Evaluation of the Effectiveness of the Policy of Holding the Second Dose of Vaccination: Lessons from the Outbreak in Ho Chi Minh City
Abstract
:Highlights
- Many low-and-middle-income countries (LMICs) are facing massive delays in the administration of the second and even the first doses of the COVID-19 vaccines
- However, the delays in the administration of the second dose could help governments of LMICs administer the first dose of the vaccine on a larger scale.
- A more than 21-day delay in the administration of the second dose may further improve the efficacy of the first dose.
- A longer interval between vaccination and COVID-19 is associated with improved saturation of peripheral oxygen (SPO2) rates, indicating that a second dose delay can help lower ICU admissions and mortality rates.
Abstract
1. Introduction
2. Methods
2.1. Study Design, Population, and Conduction
2.2. Questionnaire Design and Survey Conduction
2.3. Data Analysis
2.4. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
The Nagasaki University Collaborative
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
BMI | body mass index |
COPD | chronic obstructive lung disease |
COVID-19 | coronavirus disease 2019 |
HIV/AIDS | human immunodeficiency virus/acute immunodeficiency syndrome |
LMICs | low- and middle-income countries |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
SPO2 | saturation of peripheral oxygen |
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- COVID Live-Coronavirus Statistics-Worldometer. Available online: https://www.worldometers.info/coronavirus (accessed on 11 August 2022).
- Rios, P.; Radhakrishnan, A.; Williams, C.; Ramkissoon, N.; Pham, B.; Cormack, G.V.; Grossman, M.R.; Muller, M.P.; Straus, S.E.; Tricco, A.C. Preventing the transmission of COVID-19 and other coronaviruses in older adults aged 60 years and above living in long-term care: A rapid review. Syst. Rev. 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Ball, P. The lightning-fast quest for COVID vaccines—And what it means for other diseases. Nature 2021, 589, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.; Barmania, F.; Mellet, J.; Peta, K.; Strydom, A.; Viljoen, I.M.; James, W.; Gordon, S.; Pepper, M.S. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol. 2021, 12, 809244. [Google Scholar] [CrossRef] [PubMed]
- Fathizadeh, H.; Afshar, S.; Masoudi, M.R.; Gholizadeh, M.P.; Asgharzadeh, M.; Ganbarov, K.; Köse, S.; Yousefi, M.; Kafil, H.S. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int. J. Biol. Macromol. 2021, 188, 740–750. [Google Scholar] [CrossRef]
- Siedner, M.J.; Alba, C.; Fitzmaurice, K.P.; Gilbert, R.F.; Scott, J.A.; Shebl, F.M.; Ciaranello, A.; Reddy, K.P.; Freedberg, K.A. Cost-effectiveness of Coronavirus Disease 2019 Vaccination in Low-and Middle-Income Countries. J. Infect. Dis. 2022, 226, 1887–1896. [Google Scholar] [CrossRef]
- Solís Arce, J.S.; Warren, S.S.; Meriggi, N.F.; Scacco, A.; McMurry, N.; Voors, M.; Syunyaev, G.; Malik, A.A.; Aboutajdine, S.; Adeojo, O.; et al. COVID-19 vaccine acceptance and hesitancy in low- and middle-income countries. Nat. Med. 2021, 27, 1385–1394. [Google Scholar] [CrossRef]
- Nachman, R.; Levine, R.; Jaffe, E. Synthesis of actin by cultured guinea pig megakaryocytes: Complex formation with fibrin. Biochim. Biophys. Acta Gen. Subjects 1978, 543, 91–105. [Google Scholar] [CrossRef]
- Pasquale, S.; Gregorio, G.L.; Caterina, A.; Francesco, C.; Beatrice, P.M.; Vincenzo, P.; Caterina, P.M. COVID-19 in Low- and Middle-Income Countries (LMICs): A Narrative Review from Prevention to Vaccination Strategy. Vaccines 2021, 9, 1477. [Google Scholar] [CrossRef]
- National Committee for the Prevention and Control of COVID-19 in Vietnam: Results of Two Years of Implementation of COVID-19 Prevention and Control. Available online: https://moh.gov.vn/documents/174521/1197117/4.COVID-19.pdf/e3254b2a-c902-4696-b0c7-cc4427b8f992 (accessed on 11 August 2022).
- Tough, R. Ho Chi Minh City during the fourth wave of COVID-19 in Vietnam. City Soc. 2021, 33. [Google Scholar] [CrossRef]
- Ho Chi Minh City Media Center. Available online: https://ttbc-hcm.gov.vn/quan-5-co-2-phuong-da-bao-phu-vaccine-mui-2-toi-toan-bo-nguoi-dan-17718.html (accessed on 11 January 2023).
- Thoi, P.T. Ho Chi Minh City- the front line against COVID-19 in Vietnam. City Soc. 2020, 32. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Coronavirus Disease (COVID-19); WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/health-topics/coronavirus (accessed on 20 November 2022).
- Stephen, B. Thacker Centers for Disease Control and Prevention Library: COVID-19 Science Update released: 27 October 2020 Edition 60. Available online: https://www.cdc.gov/library/covid19/102720_covidupdate.html?fbclid=IwAR2zRqg1w6qbddenyL1cPl2Gdpsg41loo6mJuTHb2JQ8IQZ69OK4RB3I6eU (accessed on 16 September 2022).
- Stephen, B. Thacker Centers for Disease Control and Prevention Library: COVID-19 Science Update released: 30 July 2021 Edition 100. Available online: https://www.cdc.gov/library/covid19/07302021_covidupdate.html (accessed on 16 September 2022).
- Wei, J.; Stoesser, N.; Matthews, P.C.; Ayoubkhani, D.; Studley, R.; Bell, I.; Bell, J.I.; Newton, J.N.; Farrar, J.; Diamond, I.; et al. Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nat. Microbiol. 2021, 6, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization—Western Pacific Region: The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. (2000). Available online: https://apps.who.int/iris/bitstream/handle/10665/206936/0957708211_eng.pdf?sequence1 (accessed on 11 August 2022).
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Nourbakhsh, S.; Sah, P.; Fitzpatrick, M.C.; Galvani, A.P. Evaluation of COVID-19 vaccination strategies with a delayed second dose. PLoS Biol. 2021, 19, e3001211. [Google Scholar] [CrossRef]
- Silva, P.J.S.; Sagastizábal, C.; Nonato, L.G.; Struchiner, C.J.; Pereira, T. Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions. Proc. Natl. Acad. Sci. USA 2021, 118, e2104640118. [Google Scholar] [CrossRef]
- Flaxman, A.; Marchevsky, N.G.; Jenkin, D.; Aboagye, J.; Aley, P.K.; Angus, B.; Belij-Rammerstorfer, S.; Bibi, S.; Bittaye, M.; Cappuccini, F.; et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: A substudy of two randomised controlled trials (COV001 and COV002). Lancet 2021, 398, 981–990. [Google Scholar] [CrossRef]
- Parohan, M.; Yaghoubi, S.; Seraji, A.; Javanbakht, M.H.; Sarraf, P.; Djalali, M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis of observational studies. Aging Male 2020, 23, 1416–1424. [Google Scholar] [CrossRef]
- Serrano, R.; Corbella, X.; Rello, J. Management of hypoxemia in SARS-CoV-2 infection: Lessons learned from one year of experience, with a special focus on silent hypoxemia. J. Intensiv. Med. 2021, 1, 26–30. [Google Scholar] [CrossRef]
- Beni, H.M.; Hassani, K.; Khorramymehr, S. Study of the sneezing effects on the real human upper airway using fluid–structure interaction method. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 181. [Google Scholar] [CrossRef]
- Payne, R.P.; Longet, S.; Austin, J.A.; Skelly, D.T.; Dejnirattisai, W.; Adele, S.; Meardon, N.; Faustini, S.; Al-Taei, S.; Moore, S.C.; et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell 2021, 184, 5699–5714.e11. [Google Scholar] [CrossRef]
- Hall, V.G.; Ferreira, V.H.; Wood, H.; Ierullo, M.; Majchrzak-Kita, B.; Manguiat, K.; Robinson, A.; Kulasingam, V.; Humar, A.; Kumar, D. Delayed-interval BNT162b2 mRNA COVID-19 vaccination enhances humoral immunity and induces robust T cell responses. Nat. Immunol. 2022, 23, 380–385. [Google Scholar] [CrossRef]
- Martinez, D.R.; Ooi, E.E. A potential silver lining of delaying the second dose. Nat. Immunol. 2022, 23, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Van Nhu, H.; Tuyet-Hanh, T.T.; Quang, L.N.; Linh, T.N.Q.; Tien, T.Q. COVID-19 Vaccine Acceptance in Vietnam: An Online Cross-Sectional Study. Asia Pac. J. Public Health 2021, 34, 131–133. [Google Scholar] [CrossRef]
- Huynh, G.; Nguyen, H.T.N.; Van Tran, K.; Le An, P.; Tran, T.D. Determinants of COVID-19 vaccine hesitancy among parents in Ho Chi Minh City, Vietnam. Postgrad. Med. 2022, 134, 303–308. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | First Dose Less Than 21 Days | Holding the Second Dose | Full Vaccination | p-Value |
---|---|---|---|---|---|
N = 2548 | N = 905 | N = 1457 | N = 186 | ||
Type of vaccination | <0.001 * | ||||
AstraZeneca | 2202 (86.42%) | 695 (76.80%) | 1329 (91.21%) | 178 (95.70%) | |
Moderna | 286 (11.22%) | 177 (19.56%) | 108 (7.41%) | 1 (0.54%) | |
Pfizer | 33 (1.30%) | 22 (2.43%) | 9 (0.62%) | 2 (1.08%) | |
Not specified | 27 (1.06%) | 11 (1.22%) | 11 (0.75%) | 5 (2.69%) | |
Total symptom scores (points) | 3.09 (3.40) | 3.27 (3.47) | 3.12 (3.42) | 1.92 (2.58) | <0.001 * |
Day of infection (days) | 8.11 (5.35) | 9.21 (5.70) | 7.45 (5.02) | 7.86 (5.27) | <0.001 * |
Asymptomatic | <0.001 * | ||||
No | 719 (28.22%) | 227 (25.08%) | 419 (28.76%) | 73 (39.25%) | |
Yes | 1829 (71.78%) | 678 (74.92%) | 1038 (71.24%) | 113 (60.75%) | |
Highest temperature | 36.79 (0.66) | 36.86 (0.77) | 36.77 (0.60) | 36.63 (0.55) | 0.001 * |
Lowest temperature | 36.34 (0.48) | 36.36 (0.50) | 36.33 (0.47) | 36.30 (0.50) | 0.186 |
Lowest SPO2 | 96.48 (3.36) | 95.39 (4.27) | 96.77 (3.03) | 97.38 (1.63) | <0.001 * |
Cough (Yes) | 1064 (41.76%) | 400 (44.20%) | 596 (40.91%) | 68 (36.56%) | 0.094 |
Not eating well (Yes) | 745 (29.24%) | 303 (33.48%) | 402 (27.59%) | 40 (21.51%) | 0.001 * |
Stuffy nose (Yes) | 703 (27.59%) | 219 (24.20%) | 450 (30.89%) | 34 (18.28%) | <0.001 * |
Decrease/loss of smell (Yes) | 614 (24.10%) | 209 (23.09%) | 373 (25.60%) | 32 (17.20%) | 0.028 * |
Fatigue (Yes) | 517 (20.29%) | 207 (22.87%) | 295 (20.25%) | 15 (8.06%) | <0.001 * |
Insomnia (Yes) | 466 (18.29%) | 174 (19.23%) | 276 (18.94%) | 16 (8.60%) | 0.002 * |
Decrease/loss of taste (Yes) | 435 (17.07%) | 158 (17.46%) | 249 (17.09%) | 28 (15.05%) | 0.729 |
Sore throat (Yes) | 424 (16.64%) | 136 (15.03%) | 270 (18.53%) | 18 (9.68%) | 0.003 * |
Muscle pain (Yes) | 392 (15.38%) | 163 (18.01%) | 219 (15.03%) | 10 (5.38%) | <0.001 * |
Runny nose (Yes) | 390 (15.31%) | 150 (16.57%) | 216 (14.82%) | 24 (12.90%) | 0.331 |
Headache (Yes) | 369 (14.48%) | 145 (16.02%) | 213 (14.62%) | 11 (5.91%) | 0.002 * |
Diarrhea (Yes) | 322 (12.64%) | 155 (17.13%) | 161 (11.05%) | 6 (3.23%) | <0.001 * |
Chills (Yes) | 308 (12.09%) | 137 (15.14%) | 159 (10.91%) | 12 (6.45%) | <0.001 * |
Dizziness (Yes) | 224 (8.79%) | 100 (11.05%) | 118 (8.10%) | 6 (3.23%) | 0.001 * |
Joint pain (Yes) | 220 (8.63%) | 119 (13.15%) | 97 (6.66%) | 4 (2.15%) | <0.001 * |
Fever (Yes) | 212 (8.32%) | 100 (11.05%) | 102 (7.00%) | 10 (5.38%) | 0.001 * |
Shortness of breath (Yes) | 163 (6.40%) | 61 (6.74%) | 98 (6.73%) | 4 (2.15%) | 0.049 * |
Chest pain (Yes) | 145 (5.69%) | 46 (5.08%) | 94 (6.45%) | 5 (2.69%) | 0.070 |
Red eyes (Yes) | 115 (4.51%) | 39 (4.31%) | 69 (4.74%) | 7 (3.76%) | 0.780 |
Faint (Yes) | 109 (4.30%) | 48 (5.33%) | 60 (4.15%) | 1 (0.54%) | 0.012 * |
Nausea/vomiting (Yes) | 75 (2.94%) | 35 (3.87%) | 35 (2.40%) | 5 (2.69%) | 0.120 |
Rash on skin (Yes) | 59 (2.32%) | 21 (2.32%) | 36 (2.47%) | 2 (1.08%) | 0.582 |
Loss of speech (Yes) | 27 (1.06%) | 7 (0.77%) | 19 (1.30%) | 1 (0.54%) | 0.478 |
Sneeze (Yes) † | 540 (21.19%) | 179 (19.78%) | 324 (22.24%) | 37 (19.89%) | 0.329 |
Characteristics | Total | SPO2 > 93% | SPO2 ≤ 93% | p-Value |
---|---|---|---|---|
N = 1173 | N = 1081 | N = 92 | ||
Age (years) | 45.21 (16.04) | 44.40 (15.73) | 54.77 (16.70) | <0.001 * |
Gender | 0.110 | |||
Male | 463 (39.47%) | 419 (38.76%) | 44 (47.83%) | |
Female | 710 (60.53%) | 662 (61.24%) | 48 (52.17%) | |
BMI (kg/m2) | 23.14 (3.73) | 23.17 (3.78) | 22.81 (3.16) | 0.307 |
Time from vaccination to confirmed COVID-19 (days) | 27.28 (13.56) | 27.52 (13.65) | 24.33 (12.05) | 0.021 * |
Time from confirmed COVID-19 to survey (days) | 9.09 (5.18) | 9.08 (5.14) | 9.15 (5.59) | 0.911 |
Healthcare staff | 0.100 | |||
No | 1167 (99.49%) | 1075 (99.44%) | 92 (100.00%) | |
Yes | 6 (0.51%) | 6 (0.56%) | 0 (0.00%) | |
Number of people living with COVID-19 patients | 2.60 (1.62) | 2.57 (1.64) | 2.88 (1.27) | 0.033 * |
Total symptom scores (points) | 2.82 (3.26) | 2.58 (3.11) | 5.63 (3.72) | <0.001 * |
Asymptomatic | <0.001 * | |||
No | 365 (31.12%) | 357 (33.02%) | 8 (8.70%) | |
Yes | 808 (68.88%) | 724 (66.98%) | 84 (91.30%) | |
Type of vaccination | <0.001 * | |||
AstraZeneca | 994 (84.74%) | 930 (86.03%) | 64 (69.57%) | |
Moderna | 147 (12.53%) | 127 (11.75%) | 20 (21.74%) | |
Pfizer | 24 (2.05%) | 19 (1.76%) | 5 (5.43%) | |
Not specified | 8 (0.68%) | 5 (0.46%) | 3 (3.26%) | |
Medical record | <0.001 * | |||
No | 645 (54.99%) | 611 (56.52%) | 34 (36.96%) | |
Yes | 528 (45.01%) | 470 (43.48%) | 58 (63.04%) | |
Hypertension (Yes) | 225 (19.18%) | 198 (18.32%) | 27 (29.35%) | 0.015 * |
Cardiovascular disease (Yes) | 126 (10.74%) | 108 (9.99%) | 18 (19.57%) | 0.008 * |
Diabetes (Yes) | 106 (9.04%) | 91 (8.42%) | 15 (16.30%) | 0.019 * |
Dementia (Yes) | 19 (1.62%) | 12 (1.11%) | 7 (7.61%) | <0.001 * |
Kidney disease (Yes) | 14 (1.19%) | 10 (0.93%) | 4 (4.35%) | 0.019 * |
Other lung disease (Yes) | 14 (1.19%) | 4 (0.37%) | 10 (10.87%) | <0.001 * |
Obesity (Yes) † | 258 (21.99%) | 245 (22.66%) | 13 (14.13%) | 0.077 |
Systemic disease (Yes) | 69 (5.88%) | 62 (5.74%) | 7 (7.61%) | 0.615 |
Cancer (Yes) | 33 (2.81%) | 28 (2.59%) | 5 (5.43%) | 0.175 |
Liver disease (Yes) | 24 (2.05%) | 24 (2.22%) | 0 (0.00%) | 0.250 |
Asthma (Yes) | 11 (0.94%) | 10 (0.93%) | 1 (1.09%) | 0.594 |
COPD (Yes) | 8 (0.68%) | 8 (0.74%) | 0 (0.00%) | 1.000 |
Organ transplants (Yes) | 3 (0.26%) | 3 (0.28%) | 0 (0.00%) | 1.000 |
Down syndrome (Yes) | 3 (0.26%) | 3 (0.28%) | 0 (0.00%) | 1.000 |
HIV/AIDS (Yes) | 3 (0.26%) | 3 (0.28%) | 0 (0.00%) | 1.000 |
Sickle cell anemia (Yes) | 3 (0.26%) | 3 (0.28%) | 0 (0.00%) | 1.000 |
Addiction (Yes) | 3 (0.26%) | 3 (0.28%) | 0 (0.00%) | 1.000 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | 95% CI | p-Value | Estimates | 95% CI | p-Value |
(Intercept) | – | – | – | 0.96 | 0.91–1.02 | 0.237 |
Age (each 10 years) | 1.03 | 1.02–1.04 | <0.001 * | 1.02 | 1.01–1.03 | <0.001 * |
Number of people living with COVID-19 patients in the same household | 1.01 | 1.00–1.02 | 0.02 * | 1.01 | 1.00–1.02 | 0.025 * |
Lung diseases # | ||||||
No | Reference | Reference | ||||
Yes | 1.54 | 1.38–1.73 | <0.001 * | 1.35 | 1.21–1.51 | <0.001 * |
Gender | ||||||
Male | Reference | Reference | ||||
Female | 0.97 | 0.94–1.00 | 0.028 * | 0.95 | 0.93–0.98 | 0.002 * |
Shortness of breath | ||||||
No | Reference | Reference | ||||
Yes | 1.37 | 1.28–1.46 | <0.001 * | 1.30 | 1.22–1.38 | <0.001 * |
Sneeze | ||||||
No | Reference | Reference | ||||
Yes | 1.16 | 1.11–1.20 | <0.001 * | 1.10 | 1.06–1.15 | <0.001 * |
Fainting | ||||||
No | Reference | Reference | ||||
Yes | 1.12 | 1.05–1.20 | 0.001 * | 1.08 | 1.02–1.15 | 0.014 * |
Cough | ||||||
No | Reference | Reference | ||||
Yes | 1.12 | 1.09–1.15 | <0.001 * | 1.05 | 1.02–1.08 | 0.001 * |
Vaccination | ||||||
First dose less than 21 days | Reference | Reference | ||||
Holding the second dose * | 0.94 | 0.91–0.97 | 0.001 * | 0.94 | 0.91–0.97 | <0.001 * |
Full vaccination | 0.91 | 0.85–0.97 | 0.003 * | 0.94 | 0.88–0.99 | 0.032 * |
Observations | 1142 | 1142 | ||||
R2 | 0.186 | |||||
AUC | 86.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trang, V.T.T.; Van Truong, L.; Van Dat, T.; Elsheikh, R.; Anh, N.T.; Thang, D.X.; Thang, V.V.; Makram, A.M.; Huy, N.T.; Nagasaki University Collaborative. Evaluation of the Effectiveness of the Policy of Holding the Second Dose of Vaccination: Lessons from the Outbreak in Ho Chi Minh City. Vaccines 2023, 11, 293. https://doi.org/10.3390/vaccines11020293
Trang VTT, Van Truong L, Van Dat T, Elsheikh R, Anh NT, Thang DX, Thang VV, Makram AM, Huy NT, Nagasaki University Collaborative. Evaluation of the Effectiveness of the Policy of Holding the Second Dose of Vaccination: Lessons from the Outbreak in Ho Chi Minh City. Vaccines. 2023; 11(2):293. https://doi.org/10.3390/vaccines11020293
Chicago/Turabian StyleTrang, Vu Thi Thu, Le Van Truong, Truong Van Dat, Randa Elsheikh, Nguyen Tuan Anh, Dang Xuan Thang, Vo Viet Thang, Abdelrahman M. Makram, Nguyen Tien Huy, and Nagasaki University Collaborative. 2023. "Evaluation of the Effectiveness of the Policy of Holding the Second Dose of Vaccination: Lessons from the Outbreak in Ho Chi Minh City" Vaccines 11, no. 2: 293. https://doi.org/10.3390/vaccines11020293
APA StyleTrang, V. T. T., Van Truong, L., Van Dat, T., Elsheikh, R., Anh, N. T., Thang, D. X., Thang, V. V., Makram, A. M., Huy, N. T., & Nagasaki University Collaborative. (2023). Evaluation of the Effectiveness of the Policy of Holding the Second Dose of Vaccination: Lessons from the Outbreak in Ho Chi Minh City. Vaccines, 11(2), 293. https://doi.org/10.3390/vaccines11020293