Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances
Abstract
:1. Introduction
2. A Brief Overview of Fish Vaccination
3. Types of Fish Vaccines and Current Vaccine Approaches for the Control of TiLV Disease and Infection
3.1. Inactivated Vaccines
3.2. Live/Attenuated Viral Vaccines
3.3. Subunit/Acellular Vaccines
3.4. Nucleic Acid Vaccines
3.4.1. DNA Vaccines
3.4.2. RNA-Based Vaccines
3.5. Nanoparticle-Based Vaccines
4. Vaccine Delivery Routes
4.1. Oral Vaccination
4.2. Vaccination by Injection
4.3. Vaccination by Immersion (Dipping or Bathing)
5. Factors That Can Influence Vaccine Efficacy
5.1. Vaccine Formulation—Dose, Use of Adjuvant, Administration Route, and Addition of a Nanocarrier Delivery System
5.2. Vaccine Regimen—Heterologous Prime–Boost Regimen
5.3. Codon Optimization for DNA Vaccines
6. Challenges
7. Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popma, T.; Masser, M. Farming Tilapia: Life History and Biology; SRAC publication no. 283; Southern Regional Aquaculture Center: Stoneville, MS, USA, 1999. [Google Scholar]
- FAO. GLOBEFISH Highlights: A Quarterly Update on World Seafood Markets–April 2109 Issue with Jan.–Dec. 2018 Statistics; FAO: Rome, Italy, 2019; pp. 32–33. [Google Scholar]
- Global Tilapia Market Forecast by Production, Import, Export Countries, Company Analysis. Available online: https://www.researchandmarkets.com/reports/5317038/global-tilapia-market-forecast-by-production#product--toc (accessed on 21 October 2022).
- Kibenge, F.S.B.; Godoy, M.G.; Fast, M.; Workenhe, S.; Kibenge, M.J.T. Countermeasures against viral diseases of farmed fish. Antivir. Res. 2012, 95, 257–281. [Google Scholar] [CrossRef]
- Aly, S.M. A Review of Fish Diseases in the Egyptian Aquaculture Sector: Working Report; WorldFish: Penang, Malaysia, 2013. [Google Scholar]
- McGrogan, D.G.; Ostland, V.E.; Byrne, P.J.; Ferguson, H.W. Systemic disease involving an iridovirus-like agent in cultured tilapia Oreochromis niloticus L.—A case report. J. Fish. Dis. 1998, 21, 149–152. [Google Scholar]
- Shlapobersky, M.; Sinyakov, M.S.; Katzenellenbogen, M.; Sarid, R.; Don, J.; Avtalion, R.R. Viral encephalitis of tilapia larvae: Primary characterization of a novel herpes-like virus. Virology 2010, 399, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Bigarré, L.; Cabon, J.; Baud, M.; Heimann, M.; Body, A.; Lieffrig, F.; Castric, J. Outbreak of betanodavirus infection in tilapia, Oreochromis niloticus (L.), in fresh water. J. Fish. Dis. 2010, 32, 667–673. [Google Scholar]
- Aich, N.; Paul, A.; Choudhury, T.G.; Saha, H. Tilapia Lake Virus (TiLV) disease: Current status of understanding. Aquac. Fish. 2022, 7, 7–17. [Google Scholar] [CrossRef]
- Eyngor, M.; Zamostiano, R.; Kembou Tsofack, J.E.; Berkowitz, A.; Bercovier, H.; Tinman, S.; Lev, M.; Hurvitz, A.; Galeotti, M.; Bacharach, E.; et al. Identification of a novel RNA virus lethal to tilapia. J. Clin. Microbiol. 2014, 52, 4137–4146. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Zhang, Y.-Z.; Gao, L.-H.; Miao, B.; Zheng, J.-S.; Pu, D.-C.; Zhang, Q.-Q.; Zeng, W.-W.; Wang, D.-S.; Su, S.-Q.; et al. Identification and pathogenetic study of tilapia lake virus (TiLV) isolated from naturally diseased tilapia. Aquaculture 2023, 565, 739166. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Information and Early Warning System on Food and Agriculture (Giews), Special Alert No. 338, Outbreaks of Tilapia Lake Virus (TiLV) Threaten the Livelihoods and Food Security of Millions of People Dependent on Tilapia Farming; 26 May 2017. Available online: http://www.fao.org/3/a-i7326e.pdf (accessed on 12 September 2022).
- Dong, H.T.; Ataguba, G.A.; Khunrae, P.; Rattanarojpong, T.; Senapin, S. Evidence of TiLV infection in tilapia hatcheries from 2012 to 2017 reveals probable global spread of the disease. Aquaculture 2017, 479, 579–583. [Google Scholar]
- Yamkasem, J.; Tattiyapong, P.; Kamlangdee, A.; Surachetpong, W. Evidence of potential vertical transmission of tilapia lake virus. J. Fish Dis. 2019, 42, 1293–1300. [Google Scholar]
- Dong, H.T.; Senapin, S.; Gangnonngiw, W.; Nguyen, V.V.; Rodkhum, C.; Debnath, P.P.; Delamare-Deboutteville, J.; Mohan, C.V. Experimental infection reveals transmission of tilapia lake virus (tilv) from tilapia broodstock to their reproductive organs and fertilized eggs. Aquaculture 2020, 515, 734541. [Google Scholar] [CrossRef]
- Kenne, C.; Zongo, P.; Dorville, R. A mathematical model for tilapia lake virus transmission with waning immunity. J. Biol. Dyna. 2022, 16, 98–116. [Google Scholar] [CrossRef]
- Tattiyapong, P.; Dechavichitlead, W.; Waltzek, T.B.; Surachetpong, W. Tilapia develop protective immunity including a humoral response following exposure to tilapia lake virus. Fish Shellfish. Immunol. 2020, 106, 666–674. [Google Scholar]
- Czochor, J.; Turchick, A. Introduction. Yale J. Biol. Med. 2014, 87, 401–402. [Google Scholar]
- Horzinek, M.C.; Schijns, V.E.C.J.; Denis, M.; Desmettre, P.; Babiuk, L.A. General Description of Vaccines; Pastoret, P.P., Blancou, J., Vannier, P., Verschueren, C., Eds.; Elsevier Press: Amsterdam, The Netherlands, 1997; pp. 132–152. [Google Scholar]
- Sneeringer, S.; Bowman, M.; Clancy, M. The US and EU Animal Pharmaceutical Industries in the Age of Antibiotic Resistance; USDA Economic Research Service Report Number 264; USDA: Washington, DC, USA, 2019.
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Guy, B. The perfect mix: Recent progress in adjuvant research. Nat. Microbiol. 2007, 5, 505–517. [Google Scholar]
- Sivakumar, S.M.; Safhi, M.M.; Kannadasan, M.; Sukumaran, N. Vaccine adjuvants–Current status and prospects on controlled release adjuvancity. Saudi Pharm. J. 2011, 19, 197–206. [Google Scholar]
- Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef]
- Jeong, Y.U.; Subramanian, D.; Yeoung-Hwan, J.; Kim, D.H.; Park, S.H.; Park, K.; Lee, Y.D.; Heo, M.S. Protective efficiency of an inactivated vaccine against Streptococcus iniae in olive flounder, Paralichthys olivaceus. Arch. Pol. Fish. 2016, 24, 23–32. [Google Scholar]
- Sommerset, I.; Krossøy, B.; Biering, E.; Frost, P. Vaccines for fish in aquaculture. Expert Rev. Vaccines 2005, 4, 89–101. [Google Scholar] [CrossRef]
- Mondal, H.; Thomas, J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquacult. Int. 2022, 30, 1971–2000. [Google Scholar] [CrossRef]
- Tlaxca, J.L.; Ellis, S.; Remmele, R.L., Jr. Live attenuated and inactivated viral vaccine formulation and nasal delivery: Potential and challenges. Adv. Drug Deliv. Rev. 2015, 93, 56–78. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Y.; Hu, H.; Wang, Q.; Bergmann, S.M.; Wang, Y.; Li, B.; Lv, Y.; Li, H.; Yin, J.; et al. Cell Culture-Derived Tilapia Lake Virus-Inactivated Vaccine Containing Montanide Adjuvant Provides High Protection against Viral Challenge for Tilapia. Vaccines 2021, 9, 86. [Google Scholar] [CrossRef]
- Mai, T.T.; Kayansamruaj, P.; Taengphu, S.; Senapin, S.; Costa, J.Z.; Del-Pozo, J.; Thompson, K.D.; Rodkhum, C.; Dong, H.T. Efficacy of heat-killed and formalin-killed vaccines against Tilapia tilapinevirus in juvenile Nile tilapia (Oreochromis niloticus). J Fish Dis. 2021, 44, 2097–2109. [Google Scholar] [CrossRef]
- Mai, T.T.; Kayansamruaj, P.; Soontara, C.; Kerddee, P.; Nguyen, D.H.; Senapin, S.; Costa, J.Z.; Del-Pozo, J.; Thompson, K.D.; Rodkhum, C.; et al. Immunization of Nile Tilapia (Oreochromis niloticus) Broodstock with Tilapia Lake Virus (TiLV) Inactivated Vaccines Elicits Protective Antibody and Passive Maternal Antibody Transfer. Vaccines 2022, 10, 167. [Google Scholar] [CrossRef]
- Nuñez-Ortiz, N.; Pascoli, F.; Picchietti, S.; Buonocore, F.; Bernini, C.; Toson, M.; Scapigliati, G.; Toffan, A. A formalin-inactivated immunogen against viral encephalopathy and retinopathy (VER) disease in European sea bass (Dicentrarchus labrax): Immunological and protection effects. Vet Res. 2016, 47, 89. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.M.; Sztein, M.B. Vaccine development strategies for improving immunization: The role of modern immunology. Nat. Immunol. 2004, 5, 460. [Google Scholar] [CrossRef]
- Adamek, M.; Matras, M.; Rebl, A.; Stachnik, M.; Falco, A.; Bauer, J.; Miebach, A.C.; Teitge, F.; Jung-Schroers, V.; Abdullah, M.; et al. Don’t Let It Get Under Your Skin!–Vaccination Protects the Skin Barrier of Common Carp From Disruption Caused by Cyprinid Herpesvirus 3. Front. Immunol. 2022, 13, 787021. [Google Scholar] [CrossRef]
- Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. Npj Vaccines 2021, 6, 28. [Google Scholar] [CrossRef]
- Tao, Y.; Shi, M.; Chommanard, C.; Queen, K.; Zhang, J.; Markotter, W.; Kuzmin, I.V.; Holmes, E.C.; Tong, S. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. J. Virol. 2017, 91, e01953-16. [Google Scholar] [CrossRef] [Green Version]
- Boutier, M.; Ronsmans, M.; Ouyang, P.; Fournier, G.; Reschner, A.; Rakus, K.; Wilkie, G.S.; Farnir, F.; Bayrou, C.; Lieffrig, F.; et al. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging. PLoS Pathog. 2015, 11, e1004690. [Google Scholar]
- Fuchs, W.; Fichtner, D.; Bergmann, S.M.; Mettenleiter, T.C. Generation and characterization of koi herpesvirus recombinants lacking viral enzymes of nucleotide metabolism. Arch. Virol. 2011, 156, 1059–1063. [Google Scholar] [CrossRef]
- Bacharach, E.; Eldar, A. Tilapia Lake Virus Vaccines. U.S. Patent US2016/0354458A1, 9 August 2016. Available online: https://patents.google.com/patent/US20160354458A1/en (accessed on 12 September 2022).
- Chaput, D.L.; Bass, D.; Alam, M.M.; Hasan, N.A.; Stentiford, G.D.; Aerle, R.V.; Moore, K.; Bignell, J.P.; Haque, M.M.; Tyler, C.R. The Segment Matters: Probable Reassortment of Tilapia Lake Virus (TiLV) Complicates Phylogenetic Analysis and Inference of Geographical Origin of New Isolate from Bangladesh. Viruses 2020, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.K.; Sood, N.; Paria, A.; Swaminathan, T.R.; Mohan, C.V.; Rajendran, K.V.; Pradhan, P.K. Reassortment and evolutionary dynamics of tilapia lake virus genomic segments. Virus Res. 2022, 308, 198625. [Google Scholar] [CrossRef]
- Mugimba, K.K.; Chengula, A.A.; Wamala, S.; Mwega, E.D.; Kasanga, C.J.; Byarugaba, D.K.; Mdegela, R.H.; Tal, S.; Bornstein, B.; Dishon, A.; et al. Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. J. Fish Dis. 2018, 41, 1181–1189. [Google Scholar] [CrossRef]
- Zeng, R.; Pan, W.; Lin, Y.; He, J.; Luo, Z.; Li, Z.; Weng, S.; He, J.; Guo, C. Development of a gene-deleted live attenuated candidate vaccine against fish virus (ISKNV) with low pathogenicity and high protection. iScience 2021, 24, 102750. [Google Scholar] [CrossRef]
- Holten-Andersen, L.; Doherty, T.M.; Korsholm, K.S.; Andersen, P. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect. Immun. 2004, 72, 1617. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Wang, H.; Deng, F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J. Immunol Sci. 2018, 2, 36–41. [Google Scholar] [CrossRef]
- Crane, M.; Hyatt, A. Viruses of fish: An overview of significant pathogens. Viruses 2011, 3, 2025–2046. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, N.; Olesen, N.J. Multiplication of VHS virus in insect cells. Vet. Res. 1995, 26, 428–432. [Google Scholar]
- Lecocq-Xhonneux, F.; Thiry, M.; Dheur, I.; Rossius, M.; Vanderheijden, N.; Martial, J.; De Kinkelin, P. A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces protective immunity in rainbow trout. J. Gen. Virol. 1994, 75, 1579–1587. [Google Scholar] [CrossRef]
- Cain, K.D.; Byrne, K.M.; Brassfield, A.L.; LaPatra, S.E.; Ristow, S.S. Temperature dependent characteristics of a recombinant infectious hematopoietic necrosis virus glycoprotein produced in insect cells. Dis. Aquat. Organ. 1999, 36, 1–10. [Google Scholar] [CrossRef]
- Su, H.; Yakovlev, I.A.; van Eerde, A.; Su, J.; Clarke, J.L. Plant-Produced Vaccines: Future Applications in Aquaculture. Front. Plant Sci. 2021, 12, 718775. [Google Scholar] [CrossRef]
- Marsian, J.; Hurdiss, D.L.; Ranson, N.A.; Ritala, A.; Paley, R.; Cano, I.; Lomonossoff, G.P. Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. Front. Plant Sci. 2019, 10, 880. [Google Scholar] [CrossRef]
- Su, H.; van Eerde, A.; Steen, H.S.; Heldal, I.; Haugslien, S.; Ørpetveit, I.; Wüstner, S.C.; Inami, M.; Løvoll, M.; Rimstad, E.; et al. Establishment of a piscine myocarditis virus (PMCV) challenge model and testing of a plant-produced subunit vaccine candidate against cardiomyopathy syndrome (CMS) in Atlantic salmon Salmo salar. Aquaculture 2021, 541, 736806. [Google Scholar] [CrossRef]
- Keating, G.M.; Noble, S. Recombinant hepatitis B vaccine (Engerix-B (R))-A review of its immunogenicity and protective efficacy against hepatitis B. Drugs 2003, 63, 1021–1051. [Google Scholar] [CrossRef]
- Li, S.W.; Zhang, J.; Li, Y.M.; Ou, S.H.; Huang, G.Y.; He, Z.Q.; Ge, S.X.; Xian, Y.L.; Pang, S.Q.; Ng, M.H.; et al. A bacterially expressed particulate hepatitis E vaccine: Antigenicity, immunogenicity and protectivity on primates. Vaccine 2005, 23, 2893–2901. [Google Scholar] [CrossRef]
- Villa, L.L.; Costa, R.L.; Petta, C.A.; Andrade, R.P.; Ault, K.A.; Giuliano, A.R.; Wheeler, C.M.; Koutsky, L.A.; Malm, C.; Lehtinen, M.; et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Harper, D.M.; Franco, E.L.; Wheeler, C.; Ferris, D.G.; Jenkins, D.; Schuind, A.; Zahaf, T.; Innis, B.; Naud, P.; De Carvalho, N.S.; et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomised controlled trial. Lancet 2004, 364, 1757–1765. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Y.; Chen, X.; Wang, Q.; Bergmann, S.M.; Yang, Y.; Wang, Y.; Li, B.; Lv, Y.; Li, H.; et al. Potency and efficacy of VP20-based vaccine against tilapia lake virus using different prime-boost vaccination regimens in tilapia. Aquaculture 2021, 539, 736654. [Google Scholar] [CrossRef]
- Chamtim, P.; Suwan, E.; Dong, H.T.; Sirisuay, S.; Areechon, N.; Wangkahart, E.; Hirono, I.; Mavichak, R.; Unajak, S. Combining segments 9 and 10 in DNA and recombinant protein vaccines conferred superior protection against tilapia lake virus in hybrid red tilapia (oreochromis sp.) compared to single segment vaccines. Front. Immunol. 2022, 13, 935480. [Google Scholar] [CrossRef]
- Lueangyangyuen, A.; Senapin, S.; Dong, H.T.; Unajak, S.; Wangkahart, E.; Khunrae, P. Expression and purification of S5196-272 and S6200-317 proteins from Tilapia Lake Virus (TiLV) and their potential use as vaccines. Protein Expr. Purif. 2022, 190, 106013. [Google Scholar] [CrossRef]
- Bacharach, E.; Mishra, N.; Briese, T.; Zody, M.C.; Tsofack, J.E.K.; Zamostiano, R.; Berkowitz, A.; Ng, J.; Nitido, A.; Corvelo, A.; et al. Characterization of a novel orthomyxo-like virus causing mass die-offs of tilapia. mBio 2016, 7, e00431-16. [Google Scholar] [CrossRef] [Green Version]
- Cueva, M.D.; Villena, G.K.; Kitazono, A.A. Efficient cloning of tilapia lake virus complementary DNAs using an in vivo strategy in baker’s yeast. J. World Aquac. Soc. 2021, 52, 1209–1220. [Google Scholar] [CrossRef]
- Bañuelos-Hernández, B.; Rodríguez-Ramírez, T.; Albarrán-Tamayo, F.; Valadez, C.E.A.; Hernández, A.C. Using the TiLV virus genome sequence to develop a recombinant oral vaccine in microalgae. Comment to the article "Complete Genome Sequence of a Tilapia Lake Virus Isolate Obtained from Nile Tilapia (Oreochromis niloticus)". Nova Sci. 2020, 12, 24. [Google Scholar] [CrossRef]
- Hart, S.; Wrathmell, A.B.; Harris, J.E.; Grayson, T.H. Gut immunology in fish: A review. Dev. Comp. Immunol. 1988, 12, 453–480, Erratum in: Dev. Comp. Immunol. 1989, 13, 93–100. [Google Scholar] [CrossRef]
- Liu, W.; Hsu, C.H.; Chang, C.Y.; Chen, H.H.; Lin, C.S. Immune response against grouper nervous necrosis virus by vaccination of virus-like particles. Vaccine 2006, 24, 6282–6287. [Google Scholar] [CrossRef]
- Lai, Y.X.; Jin, B.L.; Xua, Y.; Huanga, L.J.; Huanga, R.Q.; Zhang, Y.; Kwang, J.; He, J.G.; Xie, J.F. Immune responses of orange-spotted grouper, Epinephelus coioides, against virus-like particles of betanodavirus produced in Escherichia coli. Vet. Immunol. Immunopathol. 2014, 157, 87–96. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Mason, P.W.; Geall, A.; Mandl, C.W. RNA-based vaccines. Vaccine 2012, 30, 4414–4418. [Google Scholar] [CrossRef]
- Menon, V.; Ayala, V.I.; Rangaswamy, S.P.; Kalisz, I.; Whitney, S.; Galmin, L.; Ashraf, A.; LaBranche, C.; Montefiori, D.; Petrovsky, N.; et al. DNA prime/protein boost vaccination elicits robust humoral response in rhesus macaques using oligomeric simian immunodeficiency virus envelope and Advax delta inulin adjuvant. J. Gen. Virol. 2017, 98, 2143–2155. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.D.; Yao, Y.Y.; Cui, Z.W.; Zhang, X.Y.; Peng, K.S.; Guo, X.; Wang, B.; Zhou, Y.Y.; Li, S.; Wu, N.; et al. Comparative study of the immunoprotective effect of two DNA vaccines against grass carp reovirus. Fish Shellfish Immunol. 2018, 75, 66–73. [Google Scholar] [CrossRef]
- Lorenzen, N.; LaPatra, S.E. DNA vaccines for aquacultured fish. Rev. Sci. Tech. 2005, 24, 201–213. [Google Scholar] [CrossRef] [Green Version]
- McLauchlan, P.E.; Collet, B.; Ingerslev, E.; Secombes, C.J.; Lorenzen, N.; Ellis, A.E. DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: Size, dose, route of injection and duration of protection–early protection correlates with Mx expression. Fish Shellfish Immunol. 2003, 15, 39–50. [Google Scholar] [CrossRef]
- Hølvold, L.B.; Myhr, A.I.; Dalmo, R.A. Strategies and hurdles using DNA vaccines to fish. Vet. Res. 2014, 45, 21. [Google Scholar] [CrossRef] [Green Version]
- Takano, T.; Iwahori, A.; Hirono, I.; Aoki, T. Development of a DNA vaccine against hirame rhabdovirus and analysis of the expression of immune-related genes after vaccination. Fish Shellfish Immunol. 2004, 17, 367–374. [Google Scholar]
- Van Drunen Littel-van den Hurk, S.; Babiuk, S.L.; Babiuk, L.A. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol. Rev. 2004, 199, 113–125. [Google Scholar] [CrossRef]
- Yu, N.-T.; Zeng, W.-W.; Xiong, Z.; Liu, Z.-X. A high efficacy DNA vaccine against Tilapia Lake Virus in Nile tilapia (Oreochromis niloticus). Aquac. Rep. 2022, 24, 101166. [Google Scholar] [CrossRef]
- Criollo-Joaquin, M.; Motte, E.; Salvatierra, M.; Medina, J.; Diringer, B.; Sandoval, G.; Mialhe, E. Design and evaluation of the expression of a potential DNA vaccine against Tilapia lake virus (TiLV). Rev. Peru. Biol. 2019, 26, 301–310. [Google Scholar]
- Abu Rass, R.; Kustin, T.; Zamostiano, R.; Smorodinsky, N.; Ben Meir, D.; Feder, D.; Mishra, N.; Lipkin, W.I.; Eldar, A.; Ehrlich, M.; et al. Inferring Protein Function in an Emerging Virus: Detection of the Nucleoprotein in Tilapia Lake Virus. J. Virol. 2022, 96, e0175721. [Google Scholar] [CrossRef]
- Purcell, M.K.; Nichols, K.M.; Winton, J.R.; Kurath, G.; Thorgaard, G.H.; Wheeler, P.; Hansen, J.D.; Herwig, R.P.; Park, L.K. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus. Mol. Immunol. 2006, 43, 2089–2106. [Google Scholar] [CrossRef]
- Utke, K.; Kock, H.; Schuetze, H.; Bergmann, S.M.; Lorenzen, N.; Einer-Jensen, K.; Köllner, B.; Dalmo, R.A.; Vesely, T.; Ototake, M.; et al. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. Dev. Comp. Immunol. 2008, 32, 239–252. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Sahin, U.; Kariko, K.; Tureci, O. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- Kowalzik, F.; Schreiner, D.; Jensen, C.; Teschner, D.; Gehring, S.; Zepp, F. mRNA-Based Vaccines. Vaccines 2021, 9, 390. [Google Scholar] [CrossRef]
- Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J.B.; Yu, D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 2019, 27, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, K.; Liljestrom, P. Self-replicating alphavirus RNA vaccines. Expert Rev. Vaccines 2015, 14, 177–194. [Google Scholar] [CrossRef]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, M.; Villoing, S.; Rimstad, E.; Nylund, A. Characterization of untranslated regions of the salmonid alphavirus 3 (SAV3) genome and construction of a SAV3 based replicon. Virol. J. 2009, 6, 173. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.; Hodneland, K.; Frost, P.; Braaen, S.; Rimstad, E. A hemagglutinin-esterase-expressing salmonid alphavirus replicon protects Atlantic salmon (Salmo salar) against infectious salmon anemia (ISA). Vaccine 2013, 31, 661–669. [Google Scholar] [CrossRef]
- Wolf, A.; Hodneland, K.; Frost, P.; Hoeijmakers, M.; Rimstad, E. Salmonid alphavirus-based replicon vaccine against infectious salmon anemia (ISA): Impact of immunization route and interactions of the replicon vector. Fish Shellfish Immunol. 2014, 36, 383–392. [Google Scholar] [CrossRef]
- Gomes, A.C.; Mohsen, M.; Bachmann, M.F. Harnessing Nanoparticles for Immunomodulation and Vaccines. Vaccines 2017, 5, 6. [Google Scholar]
- Diaz-Arévalo, D.; Zeng, M. Nanoparticle-based vaccines: Opportunities and limitations. Nanopharmaceuticals 2020, 1, 135–150. [Google Scholar] [CrossRef]
- Roberts, R.A.; Eitas, T.K.; Byrne, J.D.; Johnson, B.M.; Short, P.J.; McKinnon, K.P. Towards programming immune tolerance through geometric manipulation of phosphatidylserine. Biomaterials 2015, 72, 1–10. [Google Scholar]
- Mohanan, D.; Slütter, B.; Henriksen-Lacey, M.; Jiskoot, W.; Bouwstra, J.A.; Perrie, Y. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J. Control Release 2010, 147, 342–349. [Google Scholar]
- Treuel, L.; Jiang, X.; Nienhaus, G.U. New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface 2013, 10, 20120939. [Google Scholar] [CrossRef]
- Liang, Z.; Arjun, S.; Nani, W.; Chun, X.Z.; Neena, M.; Chengzhong, Y.; Middelber, A.P.J. Nanoparticle vaccines. Vaccine 2014, 32, 327–337. [Google Scholar]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed 2016, 11, 673–692. [Google Scholar]
- Liu, Z.; Roche, P.A. Macropinocytosis in phagocytes: Regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front. Physiol. 2015, 6, 1. [Google Scholar] [CrossRef]
- Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle Vaccines Against Infectious Diseases. Front. Immunol. 2018, 9, 2224. [Google Scholar]
- Gutierro, I.; Hernández, R.M.; Igartua, M.; Gascón, A.R.; Pedraz, J.L. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002, 21, 67–77. [Google Scholar]
- Kanchan, V.; Panda, A.K. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 2007, 28, 5344–5357. [Google Scholar] [CrossRef]
- Tian, J.; Juan, Y. Poly (lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol. 2011, 30, 109–117. [Google Scholar]
- Tian, J.; Sun, X.; Chen, X.; Yu, J.; Qu, L.; Wang, L. The formulation and immunisation of oral poly(DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int. Immunopharmacol. 2008, 8, 900–908. [Google Scholar] [CrossRef]
- Adomako, M.; St-Hilaire, S.; Zheng, Y.; Eley, J.; Marcum, R.D.; Sealey, W.; Donahower, B.C.; Lapatra, S.; Sheridan, P.P. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles. J. Fish Dis. 2012, 35, 203–214. [Google Scholar] [CrossRef]
- Miyazaki, T.; Yasumoto, S.; Kuzuya, Y.; Yoshimura, T. A Primary Study on Oral Vaccination with Liposomes Entrapping Koi Herpesvirus (KHV) Antigens Against KHV Infection in Carp; Bondad, R.M.G., Mohan, C.V., Crumlish, M., Subasinghe, R.P., Eds.; Asian Fisheries Society: Manila, Philippines, 2008; pp. 99–184. [Google Scholar]
- Yasumoto, S.; Kuzuya, Y.; Yasuda, M.; Yoshimura, T.; Miyazaki, T. Oral immunization of common carp with a liposome vaccine fusing Koi Herpesvirus antigen. Fish Pathol. 2006, 41, 141–145. [Google Scholar]
- Rivas-Aravena, A.; Fuentes, Y.; Cartagena, J.; Brito, T.; Poggio, V.; La Torre, J.; Mendoza, H.; Gonzalez-Nilo, F.; Sandino, A.M.; Spencer, E. Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immunol. 2015, 45, 157–166. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, H.; Sun, X.; Zhang, Y.; Zhang, B.; Teng, Z.; Hou, Y.; Wang, B. Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus). Aquaculture 2016, 452, 263–271. [Google Scholar] [CrossRef]
- Tattiyapong, P.; Kitiyodom, S.; Yata, T.; Jantharadej, K.; Adamek, M.; Surachetpong, W. Chitosan nanoparticle immersion vaccine offers protection against tilapia lake virus in laboratory and field studies. Fish Shellfish Immunol. 2022, 131, 972–979. [Google Scholar] [CrossRef]
- Gong, Y.-M.; Wei, X.-F.; Zhou, G.-Q.; Liu, M.-Z.; Li, P.-F.; Zhu, B. Mannose functionalized biomimetic nanovaccine enhances immune responses against tilapia lake virus. Aquaculture 2022, 560, 738535. [Google Scholar] [CrossRef]
- Ivan, N.; Marina, L.L.; Maria, E.S.M.; Sara, P.M.; Veronica, C.; Sergio, C.; Maria, M.O.V. Integrated transcriptomic and proteomic analysis of red blood cells from rainbow trout challenged with VHSV point towards novel immunomodulant targets. Vaccines 2019, 7, 63. [Google Scholar]
- Sara, P.M.; Ivan, N.; Veronica, C.; Sergio, C.; Maria, C.M.; Luis, P.; Maria, M.O.V. Potential role of rainbow trout erythrocytes as mediators in the immune response induced by a DNA vaccine in fish. Vaccines 2019, 7, 60. [Google Scholar]
- Sun, B.; Zhao, X.H.; Wu, Y.H.; Cao, P.; Movahedi, F.; Liu, J.; Gu, W.Y. Mannose-functionalized biodegradable nanoparticles efficiently deliver DNA vaccine and promote anti-tumor immunity. ACS Appl. Mater. Interfaces 2021, 13, 14015–14027. [Google Scholar]
- Phanse, Y.; Puttamreddy, S.; Loy, D.; Ramirez, J.V.; Ross, K.A.; Alvarez-Castro, I.; Mogler, M.; Broderick, S.; Rajan, K.; Narasimhan, B.; et al. Bartholomay, L.C. RNA Nanovaccine Protects against White Spot Syndrome Virus in Shrimp. Vaccines 2022, 10, 1428. [Google Scholar] [CrossRef]
- Palm, R.C., Jr.; Landolt, M.L.; Busch, R.A. Route of vaccine administration: Effects on the specific humoral response in rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 1998, 33, 157–166. [Google Scholar]
- Brudeseth, B.E.; Wiulsrød, R.; Fredriksen, B.N.; Lindmo, K.; Løkling, K.-E.; Bordevik, M.; Steine, N.; Klevan, A.; Gravningen, K. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 2013, 35, 1759–1768. [Google Scholar] [CrossRef]
- Mutoloki, S.; Munang’andu, H.M.; Evensen, Ø. Oral vaccination of fish–antigen preparations, uptake, and immune induction. Front. Immunol. 2015, 6, 519. [Google Scholar] [CrossRef] [Green Version]
- Embregts, C.W.E.; Reyes-Lopez, F.; Pall, A.C.; Stratmannd, A.; Tort, L.; Lorenzen, N.; Engell-Sorensen, K.; Wiegertjes, G.F.; Forlenza, M.; Sunyer, O.; et al. Pichia pastoris yeast as a vehicle for oral vaccination of larval and adult teleosts. Fish Shellfish. Immunol. 2019, 85, 52–60. [Google Scholar]
- Lin, J.H.; Yu, C.C.; Lin, C.C.; Yang, H.L. An oral delivery system for recombinant subunit vaccine to fish. Dev. Biol. 2005, 121, 175–180. [Google Scholar]
- Tamaru, Y.; Ohtsuka, M.; Kato, K.; Manabe, S.; Kuroda, K.; Sanada, M.; Ueda, M. Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: A first step for the development of an oral vaccine. Biotechnol Prog. 2006, 22, 949–953. [Google Scholar] [CrossRef]
- Vinitantharat, S.; Gravningen, K.; Greger, E. Fish vaccines. Adv. Vet. Med. 1999, 41, 539–550. [Google Scholar] [CrossRef]
- Evensen, Ø.; Leong, J.A.C. DNA vaccines against viral diseases of farmed fish. Fish Shellfish Immunol. 2013, 35, 1751–1758. [Google Scholar] [CrossRef]
- Valero, Y.; Mokrani, D.; Chaves-Pozo, E.; Arizcun, M.; Oumouna, M.; Meseguer, J.; Esteban, M.Á.; Cuesta, A. Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity. Dev. Comp. Immunol. 2018, 86, 171–179. [Google Scholar] [CrossRef]
- Sudha, P.M.; Low, S.; Kwang, J.; Gong, Z. Multiple tissue transformation in adult zebrafish by gene gun bombardment and muscular injection of naked DNA. Mar. Biotechnol. 2001, 3, 119–125. [Google Scholar]
- Corbeil, S.; Kurath, G.; LaPatra, S.E. Fish DNA vaccine against infectious hematopoietic necrosis virus: Efficacy of various routes of immunization. Fish Shellfish Immunol. 2000, 10, 711–723. [Google Scholar]
- Mohamed, L.A.; Soliman, W.S. Development and efficacy of fish vaccine used against some bacterial diseases in farmed Tilapia. Nat. Sci. 2013, 11, 120–128. [Google Scholar]
- Dadar, M.; Dhama, K.; Vakharia, V.N.; Hoseinifar, S.H.; Karthik, K.; Tiwari, R.; Khandia, R.; Munjal, A.; Salgado-Miranda, C.; Joshi, S.K. Advances in aquaculture vaccines against fish pathogens: Global status and current trends. Rev. Fish. Sci. Aquac. 2016, 25, 184–217. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Austin, B. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J. Fish. Dis. 2015, 38, 937–955. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Rocha, A.; Coll, J.M. DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicemia virus. Vaccine 2001, 19, 3067–3075. [Google Scholar]
- Romøren, K.; Thu, B.J.; Smistad, G.; Evensen, Ø. Immersion delivery of plasmid DNA. I. A study of the potentials of a liposomal delivery system in rainbow trout (Oncorhynchus mykiss) fry. J. Cont. Release 2002, 85, 203–213. [Google Scholar]
- Romøren, K.; Thu, B.J.; Evenson, Ø. Immersion delivery of plasmid DNA. II. A study of the potentials of a chitosan-based delivery system in rainbow trout (Oncorhynchus mykiss) fry. J. Cont. Release 2002, 85, 215–225. [Google Scholar] [CrossRef]
- Alberer, M.; Gnad-Vogt, U.; Hong, H.S.; Mehr, K.T.; Backert, L.; Finak, G.; Gottardo, R.; Bica, M.A.; Garofano, A.; Koch, S.D.; et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017, 390, 1511–1520. [Google Scholar] [CrossRef]
- Midtlyng, P.J. Vaccinated fish welfare: Protection versus side-effects. Dev. Biol. Stand. 1997, 90, 371–379. [Google Scholar]
- Berg, A.; Rødseth, O.M.; Hansen, T. Fish size at vaccination influence the development of side-effects in Atlantic salmon (Salmo Salar, L.). Aquaculture 2007, 265, 9–15. [Google Scholar] [CrossRef]
- Fish Health Forum. Why Fish Vaccines are Increasingly Coming in Smaller Doses. 2021. Available online: https://thefishsite.com/articles/why-fish-vaccines-are-increasingly-coming-in-smaller-doses (accessed on 30 September 2022).
- Munang’andu, H.M.; Evensen, Ø. Correlates of protective immunity for fish vaccines. Fish Shellfish Immunol. 2018, 85, 132–140. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Liu, G.Y.; Li, J.; Wang, G.X.; Zhu, B. Immune response and protective effect against spring viremia of carp virus induced by intramuscular vaccination with a SWCNTs-DNA vaccine encoding matrix protein. Fish Shellfish Immunol. 2018, 79, 256–264. [Google Scholar] [CrossRef]
- Erkinharju, T.; Dalmo, R.A.; Vågsnes, Ø.; Hordvik, I.; Seternes, T. Vaccination of Atlantic lumpfish (Cyclopterus lumpus L.) at a low temperature leads to a low antibody response against Aeromonas salmonicida. J. Fish. Dis. 2017, 41, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kheirollahpour, M.; Mehrabi, M.; Dounighi, N.M.; Mohammadi, M.; Masoudi, A. Nanoparticles and vaccine development. Pharm. Nanotechnol. 2020, 8, 6–21. [Google Scholar]
- Cai, D.J.; Song, Q.J.; Duan, C.; Wang, S.H.; Wang, J.F.; Zhu, Y.H. Enhanced immune responses to E2 protein and DNA formulated with ISA 61 VG administered as a DNA prime-protein boost regimen against bovine viral diarrhea virus. Vaccine 2018, 36, 5591–5599. [Google Scholar] [CrossRef]
- Sagar, A.K.; Hemanta, K.M.; Dinesh, C.P.; Narayan, R.; Saravanan, R.; Madhan, M.C.; Sohini, D. Evaluation of a fusion gene-based DNA prime-protein boost vaccination strategy against Newcastle disease virus. Trop. Anim. Health Prod. 2018, 51, 2529–2538. [Google Scholar]
- Liu, Z.X.; Wu, J.; Ma, Y.P.; Hao, L.; Liang, Z.L.; Ma, J.Y.; Ke, H.; Li, Y.G.; Gao, J.M. Protective immunity against CyHV-3 infection via different prime-boost vaccination regimens using CyHV-3 ORF131-based DNA/protein subunit vaccines in carp Cyprinus carpio var Jian. Fish Shellfish Immunol. 2020, 98, 342–353. [Google Scholar]
- Kardani, K.; Bolhassani, A.; Shahbazi, S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016, 34, 413–423. [Google Scholar] [CrossRef]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef]
- Maertens, B.; Spriestersbach, A.; von Groll, U.; Roth, U.; Kubicek, J.; Gerrits, M.; Graf, M.; Liss, M.; Daubert, D.; Wagner, R.; et al. Gene optimization mechanisms: A multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Sci. 2010, 19, 1312–1326. [Google Scholar] [CrossRef] [Green Version]
- Elena, C.; Ravasi, P.; Castelli, M.E.; Peirú, S.; Menzella, H.G. Expression of codon optimized genes in microbial systems: Current industrial applications and perspectives. Front. Microbiol. 2014, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Stachyra, A.; Redkiewicz, P.; Kosson, P.; Protasiuk, A.; Góra-Sochacka, A.; Kudla, G.; Sirko, A. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens. Virol. J. 2016, 13, 143. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.H.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, E6117–E6125. [Google Scholar]
- Donnelly, J.; Berry, K.; Ulmer, J.B. Technical and regulatory hurdles for DNA vaccines. Int. J. Parasitol. 2003, 33, 457–467. [Google Scholar]
- Jorgensen, J.B.; Johansen, L.H.; Steiro, K.; Johansen, A. CpG DNA induces protective antiviral immune responses in atlantic salmon (Salmo salar L.). J. Virol. 2003, 77, 11471–11479. [Google Scholar] [CrossRef] [Green Version]
- Sommerset, I.; Lorenzen, E.; Lorenzen, N.; Bleie, H.; Nerland, A.H. A DNA vaccine directed against a rainbow trout rhabdovirus induces early protection against a nodavirus challenge in turbot. Vaccine 2003, 21, 4661–4667. [Google Scholar]
- Sette, A.; Rappuoli, R. Reverse vaccinology: Developing vaccines in the era of genomics. Immunity 2010, 33, 530–541. [Google Scholar] [CrossRef] [Green Version]
Pathogen | Virus Family | Major Fish Host | Disease | Vaccine Type | Antigens/Targets |
---|---|---|---|---|---|
Infectious salmon anemia virus (ISAV) | Orthomyxoviridae | Atlantic salmon | Infectious salmon anemia | Inactivated | Inactivated ISAV |
Koi herpesvirus (KHV) | Alloherpesviridae | Carps | Koi herpesvirus disease | Attenuated | Attenuated KHV |
Salmonid alphavirus (SAV) | Togaviridae | Salmonids | Pancreatic disease of salmonids | Inactivated | Inactivated SAV |
DNA | Structural polyprotein C-E3-E2-6K-E2 | ||||
Infectious hematopoietic necrosis virus (IHNV) | Rhabdoviridae | Salmonids | Infectious hematopoietic necrosis | DNA | G-glycoprotein |
Spring viremia carp virus (SVCV) Rhabdovirus | Rhabdoviridae | Carps | Spring viremia of carp | Subunit | G-glycoprotein |
Inactivated | Inactivated SVCV | ||||
Infectious pancreatic necrosis virus (IPNV) Birnavirus | Birnaviridae | Salmonids, sea bass, sea bream, turbot, Pacific cod | Infectious pancreatic necrosis | Inactivated | Inactivated IPNV |
Subunit | VP2 and VP3 Capsid Proteins | ||||
Subunit | VP2 protein |
Vaccine Types | Inactivated Vaccines | Passage-Attenuated Live Vaccines | |||
---|---|---|---|---|---|
Vaccine Formulation | BPL-Inactivated [29] | Heat-Killed [30] | Formalin-Killed [30] | P17 [39] | P20 [39] |
Adjuvant | Montanide IMS 1312 VG | - | - | - | - |
Vaccine dose | 1.8 × 108 TCID50/mL | 1.8 × 106 TCID50/mL | 1.8 × 106 TCID50/mL | 1.3 × 102 TCID50/mL | 1.3 × 102 TCID50/mL |
Number of fish vaccinated | 50 fish/experimental group | 25 fish/experimental group | 25 fish/experimental group | 30 fish/experimental group | 30 fish/experimental group |
Immunization regimen | 2 doses–3 weeks apart | 2 doses–3 weeks apart | 2 doses–3 weeks apart | 1 dose | 1 dose |
Number of fish challenged | 30 fish/experimental group | 16 fish (×2 replicates) | 15 (×2 replicates) | 30 fish (challenge done by cohabitation with diseased fish) | 30 fish (challenge done by cohabitation with diseased fish) |
Vaccine efficacy (RPS %) | 85.7% | 71.3% | 79.6% | 58% | 56% |
Survival rate (%) | 86.7% | 81.3% | 86.3% | 62% | 64% |
Antibody response | Serum anti-TiLV IgM reported and neutralizing antibodies detected | Upregulation of IgM, IgT and IgD reported | Upregulation of IgM, IgT and IgD reported | Not reported | Not reported |
T-cell response | CD4 cell activation reported and significant increase in IL-1β, TNFα, IFN-γ, MHC-II and MHC-Ia | CD4 cell activation (in the kidney) CD8 cell activation (in the spleen) | CD4 cell activation (in the kidney) CD8 cell activation (in the kidney and spleen) | Not reported | Not reported |
Vaccine Types | Recombinant Protein Subunit Vaccines | DNA Vaccines | |||||
---|---|---|---|---|---|---|---|
Vaccine Formulation | rVP20 Protein [57] | rTIS 9 [58] | rTIS10 [58] | pV-optiVP20 [57] | pcDNA 3.1-ORF10 [75] | pcDNA-Tis 9 [58] | pcDNA-Tis 10 [58] |
Adjuvant | M402 Enhanced aluminium | Montanide ISA 763 adjuvant | Montanide ISA 763 adjuvant | - | - | - | - |
Vaccine dose | 400 µg | 200 µg | 200 µg | 50 µg | 45 µg | 5 µg | 5 µg |
Number of fish vaccinated | 100 fish/experimental group | 75 fish/experimental group | 75 fish/experimental group | 100 fish/experimental group | 30 fish/experimental group | 75 fish/experimental group | 75 fish/experimental group |
Immunization regimen | 2 doses–3 weeks apart | 1 dose | 1 dose | 2 doses–3 weeks apart | 2 doses–2 weeks apart | 1 dose | 1 dose |
Number of fish challenged | 40 fish/experimental group | 10 fish (×3 replicates–challenged 4 weeks post vaccination) | 10 fish (×3 replicates–challenged 4 weeks post vaccination) | 40 fish/experimental group | 30 fish/experimental group | 10 fish (×3 replicates–challenged 4 weeks post vaccination) | 10 fish (×3 replicates–challenged 4 weeks post vaccination) |
Vaccine efficacy (RPS %) | 51.3% | 27.8 ± 9.6% | 44.4 ± 25.4% | 48.7% | 85.7% | 38.9 ± 9.6% | 50.00% ± 16.7 |
Survival rate (%) | 52.5% | - | - | 50% | - | - | - |
Antibody response | Serum anti-TiLV IgM reported, and neutralizing antibodies detected | Relative increase in sera antibody response (assessed by dot blot assay) | Relative increase in sera antibody response (assessed by dot blot assay) | Increased serum anti-TiLV IgM antibodies and increased serum neutralizing antibodies | Significant upregulation of TLR2, MyD88, IL8, TNFα, INF-γ, and NF- κB | Relative increase in sera antibody response (assessed by dot blot) | Relative increase in sera antibody response (assessed by dot blot) |
T-cell response | CD4 cell activation reported and upregulation of IL-1β, TNFα, MHC-II and MHC-Ia | Not reported | Not reported | CD4 cell activation reported and upregulation of IL-1β, TNFα, MHC-II and MHC-Ia | Not reported | Not reported | Not reported |
Vaccine Type | Nanoparticle-Based Vaccines | |
---|---|---|
Vaccine Formulation | Chitosan-Formalin Inactivated TiLV-Complexed Nanovaccine (CN-KV) [107] | Biomimetic Mannose Modified Erythrocyte Membrane—DNA TiLV Segment 2 Nanovaccine (Cs-pS2@M-M) [108] |
Adjuvant | - | - |
Vaccine dose | 103 TCID50/mL | 10 μg |
Number of fish vaccinated | 60 fish/experimental group | 60 fish/experimental group |
Immunization regimen | 1 dose | 1 dose |
Number of fish challenged | 10 fish I.P. challenged and reared in cohabitation with vaccinated fish (in a 1:3 ratio) | 33 fish I.P. challenged |
Vaccine efficacy (RPS %) | 68.2% | 76.9% |
Survival rate (%) | - | - |
Antibody response | Increased TiLV-specific serum antibody response—only at 14 dpc (assessed by indirect enzyme-linked immunosorbent assay—ELISA) | High TiLV-specific serum antibody response (assessed by indirect enzyme-linked immunosorbent assay—ELISA). Significant upregulation of IgM |
T-cell response | Not reported | Significant upregulation of IFN-γ, TNF-α, IL-8, MHC-Iα and CC2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kembou-Ringert, J.E.; Steinhagen, D.; Readman, J.; Daly, J.M.; Adamek, M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines 2023, 11, 251. https://doi.org/10.3390/vaccines11020251
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines. 2023; 11(2):251. https://doi.org/10.3390/vaccines11020251
Chicago/Turabian StyleKembou-Ringert, Japhette E., Dieter Steinhagen, John Readman, Janet M. Daly, and Mikolaj Adamek. 2023. "Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances" Vaccines 11, no. 2: 251. https://doi.org/10.3390/vaccines11020251
APA StyleKembou-Ringert, J. E., Steinhagen, D., Readman, J., Daly, J. M., & Adamek, M. (2023). Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines, 11(2), 251. https://doi.org/10.3390/vaccines11020251