; Luo, K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv. Sci. 2022, 9, e2201734. [Google Scholar] [CrossRef] [PubMed]
Category | Intervention | Conditions | Status | Phases | Trial No. |
---|---|---|---|---|---|
DC | PEP-DC Vaccine | Non-small Cell Lung Cancer | Recruiting | I | NCT05195619 |
DC | DC Vaccine Subcutaneous Administration | Gastric cancer, Hepatocellular Carcinoma, Non-Small-Cell Lung Cancer | Recruiting | I | NCT04147078 |
DC | KRAS-EphA-2-CAR-DC | Solid Tumor | Recruiting | I | NCT05631899 |
DC | mDC3/8-KRAS Vaccine | Pancreatic Ductal Adenocarcinoma | Recruiting | I | NCT03592888 |
DC | Autologous DC Vaccine | Pancreatic Adenocarcinoma | Recruiting | I | NCT04157127 |
DC | TP53-EphA-2-CAR-DC | Solid Tumor | Recruiting | I | NCT05631886 |
DC | PEP-DC Vaccine | Pancreatic Adenocarcinoma | Recruiting | I | NCT04627246 |
DC | Autologous Dendritic Cell-Adenovirus CCL21 Vaccine Pembrolizumab | Lung Non-Small Cell Carcinoma | Recruiting | I | NCT03546361 |
DC | Dendritic Cell Tumor Cell Lysate Vaccine Pembrolizumab | Recurrent Glioblastoma | Recruiting | I | NCT04201873 |
DC | Dendritic Cell (DC1) Vaccine | HER2-Positive Breast Cancer | Recruiting | I | NCT05378464 |
DC | HER2—Primed Dendritic Cells HER3—Primed Dendritic Cells | Triple-Negative Breast Cancer HER2-Negative Breast Cancer | Recruiting | I | NCT05504707 |
DC | Autologous Dendritic Cells Pulsed With Multiple Neoantigen Peptides | Glioblastoma Multiforme of Brain | Recruiting | I | NCT04968366 |
DC | MesoPher Mitazalimab | Metastatic Pancreatic Cancer | Recruiting | I | NCT05650918 |
DC | TTRNA-DC Vaccines with GM-CSF TTRNA-xALT | Diffuse Intrinsic Pontine Glioma (DIPG) Brain Stem Glioma | Recruiting | I | NCT03396575 |
DC | Dendritic Cell Vaccination + Temozolomide-Based Chemoradiation Dendritic cell Vaccination +- Conventional Next-Line Treatment | High Grade Glioma | Recruiting | I/II | NCT04911621 |
DC | Depletion of Treg+ DC Vaccine | Childhood Glioblastoma | Recruiting | I/II | NCT03879512 |
DC | ADC Vaccine | Extensive-Stage Small Cell Lung Cancer | Recruiting | I/II | NCT04487756 |
DC | Dendritic Cells Vaccine | Glioblastoma | Recruiting | I/II | NCT04801147 |
DC | Dendritic Cell/Tumor | Glioblastoma | Recruiting | I/II | NCT04388033 |
DC | Neoantigen-Expanded Autologous DC-CIK Cells | Advanced Solid Tumor | Recruiting | I | NCT05020119 |
DC | Autologous Dendritic Cells | Mesothelioma, Malignant | Recruiting | I | NCT03546426 |
DC | Autologous DC Vaccine | Head Neck Tumors Neuroendocrine Tumors | Recruiting | II | NCT04166006 |
DC | Neoantigen Dendritic Cell Vaccine | Hepatocellular Carcinoma | Recruiting | II | NCT04912765 |
DC | TCR-T Therapy | Pancreatic Cancer | Recruiting | Early I | NCT05438667 |
DC | Anti-HER2/HER3 Dendritic Cell Vaccine Pembrolizumab | Breast Cancer | Recruiting | II | NCT04348747 |
DC | HER-2 pulsed DC1 | HER2-Positive Breast Cancer | Recruiting | II | NCT05325632 |
DC | Dendritic Cell Vaccine (DC1) | Breast Cancer | Recruiting | Early I | NCT03387553 |
DC | Camrelizumab plus GSC-DCV Camrelizumab Plus Placebo | Recurrent Glioblastoma | Recruiting | II | NCT04888611 |
DC | Chimeric Exosomal Tumor Vaccines | Recurrent or Metastatic Bladder Cancer | Recruiting | Early I | NCT05559177 |
DC | Pneumococcal 13-valent Conjugate Vaccine Therapeutic Autologous Dendritic Cells | Hepatocellular Carcinoma | Recruiting | Early I | NCT03942328 |
Category | Biological | Conditions | Status | Phases | Trial No. |
---|---|---|---|---|---|
DNA | PROSTVAC V/F | Metastatic Hormone-Sensitive Prostate Cancer | Completed | I | NCT03532217 |
DNA | pTVG-HP, pTVG-AR | Castration-resistant Prostate Cancer | Recruiting | II | NCT04090528 |
DNA | pTVG-HP | Prostate Cancer | Active, not recruiting | II | NCT03600350 |
DNA | pTVG-AR | Prostate Cancer | Recruiting | I/II | NCT04989946 |
DNA | GNOS-PV01 | Glioblastoma | Active, not recruiting | I | NCT04015700 |
DNA | VXM01 | Recurrent Glioblastoma | Active, not recruiting | I/II | NCT03750071 |
DNA | CD105/Yb-1/SOX2/CDH3/MDM2-polyepitope Plasmid DNA vaccine | Breast Cancer, Lung Non-Squamous Non-Small Cell Carcinoma | Recruiting | II | NCT05455658NCT05242965 |
DNA | pUMVC3-IGFBP2-HER2-IGF1R Plasmid DNA Vaccine | Breast Cancer | Recruiting | II | NCT04329065 |
DNA | MV-s-NAP | Breast Cancer | Recruiting | I | NCT04521764 |
DNA | pING-hHER3FL | Advanced Cancer | Recruiting | I | NCT03832855 |
DNA | SCIB1 | Malignant Melanoma | Recruiting | II | NCT04079166 |
DNA | IFx-Hu2.0 | Cutaneous Melanoma | Completed | Early I | NCT03655756 |
DNA | MEDI4736 | Extensive-Stage Small Cell Lung Cancer | Recruiting | II | NCT04397003 |
DNA | GNOS-PV02 and INO-9012 | HCC | Recruiting | I/II | NCT04251117 |
DNA | GRT-C901/GRT-R902 | Colorectal Neoplasms | Recruiting | II/III | NCT05141721 |
DNA | MEDI0457 | Carcinoma | Active, not recruiting | II | NCT03439085 |
Category | Biological | Conditions | Status | Phases | Trial No. |
---|---|---|---|---|---|
mRNA | W_ova1 | Ovarian Cancer | Active, not recruiting | I | NCT04163094 |
mRNA | PGV002 | Gastric Cancer | Recruiting | Not Applicable | NCT05192460 |
mRNA | BNT113 | Carcinoma, Squamous Cell, Head and Neck Neoplasm | Recruiting | I/II | NCT03418480 |
mRNA | RNA tumor vaccine, RNA tumor vaccine+Navuliumab | Advanced Solid Tumor | Recruiting | I | NCT05202561 |
mRNA | mRNA-1273 | Solid Tumor Malignancy | Recruiting | II | NCT04847050 |
mRNA | BNT113 Pembrolizumab | Unresectable Head and Neck Squamous Cell Carcinoma | Recruiting | II | NCT04534205 |
mRNA | SW1115C3 | Solid Tumor | Recruiting | I | NCT05198752 |
mRNA | mRNA-4157 Pembrolizumab | Melanoma | Active, not recruiting | II | NCT03897881 |
mRNA | BNT111 Cemiplimab | Melanoma | Recruiting | II | NCT04526899 |
mRNA | RNA-LPs | Adult Glioblastoma | Recruiting | I | NCT04573140 |
Category | Biological | Conditions | Status | Phases | Trial No. |
---|---|---|---|---|---|
Peptide | KRAS Peptide Vaccine+ Poly-ICLC | High Risk Cancer, Pancreatic Cancer | Recruiting | I | NCT05013216 |
Peptide | KRAS Peptide Vaccine+ Poly-ICLC | Colorectal Cancer, Pancreatic Cancer | Recruiting | I | NCT04117087 |
Peptide | ESR1 Peptide Vaccine | Breast Cancer | Recruiting | I | NCT04270149 |
Peptide | Pooled Mutant KRAS-Targeted Long Peptide Vaccine | Non-Small Cell Lung Cancer | Recruiting | I | NCT05254184 |
Peptide | Neoantigen Peptides | Neoplasms | Recruiting | Early I | NCT05475106 |
Peptide | Incomplete Freund’s Adjuvant Sargramostim SVN53-67/M57-KLH Peptide Vaccine | Lung Atypical Carcinoid Tumor, Lung Typical Carcinoid Tumor, Metastatic Pancreatic, Neuroendocrine Tumor | Recruiting | I | NCT03879694 |
Peptide | PGV-001 Poly-ICLC CDX-301 | Prostate Cancer | Recruiting | I | NCT05010200 |
Peptide | OTSGC-A24 | Gastric Cancer | Recruiting | I | NCT03784040 |
Peptide | Optimized Neoantigen synthetic Long Peptide vaccine+ Poly-ICLC | Pancreas Cancer | Recruiting | I | NCT05111353 |
Peptide | Neoantigen Peptide Vaccine Nivolumab | Breast Cancer | Recruiting | I | NCT05098210 |
Peptide | PolyPEPI1018 | Metastatic Colon Adenocarcinoma | Recruiting | I | NCT05130060 |
Peptide | Autologous Heat Shock Protein 70 and Autologous Activated Monocytes | Hepatocellular Carcinoma | Recruiting | I | NCT05059821 |
Peptide | Neoantigen Peptide Vaccine Pembrolizumab Sargramostim | Breast Cancer | Recruiting | I | NCT05269381 |
Peptide | DNAJB1-PRKACA Peptide Vaccine | Fibrolamellar Hepatocellular Carcinoma (FLC) | Recruiting | I | NCT04248569 |
Peptide | H3K27M Peptide Vaccine | Newly Diagnosed H3-mutated Glioma | Recruiting | I | NCT04808245 |
Peptide | IDH1R132H Peptide Vaccine | Malignant Glioma | Recruiting | I | NCT03893903 |
Peptide | iNeo-Vac-P01 | Resectable Pancreatic Cancer | Recruiting | I | NCT04810910 |
Peptide | GM-CSF+ H2NVAC | Breast Ductal Carcinoma In Situ | Recruiting | I | NCT04144023 |
Peptide | 6MHP+ NeoAg-mBRAF | Melanoma | Recruiting | I/II | NCT04364230 |
Peptide | Personalized Neoantigen Vaccine | Pancreatic Tumor | Recruiting | I | NCT03558945 |
Peptide | iNeo-Vac-P01 | Advanced Malignant Solid Tumor | Recruiting | I | NCT04864379 |
Peptide | 6MHP | Melanoma | Recruiting | I/II | NCT03617328 |
Peptide | Multipeptide Vaccine+ XS15 | Chronic Lymphocytic Leukemia | Recruiting | I | NCT04688385 |
Peptide | Durvalumab Personalized Synthetic Long Peptide Vaccine Tremelimumab | Breast Cancer, Invasive Breast Carcinoma, Metastatic Triple-Negative Breast Carcinoma | Recruiting | II | NCT03606967 |
Peptide | EO2040 | Colorectal Cancer | Recruiting | II | NCT05350501 |
Peptide | Multi-epitope HER2 Peptide Vaccine TPIV100 Pertuzumab | Breast Adenocarcinoma | Recruiting | II | NCT04197687 |
Peptide | PolyPEPI1018 | Colorectal Cancer Metastatic | Recruiting | II | NCT05243862 |
Peptide | UCPVax | Squamous Cell Carcinoma of the Head and Neck | Recruiting | II | NCT03946358 |
Peptide | UCPVax | Glioblastoma | Recruiting | II | NCT04280848 |
Peptide | SurVaxM | Newly Diagnosed Glioblastoma | Recruiting | II | NCT05163080 |
Peptide | IO102 IO103 | Oropharynx Squamous Cell Carcinoma | Recruiting | II | NCT04445064 |
Peptide | Neoantigen Peptide | Pancreas Cancer | Active, not recruiting | I | NCT03956056 |
Peptide | AE37 Peptide Vaccine Pembrolizumab | Triple-negative Breast Cancer | Active, not recruiting | II | NCT04024800 |
Peptide | Neoantigen Peptides | Neoplasms | Completed | Early I | NCT04509167 |
Peptide | iNeo-Vac-P01 | Pancreatic Cancer | Completed | I | NCT03645148 |
Peptide | Galinpepimut-S | Acute Myelogenous Leukemia, Ovarian Cancer, Colorectal Cancer | Active, not recruiting | I/II | NCT03761914 |
Peptide | iNeo-Vac-P01 | Advanced Malignant Solid Tumor | Active, not recruiting | I | NCT03662815 |
Peptide | S-488210 S-488211 | Lung Cancer, Head and Neck Cancer, Bladder Cancer | Completed | I | NCT04316689 |
Peptide | Peptide pulsed Dendritic cell | Breast Cancer Female | Completed | I | NCT04879888 |
Peptide | Bcl-Xl_42-CAF09b Vaccine | Prostate Cancer | Completed | I | NCT03412786 |
Peptide | EVAX-01-CAF09b | Malignant Melanoma, Non-Small Cell Lung Cancer | Active, not recruiting | I/II | NCT03715985 |
Peptide | PolyPEPI1018 CRC Vaccine | Colorectal Cancer | Completed | I/II | NCT03391232 |
Peptide | GEN-009 Adjuvanted Vaccine | Cutaneous Melanoma, Non-small Cell Lung Cancer | Completed | I/II | NCT03633110 |
Category | Product name | Conditions | Strategy | Efficacy | Trial No. | Reference |
---|---|---|---|---|---|---|
Oncolytic viruses | T-VEC | Melanoma | Genetic engineering vector uses attenuated HSV coding to generate GM-CSF. | Induce systemic immune activity to revise the immunosuppressive TME. | NCT00769704 | [71,72,73] |
Oncolytic viruses | VVGM-αhCTLA-4 (BT-001) | Pan-cancer | Genes encoding the 4-E03 human recombinant anti-hCTLA4 antibody and human GM-CSF. | Induce Treg depletion and CD8+ T cell immunity | NCT04725331 | [74] |
Oncolytic viruses | YST-OVH | Hepatoma | Genes encoding a humanized scFv against human PD-1. | Augment the effector and memory CD8+ T cells and reduce the recruitment of MDSCs, and overcome localized immunosuppression to sensitize tumors to CTLA-4 or TIM-3 blockade. | No | [75] |
Virus vector | Vvax001 | Malignant Cervical Lesions | Combination of sunitinib, local tumor irradiation and therapeutic immunization. | Decrease intratumoral MDSCs and increase CD8+ and E7-specific T cell levels and activity. | NCT03141463 | [76] |
Virus vector | PRGN-2009 | HPV-Positive Cancer | Containing multiple cytotoxic T cell epitopes of the viral oncoproteins HPV 16/18 E6 and E7. | Generate high levels of HPV16 E6-specific T cells and augment multifunctional CD8+ and CD4+ T cells in the TME. | NCT04432597 | [77] |
Virus vector | VRP-HER2 | Breast Cancer | Alphaviral vector encoding HER2. | Induce HER2-specific memory CD8+ T cells and antibodies to inhibit tumor growth. | NCT03632941 | [78] |
Nanovaccine | Strategy and Method | Efficacy | Reference |
---|---|---|---|
BN@HM-OVA | Encapsulate inhibitor BLZ-945 and NLG-919 using hybrid micelles | Remodel the immunosuppressive TME via causing M2-like TAMs depletion and suppressing IDO activity | [79] |
BCNCCM | Co-encapsulation of BP-Au-CpG and NLG919 by CCM | Induce immunogenic cell death and suppress the activities of Tregs to enhance immunotherapy efficacy | [80] |
PEI/CaCO/OVA/CpG NVs and pSpam1@NPs | Nanovaccines combine with gene-mediated ECM scavenger | Degrade the tumor ECM and promote the infiltration of immune cells | [81] |
eNVs-FAP | FAP gene-engineered tumor cell-derived exosome-like vesicle vaccines | Increase the infiltration of effector T cells and promote interferon-gamma-induced tumor cell ferroptosis | [82] |
CCM@(PSiNPs@Au) | Combine biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores with ICB immunotherapy | Activate DCs and antitumor immune responses to reverse immunosuppressive TME | [83] |
Man-PLL-RT/OVA/CpG and HA/PLL-RT/shPD-L1 NPs | Combine mannose receptor-mediated nanovaccines and gene-regulated PD-L1 blockade | Promote the endocytosis, maturation and cross presentation in DCs and relieve tumor immune tolerance microenvironment | [84] |
mEHGZ | CRT over-expressed tumor cell membranes coating ZIF-8 nanoparticles loaded EPI, Gox and hemin | Induce cascade-amplified ICD effect and improve the sensitivity of aPD-L1 therapy | [85] |
MPDA-R848@CM | Based on the surgical tumor-derived CMs coating R848 loaded MPDA photothermal nanovaccines | Combine with aPD-L1 therapy to enhance DCs activation and maturation, and stimulate antigen-specific CD8+ T cells. | [86] |
DBE@CCNPs | The CD47KO/CRT dual-bioengineered cell membrane-coated PEI25k/CpG-NPs | Enhance the immunogenicity of tumor antigens and activate DCs to stimulate tumor-specific effector CD8+ T cells | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.-J.; Liu, W.-Q.; Li, D.; Hou, J.-C.; Coghi, P.S.; Fan, X.-X. Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor. Vaccines 2023, 11, 394. https://doi.org/10.3390/vaccines11020394
Xie Y-J, Liu W-Q, Li D, Hou J-C, Coghi PS, Fan X-X. Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor. Vaccines. 2023; 11(2):394. https://doi.org/10.3390/vaccines11020394
Chicago/Turabian StyleXie, Ya-Jia, Wen-Qian Liu, Dan Li, Jin-Cai Hou, Paolo Saul Coghi, and Xing-Xing Fan. 2023. "Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor" Vaccines 11, no. 2: 394. https://doi.org/10.3390/vaccines11020394
APA StyleXie, Y. -J., Liu, W. -Q., Li, D., Hou, J. -C., Coghi, P. S., & Fan, X. -X. (2023). Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor. Vaccines, 11(2), 394. https://doi.org/10.3390/vaccines11020394