Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Schedule of the Study
- I.
- Anti-RBD and NAb IgG concentrations with the use of chemiluminescence immunoassay (CLIA). Analysis was performed in all blood samples (BS1–BS7).
- II.
- CD4, CD8, and B lymphocytes and their subpopulations, monocytes, NK, and NKT cells, using flow cytometry, were counted at BS1, BS3, and BS4.
- III.
- SARS-CoV-2-specific T-cell responses with enzyme-linked immunosorbent spot (ELISpot) were estimated at BS4 and BS5, only for those patients who had failed to develop protective NAb titers by BS3.
2.3. Laboratory Methods
2.3.1. Flow Cytometry
- I.
- Β-lymphocytes (CD45+CD19+);
- II.
- Naïve Β-lymphocytes (CD45+CD19+CD27-);
- III.
- Marginal B-lymphocytes (CD45+CD19+IgD+CD27-);
- IV.
- Transitional B-lymphocytes (CD45+CD19+CD24+CD38high);
- V.
- Memory Β-lymphocytes (CD45+CD19+CD27+);
- VI.
- Plasmablasts (CD45+CD19+CD27+CD38high, divided further into non-switched plasmablasts (IgD+) and switched plasmablasts (IgD-).
- I.
- Helper T lymphocytes (CD4+);
- II.
- Activated CD4 (CD4+CD38+/HLA-DR+);
- III.
- Cytotoxic T lymphocytes (CD8+);
- IV.
- Activated CD8 (CD8+CD38+/HLA-DR+);
- V.
- CD3+PD1+natural killer cells (CD45+CD3-CD56+);
- VI.
- Natural killer-like T-cells (NKT cells) (CD45+CD3+CD56+) and activated NKT (CD45+CD3+CD56+CD38+ HLA-DR+);
- VII.
- Monocytes (CD45+CD14+) and activated monocytes (CD45+CD14+CD38+ HLA-DR+).
2.3.2. Assessment of Anti-RBD and NAb Levels
2.3.3. Assessment of SARS-CoV-2-Specific T-Cell Levels
2.4. Statistical Analysis
3. Results
3.1. Humoral Immunity Response to Vaccination
3.1.1. Development of Anti-SARS-CoV2 IgG Antibodies
3.1.2. Parameters Associated with Antibody Response to Vaccination
3.2. Cellular Immunity Response to Vaccination
3.2.1. Cell Subpopulation Changes during Follow up
3.2.2. Correlation between T- and B-Cell Immunity with Humoral Immunity
3.2.3. SARS-CoV-2-Specific T-Cell Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meijers, R.W.; Litjens, N.H.; de Wit, E.A.; Langerak, A.W.; Baan, C.C.; Betjes, M.G. Uremia-associated immunological aging is stably imprinted in the T-cell system and not reversed by kidney transplantation. Transpl. Int. 2014, 27, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Brennan, D. Infectious complications in Kidney Transplant Recipients: Review of the Literature. Saudi J. Kidney Dis. Transplant. 2005, 16, 453–497. [Google Scholar]
- Nambiar, P.; Silibovsky, R.; Belden, K.A. Infection in kidney transplantation. Contemp. Kidney Transplant. 2018, 307–327. [Google Scholar] [CrossRef]
- Arora, S.; Kipp, G.; Bhanot, N.; Sureshkumar, K.K. Vaccinations in kidney transplant recipients: Clearing the Muddy Waters. World J. Transplant. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Akalin, E.; Azzi, Y.; Bartash, R.; Seethamraju, H.; Parides, M.; Hemmige, V.; Ross, M.; Forest, S.; Goldstein, Y.D.; Ajaimy, M.; et al. COVID-19 and Kidney Transplantation. N. Engl. J. Med. 2020, 382, 2475–2477. [Google Scholar] [CrossRef]
- Elias, M.; Pievani, D.; Randoux, C.; Louis, K.; Denis, B.; Delion, A.; Le Goff, O.; Antoine, C.; Greze, C.; Pillebout, E.; et al. COVID-19 infection in kidney transplant recipients: Disease incidence and clinical outcomes. J. Am. Soc. Nephrol. 2020, 31, 2413–2423. [Google Scholar] [CrossRef]
- Mahalingasivam, V.; Craik, A.; Tomlinson, L.A.; Ge, L.; Hou, L.; Wang, Q.; Yang, K.; Fogarty, D.G.; Keenan, C. A systematic review of COVID-19 and Kidney Transplantation. Kidney Int. Rep. 2021, 6, 24–45. [Google Scholar] [CrossRef]
- Kremer, D.; Pieters, T.T.; Verhaar, M.C.; Berger, S.P.; Bakker, S.J.; Zuilen, A.D.; Joles, J.A.; Vernooij, R.W.; van Balkom, B.W. A systematic review and meta-analysis of COVID-19 in kidney transplant recipients: Lessons to be learned. Am. J. Transplant. 2021, 21, 3936–3945. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.M.; Tam, A.R.; Chan, K.W.; Ma, M.K.; Hung, I.F.; Yap, D.Y.; Chan, T.M. Immunogenicity and safety of COVID-19 vaccines in patients receiving renal replacement therapy: A systematic review and meta-analysis. Front. Med. 2022, 9, 827859. [Google Scholar] [CrossRef]
- Bertrand, D.; Hamzaoui, M.; Lemée, V.; Lamulle, J.; Hanoy, M.; Laurent, C.; Lebourg, L.; Etienne, I.; Lemoine, M.; Le Roy, F.; et al. Antibody and T cell response to SARS-CoV-2 messenger RNA bnt162b2 vaccine in kidney transplant recipients and hemodialysis patients. J. Am. Soc. Nephrol. 2021, 32, 2147–2152. [Google Scholar] [CrossRef]
- Sattler, A.; Schrezenmeier, E.; Weber, U.A.; Potekhin, A.; Bachmann, F.; Straub-Hohenbleicher, H.; Budde, K.; Storz, E.; Proß, V.; Bergmann, Y.; et al. Impaired humoral and cellular immunity after SARS-CoV-2 bnt162b2 (tozinameran) prime-boost vaccination in kidney transplant recipients. J. Clin. Investig. 2021, 131, e150175. [Google Scholar] [CrossRef]
- Caillard, S.; Thaunat, O. COVID-19 vaccination in kidney transplant recipients. Nat. Rev. Nephrol. 2021, 17, 785–787. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Alhatlani, B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J. 2021, 19, 2508–2517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shen, Q.; Chang, H. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects. Front. Immunol. 2022, 13, 843928. [Google Scholar] [CrossRef]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Therapy 2020, 28, 117–129. [Google Scholar] [CrossRef]
- Blakney, A. The next generation of RNA vaccines: Self-amplifying RNA. Biochemist 2021, 43, 14–17. [Google Scholar] [CrossRef]
- Lamb, Y.N. BNT162B2 mrna COVID-19 vaccine: First approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef]
- Teo, S.P. Review of COVID-19 mrna vaccines: BNT162b2 and mRNA-1273. J. Pharm. Pract. 2022, 35, 947–951. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Papadopoulou, A.; Touloumenidou, T.; Stavridou, F.; Koravou, E.-E.; Giannaki, M.; Papalexandri, A.; Karavalakis, G.; Batsis, I.; Sotiropoulos, D.; et al. Neutralizing antibody and T cell responses to SARS-CoV-2 vaccination in hematopoietic cell transplant recipients. Bone Marrow Transpl. 2022, 57, 1183–1186. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Stavridou, F.; Giannaki, M.; Paschoudi, K.; Chatzopoulou, F.; Gavriilaki, E.; Georgolopoulos, G.; Anagnostopoulos, A.; Yannaki, E. Robust SARS-CoV-2-specific T-cell immune memory persists long-term in immunocompetent individuals post BNT162B2 double shot. Heliyon 2022, 8, e09863. [Google Scholar] [CrossRef]
- Papayanni, P.-G.; Chasiotis, D.; Koukoulias, K.; Georgakopoulou, A.; Iatrou, A.; Gavriilaki, E.; Giannaki, C.; Bitzani, M.; Geka, E.; Tasioudis, P.; et al. Vaccinated and convalescent donor-derived severe acute respiratory syndrome coronavirus 2–specific T cells as adoptive immunotherapy for high-risk coronavirus disease 2019 patients. Clin. Infect. Dis. 2021, 73, 2073–2082. [Google Scholar] [CrossRef]
- Naderi Sohi, A.; Kiani, J.; Arefian, E.; Khosrojerdi, A.; Fekrirad, Z.; Ghaemi, S.; Zim, M.K.; Jalili, A.; Bostanshirin, N.; Soleimani, M. Development of an mRNA-LNP Vaccine against SARS-CoV-2: Evaluation of Immune Response in Mouse and Rhesus Macaque. Vaccines 2021, 9, 1007. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://eody.gov.gr/wp-content/uploads/2021/02/odigies-emvoliasmou-sars-cov-2-202102.pdf (accessed on 28 March 2021).
- Available online: https://emvolio.gov.gr/sites/default/files/attachments/odigies_gia_2i_anamnistiki_dosi_pdf (accessed on 28 March 2021).
- Phadke, V.K.; Scanlon, N.; Jordan, S.C.; Rouphael, N.G. Immune responses to SARS-CoV-2 in solid organ transplant recipients. Curr. Transplant. Rep. 2021, 8, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Marinaki, S.; Degiannis, D.; Roussos, S.; Xagas, E.; Tsoutsoura, P.; Adamopoulos, S.; Sypsa, V.; Chaidaroglou, A.; Pavlopoulou, I.D.; Hatzakis, A.; et al. Head-to-head comparison of response rates to the two mrna SARS-CοV-2 vaccines in a large cohort of solid organ transplant (SOT) recipients. Vaccines 2022, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Vaiciuniene, R.; Sitkauskiene, B.; Bumblyte, I.A.; Dalinkeviciene, E.; Ziginskiene, E.; Bagdonas, D.; Augliene, R.; Petruliene, K.; Bagdziuniene, I.; Skarupskiene, I.; et al. Immune response after SARS-CοV-2 vaccination in kidney transplant patients. Medicina 2021, 57, 1327. [Google Scholar] [CrossRef]
- Fujieda, K.; Tanaka, A.; Kikuchi, R.; Takai, N.; Saito, S.; Yasuda, Y.; Fujita, T.; Kato, M.; Furuhashi, K. Antibody response to double SARS-CoV-2 mrna vaccination in Japanese kidney transplant recipients. Sci. Rep. 2022, 12, 6850. [Google Scholar] [CrossRef]
- Charmetant, X.; Espi, M.; Benotmane, I.; Barateau, V.; Heibel, F.; Buron, F.; Gautier-Vargas, G.; Delafosse, M.; Perrin, P.; Koenig, A.; et al. Infection or a third dose of mrna vaccine elicits neutralizing antibody responses against SARS-CoV-2 in kidney transplant recipients. Sci. Transl. Med. 2022, 14, eabl6141. [Google Scholar] [CrossRef]
- McEvoy, C.M.; Hu, Q.; Abe, K.T.; Yau, K.; Oliver, M.J.; Levin, A.; Gingras, A.-C.; Hladunewich, M.A.; Yuen, D.A. Humoral responses in the Omicron era following three-dose SARS-CoV-2 vaccine series in kidney transplant recipients. Transpl. Direct. 2022, 9, e1401. [Google Scholar] [CrossRef]
- Chukwu, C.A.; Mahmood, K.; Elmakki, S.; Gorton, J.; Kalra, P.A.; Poulikakos, D.; Middleton, R. Evaluating the antibody response to SARS-CoV-2 vaccination amongst kidney transplant recipients at a single Nephrology Centre. PLoS ONE 2022, 17, e0265130. [Google Scholar] [CrossRef]
- Hod, T.; Ben-David, A.; Olmer, L.; Scott, N.; Ghinea, R.; Mor, E.; Levy, I.; Indenbaum, V.; Lustig, Y.; Grossman, E.; et al. BNT162B2 third booster dose significantly increases the humoral response assessed by both RBD IGG and neutralizing antibodies in renal transplant recipients. Transpl. Int. 2022, 35, 10239. [Google Scholar] [CrossRef]
- de Boer, S.E.; Berger, S.P.; van Leer–Buter, C.C.; Kroesen, B.-J.; van Baarle, D.; Sanders, J.-S.F. Enhanced humoral immune response after COVID-19 vaccination in elderly kidney transplant recipients on everolimus versus mycophenolate mofetil–containing immunosuppressive regimens. Transplantation 2022, 106, 1615–1621. [Google Scholar] [CrossRef]
- Manothummetha, K.; Chuleerarux, N.; Sanguankeo, A.; Kates, O.S.; Hirankarn, N.; Thongkam, A.; Dioverti-Prono, M.V.; Torvorapanit, P.; Langsiri, N.; Worasilchai, N.; et al. Immunogenicity and risk factors associated with poor humoral immune response of SARS-CoV-2 vaccines in recipients of solid organ transplant. JAMA Netw. Open 2022, 5, e226822. [Google Scholar] [CrossRef] [PubMed]
- Devresse, A.; Saad Albichr, I.; Georgery, H.; Yombi, J.C.; De Greef, J.; Belkhir, L.; Mzougui, S.; Scohy, A.; Darius, T.; Buemi, A.; et al. T-cell and antibody response after 2 doses of the BNT162b2 vaccine in a Belgian cohort of kidney transplant recipients. Transplantation 2021, 105, e142–e143. [Google Scholar] [CrossRef]
- Rincon-Arevalo, H.; Choi, M.; Stefanski, A.-L.; Halleck, F.; Weber, U.; Szelinski, F.; Jahrsdörfer, B.; Schrezenmeier, H.; Ludwig, C.; Sattler, A.; et al. Impaired humoral immunity to SARS-CoV-2 bnt162b2 vaccine in kidney transplant recipients and dialysis patients. Sci. Immunol. 2021, 6, eabj1031. [Google Scholar] [CrossRef]
- Duni, A.; Markopoulos, G.S.; Mallioras, I.; Pappas, H.; Pappas, E.; Koutlas, V.; Tzalavra, E.; Baxevanos, G.; Priska, S.; Gartzonika, K.; et al. The humoral immune response to BNT162B2 vaccine is associated with circulating CD19+ B lymphocytes and the naïve CD45RA to memory CD45RO CD4+ T helper cells ratio in hemodialysis patients and kidney transplant recipients. Front. Immunol. 2021, 12, 760249. [Google Scholar] [CrossRef] [PubMed]
- Schrezenmeier, E.; Rincon-Arevalo, H.; Stefanski, A.-L.; Potekhin, A.; Staub-Hohenbleicher, H.; Choi, M.; Bachmann, F.; Pro, V.; Hammett, C.; Schrezenmeier, H.; et al. B and T cell responses after a third dose of SARS-CoV-2 vaccine in kidney transplant recipients. J. Am. Soc. Nephrol. 2021, 32, 3027–3033. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mrna vaccination. Sci. Immunol. 2021, 6, eabi6950. [Google Scholar] [CrossRef]
- Kardava, L.; Rachmaninoff, N.; Lau, W.W.; Buckner, C.M.; Trihemasava, K.; Blazkova, J.; de Assis, F.L.; Wang, W.; Zhang, X.; Wang, Y.; et al. Early human B cell signatures of the primary antibody response to mRNA vaccination. Proc. Natl. Acad. Sci. USA 2022, 119, e2204607119. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Karavalakis, G.; Papadopoulou, E.; Xochelli, A.; Bousiou, Z.; Vogiatzoglou, A.; Papayanni, P.-G.; Georgakopoulou, A.; Giannaki, M.; Stavridou, F.; et al. SARS-CoV-2-specific T cell therapy for severe COVID-19: A randomized phase 1/2 trial. Nat. Med. 2023, 29, 2019–2029. [Google Scholar] [CrossRef]
A | BS2 | BS3 | BS4 | BS5 | BS6 | BS7 | p |
Anti-RBD Abs (AU/mL) | 0.37 (0.25) | 0.84 (8.04) | 2.26 (8.21) | 64.13 (134.53) | 40.72 (73.31) | 462.91 (857.38) | <0.001 |
NAbs (AU/mL) | 0.14 (0.71) | 0.11 (0.31) | 0.07 (0.19) | 1.711 (3.79) | 1.17 (2.99) | 8.56 (15.01) | NS |
BS2–BS3 | BS3–BS4 | BS4–BS5 | BS5–BS6 | BS6–BS7 | |||
Anti-RBD Abs | p | <0.001 | NS | <0.001 | <0.001 | 0.001 | |
<0.001 * | NS * | 0.00381 * | 0.00573 * | 0.015 * | |||
NAbs | 0.043 | 0.017 | <0.001 | 0.001 | 0.002 | ||
NS * | NS * | <0.001 * | 0.015 * | 0.03 * | |||
Β | BS2 | BS3 | BS4 | BS5 | BS6 | BS7 | p |
Anti-RBD Abs | 4.37 (41.0) | 9.22 (40.1) | 3.37 (9.4) | 72.43 (120.1) | 60.32 (77.1) | 465.50 (841.1) | NS |
NAbs | 2.69 (0.43) | 1.88 (3.30) | 1.97 (1.48) | 8.87 (15.87) | 6.01 (10.23) | 31.13 (47.32) | NS |
BS2–BS3 | BS3–BS4 | BS4–BS5 | BS5–BS6 | BS6–BS7 | |||
Anti-RBD Abs | 0.046 | 0.039 | <0.001 | 0.001 | 0.002 | ||
NS * | NS * | <0.001 * | 0.015 * | 0.03 * | |||
NAbs | NS | NS | NS | 0.001 | 0.003 | ||
NS * | NS * | NS * | 0.01 * | 0.03 * |
BS1 | BS3 | BS4 | p * | p (BS3 vs. BS1) † | p (BS4 vs. BS3) † | |
---|---|---|---|---|---|---|
WBC | 7650 (2600) | 7600 (1850) | 8000 (1750) | NS | NS | NS |
Lymphocytes | 1597 (1169) | 1881 (864) | 1778 (1004) | 0.026 | NS | 0.03 |
B-cells | 70.5 (106) | 75 (88) | 81 (89) | NS | NS | NS |
Naïve B-cells | 48.5 (77) | 50 (56) | 48.5 (78) | 0.019 | NS | NS |
Transitional B-cells | 3 (11) | 1 (2) | 4 (6) | 0.002 | 0.003 | NS |
Marginal B-cells | 10.7 (11.4) | 10.6 (9.7) | 13.8 (11.8) | NS | NS | NS |
Memory B-cell | 15.5 (33) | 19 (25) | 24 (28) | 0.028 | NS | 0.03 |
Plasmablasts | 0.95 (4) | 0 (0.4) | 0.1 (0.8) | NS | <0.001 | NS |
CD3+ T-cells | 1305 (1022) | 1546 (963) | 1444 (854) | 0.004 | NS | NS |
CD3+CD4+ T-cells | 832 (584) | 948 (646) | 931 (522) | 0.016 | NS | 0.045 |
Activated CD4+ T-cells | 5 (5) | 8 (7) | 12 (12) | 0.005 | NS | 0.05 |
CD3+CD8+ T-cells | 494.5 (553) | 560 (309) | 486.5 (359) | 0.005 | NS | NS |
Activated CD8+ T-cells | 6 (10) | 17.5 (26) | 15.5 (17) | 0.001 | <0.001 | NS |
CD3+PD1+ T-cells | 79 (94) | 52 (51) | 33.5 (30) | <0.001 | 0.03 | NS |
CD3-CD56+ (NK) cells | 20.9 (59.55) | 170.3 (137.4) | 124.55 (132.73) | <0.001 | <0.001 | NS |
CD3+CD56+ (NKT) cells | 154.5 (163) | 137 (155) | 116 (132) | 0.011 | NS | NS |
Activated NKT cells | 1 (3) | 2 (4) | 0 (3) | 0.034 | 0.021 | NS |
Monocytes | 411 (360) | 506 (228) | 440.5 (209) | NS | NS | NS |
Activated monocytes | 211 (254) | 358 (227) | 324.5 (154) | NS | NS | NS |
Anti-RBD Ab (+) Patients | NAb (+) Patients | |||||
---|---|---|---|---|---|---|
(n = 27) | (n = 18) | |||||
BS1 | BS3 | p | BS1 | BS3 | p | |
WBC | 7800 (2400) | 7400 (2650) | NS | 7200 (3525) | 6700 (3500) | NS |
Lymphocytes | 1838 (1627) | 2215 (947) | NS | 1460.5 (1050) | 2385.5 (1178) | 0.005 |
B-cells | 99 (118) | 101 (74) | 0.028 | 107.5 (156) | 97 (50) | NS |
Naïve B-cells | 52 (93) | 63 (64) | 0.045 | 68 (127) | 58.5 (38) | NS |
Transitional B-cells | 6 (20) | 1 (1) | <0.001 | 9 (52) | 1 (0) | 0.027 |
Marginal B-cells | 7.2 (11.2) | 10.6 (9.9) | NS | 6.9 (7.4) | 13.55 (10.3) | 0.032 |
Memory B-cells | 26 (46) | 24 (27) | NS | 23 (48) | 32 (32) | NS |
Plasmablasts | 2 (4.3) | 0 (0.2) | <0.001 | 2 (5.9) | 0 (0.1) | 0.028 |
CD3+ T-cells | 1545 (1224) | 1856 (1064) | NS | 1205.5 (893) | 2152 (1114) | 0.004 |
CD3+CD4+ T-cells | 1049 (707) | 1161 (711) | NS | 810 (700) | 1263.5 (1329) | 0.009 |
Activated CD4+ T-cells | 6 (6) | 9 (8) | NS | 3.5 (5) | 10 (16) | 0.024 |
CD3+CD8+ T-cells | 663 (552) | 644 (380) | NS | 444.5 (512) | 593.5 (345) | NS |
Activated CD8+ T-cells | 8 (13) | 19 (29) | 0.004 | 2.5 (10) | 15(14) | 0.034 |
CD3+PD1+ T-cells | 121 (126) | 65 (68) | 0.006 | 89.5 (112) | 45.5 (113) | NS |
CD3-CD56+ (NK) cells | 18.92 (33.54) | 220.21 (177.4) | 0.001 | 14.1 (147.89) | 220.21 (285.23) | 0.02 |
CD3+CD56+ (NKT) cells | 149 (178) | 105 (195) | 0.032 | 126.5 (174) | 46.5 (263) | NS |
Activated NKT cells | 1 (3) | 2 (4) | 0.034 | 1 (3) | 0.5 (5) | NS |
Monocytes | 411 (360) | 506 (228) | NS | NS | NS | NS |
Activated monocytes | 230 (2460) | 348 (169) | NS | 226 (433) | 264 (194) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fylaktou, A.; Stai, S.; Kasimatis, E.; Xochelli, A.; Nikolaidou, V.; Papadopoulou, A.; Myserlis, G.; Lioulios, G.; Asouchidou, D.; Giannaki, M.; et al. Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2. Vaccines 2023, 11, 1670. https://doi.org/10.3390/vaccines11111670
Fylaktou A, Stai S, Kasimatis E, Xochelli A, Nikolaidou V, Papadopoulou A, Myserlis G, Lioulios G, Asouchidou D, Giannaki M, et al. Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2. Vaccines. 2023; 11(11):1670. https://doi.org/10.3390/vaccines11111670
Chicago/Turabian StyleFylaktou, Asimina, Stamatia Stai, Efstratios Kasimatis, Aliki Xochelli, Vasiliki Nikolaidou, Anastasia Papadopoulou, Grigorios Myserlis, Georgios Lioulios, Despoina Asouchidou, Maria Giannaki, and et al. 2023. "Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2" Vaccines 11, no. 11: 1670. https://doi.org/10.3390/vaccines11111670
APA StyleFylaktou, A., Stai, S., Kasimatis, E., Xochelli, A., Nikolaidou, V., Papadopoulou, A., Myserlis, G., Lioulios, G., Asouchidou, D., Giannaki, M., Yannaki, E., Tsoulfas, G., Papagianni, A., & Stangou, M. (2023). Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2. Vaccines, 11(11), 1670. https://doi.org/10.3390/vaccines11111670