The Role of CD1 Gene Polymorphism in the Genetic Susceptibility to Spondyloarthropathies in the Moroccan Population and the Possible Cross-Link with Celiac Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of CD1A, and CD1E Gene Polymorphism
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ashrafi, M.; Ermann, J.; Weisman, M.H. Spondyloarthritis evolution: What is in your history? Curr. Opin. Rheumatol. 2020, 32, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Zochling, J.; Brandt, J.; Braun, J. The current concept of spondyloarthritis with special emphasis on undifferentiated spondy-loarthritis. Rheumatology 2005, 44, 1483–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolwijk, C.; Boonen, A.; van Tubergen, A.; Reveille, J.D. Epidemiology of Spondyloarthritis. Rheum. Dis. Clin. North Am. 2012, 38, 441–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudwaleit, M.; Van Der Heijde, D.; Landewé, R.; Listing, J.; Akkoç, N.; Brandt, J.; Braun, J.; Chou, C.T.; Estévez, E.C.; Dougados, M.; et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): Validation and final selection. Ann. Rheum. Dis. 2009, 68, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leirisalo-Repo, M. Enteropathic arthritis, Whipple’s disease, juvenile spondyloarthropathy, and uveitis. Curr. Opin. Rheumatol. 1994, 6, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.; Renna, S.; Perricone, G.; Cottone, M. Gastrointestinal lesions associated with spondyloarthropathies. World J. Gastroenterol. 2009, 15, 2443–2448. [Google Scholar] [CrossRef] [Green Version]
- Asquith, M.; Elewaut, D.; Lin, P.; Rosenbaum, J.T. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2014, 28, 687–702. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P.; Elewaut, D. Joint expedition: Linking gut inflammation to arthritis. Mucosal Immunol. 2008, 1, 364–371. [Google Scholar] [CrossRef] [Green Version]
- De Vos, M.; Mielants, H.; Cuvelier, C.; Elewaut, A.; Veys, E. Long-term evolution of gut inflammation in patients with spon-dyloarthropthy. Gastroenterology 1996, 110, 1696–1703. [Google Scholar] [CrossRef]
- Shirazy, K.; Hajjaj-Hassouni, N.; Hammond, C.; Jones, H.; Rezig, A.L.; Pedersen, R.; Vlahos, B. The Prevalence of Non-radiographic Axial Spondyloarthritis Among Patients with Inflammatory Back Pain from Northwest and South Africa: Data from a Noninterventional, Cross-Sectional Study. Rheumatol. Ther. 2018, 5, 437–445. [Google Scholar] [CrossRef]
- Stolwijk, C.; van Onna, M.; Boonen, A.; van Tubergen, A. Global prevalence of spondyloarthritis: A systematic review and meta-regression analysis. Arthritis Care Res. 2016, 68, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- El Zorkany, B.; Ali, Y.M.; Namas, R.; Bedaiwi, M.; Husain, W.; Ahmed, H.M.; Zoghbi, N.Z. The treatment journey for patients with axial spondyloarthritis in North Africa and the Middle East: From diagnosis to management. Int. J. Rheum. Dis. 2020, 23, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Ziade, N.R. HLA-B27 antigen in Middle Eastern and Arab countries: Systematic review of the strenght of association with axial spondyloarthritis and methodological gaps. BMC Musculoskelet Disord. 2017, 18, 280–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachid, B.; El Zorkany, B.; Youseif, E.; Tikly, M. Early diagnosis and treatment of ankylosing spondylitis in Africa and the Middle East. Clin. Rheumatol. 2012, 31, 1633–1639. [Google Scholar] [CrossRef] [PubMed]
- Brewerton, D.; Hart, F.; Nicholls, A.; Caffrey, M.; James, D.; Sturrock, R. Ankylosing spondylitis and HL-A 27. Lancet 1973, 301, 904–907. [Google Scholar] [CrossRef]
- Kavadichanda, C.G.; Geng, J.; Bulusu, S.N.; Negi, V.S.; Raghavan, M. Spondyloarthritis and the Human Leukocyte Antigen (HLA)-B*27 Connection. Front. Immunol. 2021, 12, 601518. [Google Scholar] [CrossRef]
- Díaz-Peña, R.; Castro-Santos, P.; Durán, J.; Santiago, C.; Lucia, A. The Genetics of Spondyloarthritis. J. Pers. Med. 2020, 10, 151. [Google Scholar] [CrossRef]
- Dellabona, P.; Consonni, M.; de Lalla, C.; Casorati, G. Group 1 CD1-restricted T cells and the pathophysiological implications of self-lipid antigen recognition. Tissue Antigens 2015, 86, 393–405. [Google Scholar] [CrossRef]
- Wu, L.; Van Kaer, L. Natural Killer T cells in health and disease. Front. Biosci. 2011, 3, 236–251. [Google Scholar]
- Dowds, C.M.; Blumberg, R.S.; Zeissig, S. Control of intestinal homeostasis through crosstalk between natural killer T cells and the intestinal microbiota. Clin. Immunol. 2015, 159, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Uncini, A.; Notturno, F.; Pace, M.; Caporale, C.M. Polymorphism of CD1 and SH2D2A genes in inflammatory neuropathies. J. Peripher. Nerv. Syst. 2011, 16, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Caporale, C.; Notturno, F.; Pace, M.; Aureli, A.; Di Tommaso, V.; De Luca, G.; Farina, D.; Giovannini, A.; Uncini, A. CD1A and CD1E Gene Polymorphisms are Associated with Susceptibility to Multiple Sclerosis. Int. J. Immunopathol. Pharmacol. 2011, 24, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Porcelli, S.; Segelke, B.W.; Sugita, M.; A Wilson, I.; Brenner, M.B. The CD1 family of lipid antigen-presenting molecules. Immunol. Today 1998, 19, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.H.; Calabi, F.; Milstein, C. Isolation of CD1 genes: A family of major histocompatibility complex-related differentiation antigens. Proc. Natl. Acad. Sci. USA 1986, 83, 9154–9158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirones, I.; Oteo, M.; Parra-Cuadrado, J.; Martínez-Naves, E. Identification of two novel human CD1E alleles. Tissue Antigens 2000, 56, 159–161. [Google Scholar] [CrossRef]
- Tamouza, R.; Sghiri, R.; Ramasawmy, R.; Neonato, M.; Mombo, L.; Poirier, J.C.; Schaeffer, V.; Fortier, C.; Labie, D.; Girot, R.; et al. Two novel CD1 E alleles identified in black African individuals. Tissue Antigens 2002, 59, 417–420. [Google Scholar] [CrossRef]
- Aureli, A.; Aboulaghras, S.; Oumhani, K.; Del Beato, T.; Sebastiani, P.; Colanardi, A.; El Aouad, R.; Ben El Barhdadi, I.; Pi-ancatelli, D. CD1 gene polymorphisms and susceptibility to celiacdisease: Association of CD1E*02/02 in Moroccans. Hum. Immunol. 2020, 81, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Imanishi, T.; Akaza, A.; Kimura, K.; Tokunaga, T.; Gojobori, T. Estimation of allele and haplotype frequencies for HLA and complement loci. In HLA 1991; Tsuji, K., Aizawa, M., Sesazuki, T., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 76–79. [Google Scholar]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Yamamoto-Furusho, J.K.; Sarmiento-Aguilar, A.; Toledo-Mauriño, J.J.; Bozada-Gutiérrez, K.E.; Bosques-Padilla, F.J.; Mar-tínez-Vázquez, M.A.; Marroquín-Jiménez, V.; García-Figueroa, R.; Jaramillo-Buendía, C.; Miranda-Cordero, R.M.; et al. EPIMEX Study Group. Incidence and prevalence of inflammatory bowel disease in Mexico from a na-tionwide cohort study in a period of 15 years (2000–2017). Medicine 2019, 98, e16291. [Google Scholar] [CrossRef]
- Kleinjans, M.; Schneider, C.V.; Bruns, T.; Strnad, P. Phenome of coeliac disease vs. inflammatory bowel disease. Sci. Rep. 2022, 12, 14572. [Google Scholar] [CrossRef]
- Sciurti, M.; Fornaroli, F.; Gaiani, F.; Bonaguri, C.; Leandro, G.; Di Mario, F.; De Angelis, G.L. Genetic susceptibilty and celiac disease: What role do HLA haplotypes play? Acta Biomed. 2018, 89, 17–21. [Google Scholar] [PubMed]
- Pascual, V.; Dieli-Crimi, R.; López-Palacios, N.; Bodas, A.; Medrano, L.M.; Núñez, C. Inflammatory bowel disease and celiac disease: Overlaps and differences. World J. Gastroenterol. 2014, 20, 4846–4856. [Google Scholar] [CrossRef] [PubMed]
- Caporale, C.M.; Papola, F.; Fioroni, M.A.; Aureli, A.; Giovannini, A.; Notturno, F.; Adorno, D.; Caporale, V.; Uncini, A. Sus-ceptibility to Guillain-Barrè syndrome is associated to polymorphisms of CD1 genes. J. Neuroimmunol. 2006, 177, 112–118. [Google Scholar] [CrossRef] [PubMed]
- De la Salle, H.; Mariotti, S.; Angenieux, C.; Gilleron, M.; Garcia-Alles, L.F.; Malm, D.; Berg, T.; Paoletti, S.; Maıtre, B.; Mourey, L.; et al. Assistance of microbial glycolipid antigen processing by CD1e. Science 2005, 310, 1321–1324. [Google Scholar] [CrossRef]
- Garcia-Alles, L.F.; Giacometti, G.; Versluis, C.; Maveyraud, L.; de Paepe, D.; Guiard, J.; Tranier, S.; Gilleron, M.; Prandi, J.; Hanau, D.; et al. Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes. Proc. Natl. Acad. Sci. USA 2011, 108, 13230–13235. [Google Scholar] [CrossRef] [Green Version]
- Pecora, F.; Persico, F.; Gismondi, P.; Fornaroli, F.; Iuliano, S.; de’Angelis, G.L.; Esposito, S. Gut Microbiota in Celiac Disease: Is There Any Role for Probiotics? Front. Immunol. 2020, 11, 957. [Google Scholar] [CrossRef]
- Brailey, P.M.; Lebrusant-Fernandez, M.; Barral, P. NKT cells and the regulation of intestinal immunity: A two-way street. FEBS J. 2020, 287, 1686–1699. [Google Scholar] [CrossRef]
- Qian, G.; Qin, X.; Zang, Y.Q.; Ge, B.; Guo, T.B.; Wan, B.; Fang, L.; Zhang, J.Z. High doses of α-galactosylceramide potentiate experimental autoimmune encephalomyelitis by directly enhancing Th17 response. Cell Res. 2010, 20, 480–491. [Google Scholar] [CrossRef]
- Ivanov, I.I.; de Llanos Frutos, R.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe 2008, 4, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.I.; Atarashi, K.; Manel, N.; Brodie, E.L.; Shima, T.; Karaoz, U.; Wei, D.; Goldfarb, K.C.; Santee, C.A.; Lynch, S.V.; et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 2009, 139, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.J.; Ivanov, I.I.; Darce, J.; Hattori, K.; Shima, T.; Umesaki, Y.; Littman, D.R.; Benoist, C.; Mathis, D. Gut-residing seg-mented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010, 32, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, M.; James, D. Human Lymphocyte Antigen association in ankylosing spondylitis. Nature 1973, 242, 121. [Google Scholar] [CrossRef] [PubMed]
- Singal, D.P.; A Blajchman, M. Histocompatibility (HL-A) Antigens, Lymphocytotoxic Antibodies and Tissue Antibodies in Patients with Diabetes Mellitus. Diabetes 1973, 22, 429–432. [Google Scholar] [CrossRef]
- Bennett, S.T.; Wilson, A.J.; Cucca, F.; Nerup, J.; Pociot, F.; McKinney, P.A.; Barnett, A.H.; Bain, S.C.; Todd, J.A. IDDM2-VNTR-encoded Susceptibility to Type 1 Diabetes: Dominant Protection and Parental Transmission of Alleles of the Insulin Gene-linked Minisatellite Locus. J. Autoimmun. 1996, 9, 415–421. [Google Scholar] [CrossRef]
- Gough, S.C.L.; Walker, L.S.K.; Sansom, D. CTLA4 gene polymorphism and autoimmunity. Immunol. Rev. 2005, 204, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Nancy, Z.; Yan, L.; Hui, S.; Paul, B.; Liye, C. From the Genetics of Ankylosing Spondylitis to New Biology and Drug Target Discovery. Front. Immunol. 2021, 12, 624632. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.-E.; Carmona, F.D.; A Broen, J.C.; Simeón, C.P.; Vonk, M.C.; Carreira, P.; Ríos-Fernández, R.; Espinosa, G.; Vicente-Rabaneda, E.; Tolosa, C.; et al. The autoimmune disease-associated IL2RA locus is involved in the clinical manifestations of systemic sclerosis. Genes Immun. 2011, 13, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlings, D.J.; Dai, X.; Buckner, J.H. The Role of PTPN22 Risk Variant in the Development of Autoimmunity: Finding Common Ground between Mouse and Human. J. Immunol. 2015, 194, 2977–2984. [Google Scholar] [CrossRef] [Green Version]
- Chia, R.; Saez-Atienzar, S.; Murphy, N.; Chiò, A.; Blauwendraat, C.; International Myasthenia Gravis Genomics Consortium; Roda, R.H.; Tienari, P.J.; Kaminski, H.J.; Ricciardi, R.; et al. Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: A genome-wide association study. Proc. Natl. Acad. Sci. USA 2022, 119, e2108672119. [Google Scholar] [CrossRef]
All SpA Patients | Controls | p Value | OR | |||
---|---|---|---|---|---|---|
CD1A genotypes | n = 84 * | % | n = 51 | % | ||
CD1A*01/01 | 0 | 0.0 | 0 | 0.0 | ns | - |
CD1A*01/02 | 8 | 9.5 | 3 | 6.0 | ns | - |
CD1A*02/02 | 76 | 90.5 | 48 | 94.0 | ns | - |
Alleles | 2n = 168 | % | 2n = 102 | % | ||
CD1A*01 | 8 | 4.8 | 3 | 2.9 | ns | - |
CD1A*02 | 160 | 95.2 | 99 | 97.1 | ns | - |
CD1EGenotypes | n = 86 | % | n = 51 | % | ||
CD1E*01/01 | 36 | 41.9 | 12 | 23.5 | p = 0.046 | 2.34 a |
CD1E*01/02 | 33 | 38.3 | 28 | 54.9 | ns | - |
CD1E*02/02 | 16 | 18.6 | 9 | 17.6 | ns | - |
CD1E*01/05 CD1E*02/05 | 1 0 | 1.2 0.0 | 1 1 | 2.0 2.0 | ns ns | - |
Alleles | 2n = 172 | % | 2n = 102 | % | ||
CD1E*01 | 106 | 61.6 | 53 | 52.0 | ns | - |
CD1E*02 | 65 | 37.8 | 47 | 46.0 | ns | - |
CD1E*05 | 1 | 0.6 | 2 | 2.0 | ns | - |
SpA1 Patients | Controls | p Value | OR | |||
---|---|---|---|---|---|---|
CD1Agenotypes | n = 62 * | % | n = 51 | % | ||
CD1A*01/01 | 0 | 0.0 | 0 | 0.0 | ns | - |
CD1A*01/02 | 6 | 9.7 | 3 | 5.9 | ns | - |
CD1A*02/02 | 56 | 90.3 | 48 | 94.1 | ns | - |
Alleles | 2n = 124 | % | 2n = 102 | % | ||
CD1A*01 | 6 | 4.8 | 3 | 2.9 | ns | - |
CD1A*02 | 118 | 95.2 | 99 | 97.1 | ns | - |
CD1Egenotypes | n = 64 | % | n = 51 | % | ||
CD1E*01/01 | 32 | 50.0 | 12 | 23.5 | p = 0.0068 | 3.25 a |
CD1E*01/02 | 18 | 28.1 | 28 | 54.9 | p = 0.0065 | 0.32 b |
CD1E*02/02 | 13 | 20.3 | 9 | 17.6 | ns | - |
CD1E*01/05 CD1E*02/05 | 1 0 | 1.6 0.0 | 1 1 | 2.0 2.0 | ns ns | - - |
Alleles | 2n = 128 | % | 2n = 102 | % | ||
CD1E*01 | 83 | 64.8 | 53 | 52.0 | ns | - |
CD1E*02 | 44 | 34.4 | 47 | 46.0 | ns | - |
CD1E*05 | 1 | 0.8 | 2 | 2.0 | ns | - |
SpA Total (2n = 168) | SpA1 a (2n = 124) | SpA2 b (2n = 20) | SpA3 c (2n = 24) | HC (2n = 102) | |
---|---|---|---|---|---|
CD1A-CD1Ehaplotypes | hf d | hf | hf | hf | hf |
CD1A*02-CD1E*01 | 0.62 | 0.65 § | 0.65 | 0.41 | 0.52 § |
CD1A*02-CD1E*02 | 0.33 | 0.30 ° | 0.25 | 0.58 | 0.43 ° |
CD1A*01-CD1E*02 | 0.04 | 0.04 | 0.10 | - | 0.03 |
CD1A*01-CD1E*05 | 0.01 | 0.01 | - | - | - |
CD1A*02-CD1E*05 | - | - | - | - | 0.02 |
CD1A*01-CD1E*01 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canossi, A.; Oumhani, K.; Del Beato, T.; Sebastiani, P.; Colanardi, A.; Aureli, A. The Role of CD1 Gene Polymorphism in the Genetic Susceptibility to Spondyloarthropathies in the Moroccan Population and the Possible Cross-Link with Celiac Disease. Vaccines 2023, 11, 237. https://doi.org/10.3390/vaccines11020237
Canossi A, Oumhani K, Del Beato T, Sebastiani P, Colanardi A, Aureli A. The Role of CD1 Gene Polymorphism in the Genetic Susceptibility to Spondyloarthropathies in the Moroccan Population and the Possible Cross-Link with Celiac Disease. Vaccines. 2023; 11(2):237. https://doi.org/10.3390/vaccines11020237
Chicago/Turabian StyleCanossi, Angelica, Khadija Oumhani, Tiziana Del Beato, Pierluigi Sebastiani, Alessia Colanardi, and Anna Aureli. 2023. "The Role of CD1 Gene Polymorphism in the Genetic Susceptibility to Spondyloarthropathies in the Moroccan Population and the Possible Cross-Link with Celiac Disease" Vaccines 11, no. 2: 237. https://doi.org/10.3390/vaccines11020237
APA StyleCanossi, A., Oumhani, K., Del Beato, T., Sebastiani, P., Colanardi, A., & Aureli, A. (2023). The Role of CD1 Gene Polymorphism in the Genetic Susceptibility to Spondyloarthropathies in the Moroccan Population and the Possible Cross-Link with Celiac Disease. Vaccines, 11(2), 237. https://doi.org/10.3390/vaccines11020237