Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Literature Management
2.2. Selection Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Descriptive Characteristics
3.3. Asthma and COVID-19 Mortality in Asia
3.4. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. COVID-19 Weekly Epidemiological Update. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---26-october-2022 (accessed on 26 October 2022).
- Sabu, J.M.; Zahid, I.; Jacob, N.; Alele, F.O.; Malau-Aduli, B.S. Effectiveness of the BNT162b2 (Pfizer-BioNTech) Vaccine in Children and Adolescents: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1880. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Purja, S.; Shin, H.; Kim, M.S.; Park, S.; Kronbichler, A.; Smith, L.; Eisenhut, M.; Shin, J.I.; Kim, E. Efficacy, Immunogenicity, and Safety of COVID-19 Vaccines in Randomized Control Trials in the Pre-Delta Era: A Systematic Review and Network Meta-Analysis. Vaccines 2022, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, R.; Yuan, Z.; Xu, Z.; Suo, L.; Wang, Q.; Li, Y.; Gao, Y.; Li, X.; Chen, X.; et al. Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022. Vaccines 2022, 10, 1215. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Zheng, D.; Yu, B.; Tan, X.; Chen, Q.; Wang, L.; Zhang, J.; Liu, Y.; Weng, H.; Cai, Y.; et al. Effectiveness of Inactivated COVID-19 Vaccines against COVID-19 Caused by the SARS-CoV-2 Delta and Omicron Variants: A Retrospective Cohort Study. Vaccines 2022, 10, 1753. [Google Scholar] [CrossRef] [PubMed]
- Hardgrave, H.; Wells, A.; Nigh, J.; Klutts, G.; Krinock, D.; Osborn, T.; Bhusal, S.; Rude, M.K.; Burdine, L.; Giorgakis, E. COVID-19 Mortality in Vaccinated vs. Unvaccinated Liver & Kidney Transplant Recipients: A Single-Center United States Propensity Score Matching Study on Historical Data. Vaccines 2022, 10, 1921. [Google Scholar]
- Arbel, R.; Pliskin, J. Vaccinations versus Lockdowns to Prevent COVID-19 Mortality. Vaccines 2022, 10, 1347. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Haddadi, S.; Tahvildari, A.; Farsi, Y.; Arbabi, M.; Hasanzadeh, S.; Jamshidi, P.; Murthi, M.; Mirsaeidi, M. COVID-19 Clinical Characteristics, and Sex-Specific Risk of Mortality: Systematic Review and Meta-Analysis. Front. Med. 2020, 7, 459. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Liang, X.; Shi, L.; Wang, Y. Autoimmune diseases are independently associated with COVID-19 severity: Evidence based on adjusted effect estimates. J. Infect. 2021, 82, e23–e26. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Castagna, F.; Kataria, R.; Madan, S.; Ali, S.Z.; Diab, K.; Leyton, C.; Arfaras-Melainis, A.; Kim, P.; Giorgi, F.M.; Vukelic, S.; et al. A History of Heart Failure Is an Independent Risk Factor for Death in Patients Admitted with Coronavirus 19 Disease. J. Cardiovasc. Dev. Dis. 2021, 8, 77. [Google Scholar] [CrossRef]
- Bajči, M.P.; Lendak, D.F.; Ristić, M.; Drljača, M.M.; Brkić, S.; Turkulov, V.; Petrović, V. COVID-19 Breakthrough Infections among Patients Aged ≥65 Years in Serbia: Morbidity and Mortality Overview. Vaccines 2022, 10, 1818. [Google Scholar]
- Nasrullah, A.; Gangu, K.; Shumway, N.B.; Cannon, H.R.; Garg, I.; Shuja, H.; Bobba, A.; Chourasia, P.; Sheikh, A.B.; Shekhar, R. COVID-19 and Pulmonary Embolism Outcomes among Hospitalized Patients in the United States: A Propensity-Matched Analysis of National Inpatient Sample. Vaccines 2022, 10, 2104. [Google Scholar] [CrossRef]
- Terry, P.D.; Heidel, R.E.; Dhand, R. Asthma in Adult Patients with COVID-19. Prevalence and Risk of Severe Disease. Am. J. Respir. Crit. Care Med. 2021, 203, 893–905. [Google Scholar] [CrossRef]
- Hou, H.; Xu, J.; Li, Y.; Wang, Y.; Yang, H. The Association of Asthma With COVID-19 Mortality: An Updated Meta-Analysis Based on Adjusted Effect Estimates. J. Allergy Clin. Immunol. Pract. 2021, 9, 3944–3968.e5. [Google Scholar] [CrossRef]
- Hussein, M.H.; Elshazli, R.M.; Attia, A.S.; Nguyen, T.P.; Aboueisha, M.; Munshi, R.; Toraih, E.A.; Fawzy, M.S.; Kandil, E. Asthma and COVID-19; different entities, same outcome: A meta-analysis of 107,983 patients. J. Asthma 2021, 59, 851–858. [Google Scholar] [CrossRef]
- Sitek, A.N.; Ade, J.M.; Chiarella, S.E.; Divekar, R.D.; Pitlick, M.M.; Iyer, V.N.; Wang, Z.; Joshi, A.Y. Outcomes among patients with COVID-19 and asthma: A systematic review and meta-analysis. Allergy Asthma Proc. 2021, 42, 267–273. [Google Scholar] [CrossRef]
- Sunjaya, A.P.; Allida, S.M.; Di Tanna, G.L.; Jenkins, C. Asthma and risk of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. J. Asthma 2021, 59, 866–879. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Y.; Du, T.; Zhi, Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 693–701. [Google Scholar] [CrossRef]
- Shi, L.; Xu, J.; Xiao, W.; Wang, Y.; Jin, Y.; Chen, S.; Duan, G.; Yang, H.; Wang, Y. Asthma in patients with coronavirus disease 2019: A systematic review and meta-analysis. Ann. Allergy Asthma Immunol. 2021, 126, 524–534. [Google Scholar] [CrossRef]
- Reyes, F.M.; Hache-Marliere, M.; Karamanis, D.; Berto, C.G.; Estrada, R.; Langston, M.; Ntaios, G.; Gulani, P.; Shah, C.D.; Palaiodimos, L. Assessment of the Association of COPD and Asthma with In-Hospital Mortality in Patients with COVID-19. A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. J. Clin. Med. 2021, 10, 2087. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Abedtash, A.; Taherkhani, M.; Shokrishakib, S.; Nikpour, S.; Taherkhani, A. Association between Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers and Mortality in Patients with Hypertension Hospitalized with COVID-19. J. Tehran Heart Cent. 2021, 16, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, A.; Eslami, V.; Arab-Ahmadi, M.; Alahyari, S.; Azhideh, A.; Sanei-Taheri, M. Prognostic value of inflammatory biomarkers for predicting the extent of lung involvement and final clinical outcome in patients with COVID-19. J. Res. Med. Sci. 2021, 26, 115. [Google Scholar] [PubMed]
- AbuRuz, S.; Al-Azayzih, A.; ZainAlAbdin, S.; Beiram, R.; Al Hajjar, M. Clinical characteristics and risk factors for mortality among COVID-19 hospitalized patients in UAE: Does ethnic origin have an impact. PLoS ONE 2022, 17, e0264547. [Google Scholar] [CrossRef]
- Agrupis, K.A.; Smith, C.; Suzuki, S.; Villanueva, A.M.; Ariyoshi, K.; Solante, R.; Telan, E.F.; Estrada, K.A.; Uichanco, A.C.; Sagurit, J.; et al. Epidemiological and clinical characteristics of the first 500 confirmed COVID-19 inpatients in a tertiary infectious disease referral hospital in Manila, Philippines. Trop. Med. Health 2021, 49, 48. [Google Scholar] [CrossRef]
- Akhtar, H.; Khalid, S.; Rahman, F.U.; Ali, S.; Afridi, M.; Khader, Y.S.; Hassan, F.; Akhtar, N.; Khan, M.M.; Ikram, A. Delayed admissions and efficacy of steroid use in patients with critical and severe COVID-19: An apprehensive approach. J. Public Health 2021, 43 (Suppl. 3), iii43–iii48. [Google Scholar] [CrossRef]
- Aksel, G.; Islam, M.M.; Algin, A.; Eroglu, S.E.; Yasar, G.B.; Ademoglu, E.; Dolek, U.C. Early predictors of mortality for moderate to severely ill patients with Covid-19. Am. J. Emerg. Med. 2021, 45, 290–296. [Google Scholar] [CrossRef]
- Al Mutair, A.; Elhazmi, A.; Alhumaid, S.; Ahmad, G.Y.; Rabaan, A.A.; Alghdeer, M.A.; Chagla, H.; Tirupathi, R.; Sharma, A.; Dhama, K.; et al. Examining the Clinical Prognosis of Critically Ill Patients with COVID-19 Admitted to Intensive Care Units: A Nationwide Saudi Study. Medicina 2021, 57, 878. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.A.; Al-Raddadi, R.M.; Ramadan, I.K.; Mirza, A.A.; Alsaab, H.A.; Alobaidi, H.F.; Hayd, M.Y.B. Survival, mortality, and related comorbidities among COVID-19 patients in Saudi Arabia: A hospital-based retrospective cohort study. Saudi Med. J. 2022, 43, 915–926. [Google Scholar] [CrossRef]
- Alam, M.T.; Mehdi, A.; Timsaal, Y.; Rehan, M.; Kumar, A.; Shaikh, I.S.; Yasmin, F.; Memon, G.M.; Ahmed, N.; Asghar, M.S. The clinical course, biochemical markers, and clinical outcomes of COVID-19 positive patients from the third wave in Pakistan: A retrospective cohort study. Ann. Med. Surg. 2022, 77, 103599. [Google Scholar] [CrossRef]
- AlBahrani, S.; Al-Tawfiq, J.A.; Jebakumar, A.Z.; Alghamdi, M.; Zakary, N.; Seria, M.; Alrowis, A. Clinical Features and Outcome of Low and High Corticosteroids in Admitted COVID-19 Patients. J. Epidemiol. Glob. Health 2021, 11, 316–319. [Google Scholar] [CrossRef]
- Alhamar, G.; Maddaloni, E.; Al Shukry, A.; Al-Sabah, S.; Al-Haddad, M.; Al-Youha, S.; Jamal, M.; Almazeedi, S.; Al-Shammari, A.A.; Abu-Farha, M.; et al. Development of a clinical risk score to predict death in patients with COVID-19. Diabetes Metab. Res. Rev. 2022, 38, e3526. [Google Scholar] [CrossRef]
- Alhowaish, T.S.; Alhamadh, M.S.; Alhabeeb, A.Y.; Aldosari, S.F.; Masuadi, E.; Alrashid, A. Outcomes of COVID-19 in Inflammatory Rheumatic Diseases: A Retrospective Cohort Study. Cureus 2022, 14, e26343. [Google Scholar] [CrossRef]
- Alimohamadi, Y.; Sepandi, M.; Rashti, R.; Sedighinezhad, H.; Afrashteh, S. COVID-19: Clinical features, case fatality, and the effect of symptoms on mortality in hospitalized cases in Iran. J. Taibah Univ. Med. Sci. 2022, 17, 725–731. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Eskandarian, R.; Behjati, M.; Zahmatkesh, M.; Roshanzamir, M.; Izadi, N.H.; Shoeibi, A.; Haddadi, A.; Khozeimeh, F.; Sani, F.A.; et al. Factors associated with mortality in hospitalized cardiovascular disease patients infected with COVID-19. Immun. Inflamm. Dis. 2022, 10, e561. [Google Scholar] [CrossRef]
- Aljouie, A.F.; Almazroa, A.; Bokhari, Y.; Alawad, M.; Mahmoud, E.; Alawad, E.; Alsehawi, A.; Rashid, M.; Alomair, L.; Almozaai, S.; et al. Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning. J. Multidiscip. Healthc. 2021, 14, 2017–2033. [Google Scholar] [CrossRef]
- Almazeedi, S.; Al-Youha, S.; Jamal, M.H.; Al-Haddad, M.; Al-Muhaini, A.; Al-Ghimlas, F.; Al-Sabah, S. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. EClinicalMedicine 2020, 24, 100448. [Google Scholar] [CrossRef]
- Alshukry, A.; Ali, H.; Ali, Y.; Al-Taweel, T.; Abu-Farha, M.; AbuBaker, J.; Devarajan, S.; Dashti, A.A.; Bandar, A.; Taleb, H.; et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) patients in Kuwait. PLoS ONE 2020, 15, e0242768. [Google Scholar] [CrossRef]
- Alwafi, H.; Naser, A.Y.; Qanash, S.; Brinji, A.S.; Ghazawi, M.A.; Alotaibi, B.; Alghamdi, A.; Alrhmani, A.; Fatehaldin, R.; Alelyani, A.; et al. Predictors of Length of Hospital Stay, Mortality, and Outcomes Among Hospitalised COVID-19 Patients in Saudi Arabia: A Cross-Sectional Study. J. Multidiscip. Healthc. 2021, 14, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, M.A.; Almalki, F.; Aljohani, A.; Alharbi, B.; Alsulami, B.; Alhaddad, A.; Althubaiti, A.; Khawaji, B.; Farahat, F. The Association Between Vitamin D Serum Level and COVID-19 Patients’ Outcomes in a Tertiary Center in Saudi Arabia: A Retrospective Cohort Study. Cureus 2022, 14, e26266. [Google Scholar] [CrossRef]
- Araban, M.; Karimy, M.; Koohestani, H.; Montazeri, A.; Delaney, D. Epidemiological and clinical characteristics of patients with COVID-19 in Islamic Republic of Iran. East Mediterr. Health J. 2022, 28, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Argun Baris, S.; Boyaci, H.; Akhan, S.; Mutlu, B.; Deniz, M.; Basyigit, I. Charlson Comorbidity Index in Predicting Poor Clinical Outcomes and Mortality in Patients with COVID-19. Turk. Thorac. J. 2022, 23, 145–153. [Google Scholar] [CrossRef]
- Ayaz, A.; Arshad, A.; Malik, H.; Ali, H.; Hussain, E.; Jamil, B. Risk factors for intensive care unit admission and mortality in hospitalized COVID-19 patients. Acute Crit. Care 2020, 35, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Aydin Guclu, O.; Goktas, S.S.; Gorek Dilektasli, A.; Acet Ozturk, N.A.; Demirdogen, E.; Coskun, F.; Ediger, D.; Ursavas, A.; Uzaslan, E.; Erol, H.A.; et al. Pilot study for immunoglobulin E as a prognostic biomarker in coronavirus disease 2019. Intern. Med. J. 2022, 52, 1495–1504. [Google Scholar] [CrossRef]
- Ayed, M.; Borahmah, A.A.; Yazdani, A.; Sultan, A.; Mossad, A.; Rawdhan, H. Assessment of Clinical Characteristics and Mortality-Associated Factors in COVID-19 Critical Cases in Kuwait. Med. Princ. Pract. 2021, 30, 185–192. [Google Scholar] [CrossRef]
- Ayten, O.; Saylan, B. Retrospective analysis of severe COVID-19 pneumonia patients treated with lopinavir/ritonavir: A comparison with survivor and non-survivor patients. S. Afr. J. Infect. Dis. 2020, 35, 233. [Google Scholar] [CrossRef]
- Bae, S.; Kim, Y.; Hwang, S.; Kwon, K.T.; Chang, H.H.; Kim, S.W. New Scoring System for Predicting Mortality in Patients with COVID-19. Yonsei Med. J. 2021, 62, 806–813. [Google Scholar] [CrossRef]
- Bakhshwin, D.; Alotaibi, M.; Ali, A.S.; Althomali, A.; Alsuwat, A.; Alhamyani, A.; Alwathnani, A.; Alsaggaf, S.; Alrafiah, A. Mortality Predictors Among COVID-19 Elderly in Taif, Saudi Arabia. Infect. Drug Resist. 2022, 15, 3213–3223. [Google Scholar] [CrossRef]
- Basaran, N.C.; Ozdede, M.; Uyaroglu, O.A.; Sahin, T.K.; Ozcan, B.; Oral, H.; Ozisik, L.; Guven, G.S.; Tanriover, M.D. Independent predictors of in-hospital mortality and the need for intensive care in hospitalized non-critical COVID-19 patients: A prospective cohort study. Intern. Emerg. Med. 2022, 17, 1413–1424. [Google Scholar] [CrossRef]
- Bokhary, D.H.; Bokhary, N.H.; Seadawi, L.E.; Moafa, A.M.; Khairallah, H.H.; Bakhsh, A. The Role of Demographic, Clinical, and Laboratory Characteristics in Predicting the In-Hospital Outcomes of Patients With COVID-19. Cureus 2022, 14, e23418. [Google Scholar] [CrossRef]
- Burhamah, W.; Qahi, I.; Oroszlanyova, M.; Shuaibi, S.; Alhunaidi, R.; Alduwailah, M.; Alhenaidi, M.; Mohammad, Z. Prognostic Factors and Predictors of In-Hospital Mortality Among COVID-19 Patients Admitted to the Intensive Care Unit: An Aid for Triage, Counseling, and Resource Allocation. Cureus 2021, 13, e16577. [Google Scholar] [CrossRef]
- Cakir Guney, B.; Hayiroglu, M.; Senocak, D.; Cicek, V.; Cinar, T.; Kaplan, M. Evaluation of N/LP Ratio as a Predictor of Disease Progression and Mortality in COVID-19 Patients Admitted to the Intensive Care Unit. Medeni Med. J. 2021, 36, 241–248. [Google Scholar]
- Caliskan, T.; Saylan, B. Smoking and comorbidities are associated with COVID-19 severity and mortality in 565 patients treated in Turkey: A retrospective observational study. Rev. Assoc. Med. Bras. (1992) 2020, 66, 1679–1684. [Google Scholar] [CrossRef]
- Celik, I.; Eryilmaz-Eren, E.; Kilinc-Toker, A.; Eren, D.; Yildiz, M.; Kanat, A.; Topaloglu, U.S.; Guzeldag, S.; Kara, M.; Ulu-Kilic, A. Low-dose tocilizumab is associated with improved outcome and a low risk of secondary infection in severe COVID-19 pneumonia. Int. J. Clin. Pract. 2021, 75, e14997. [Google Scholar] [CrossRef]
- Chang, Y.; Jeon, J.; Song, T.J.; Kim, J. Association between the fatty liver index and the risk of severe complications in COVID-19 patients: A nationwide retrospective cohort study. BMC Infect. Dis. 2022, 22, 384. [Google Scholar] [CrossRef]
- Choi, H.G.; Wee, J.H.; Kim, S.Y.; Kim, J.H.; Il Kim, H.; Park, J.Y.; Park, S.; Il Hwang, Y.; Jang, S.H.; Jung, K.S. Association between asthma and clinical mortality/morbidity in COVID-19 patients using clinical epidemiologic data from Korean Disease Control and Prevention. Allergy 2021, 76, 921–924. [Google Scholar] [CrossRef]
- Choi, Y.J.; Park, J.Y.; Lee, H.S.; Suh, J.; Song, J.Y.; Byun, M.K.; Cho, J.H.; Kim, H.J.; Lee, J.H.; Park, J.W.; et al. Effect of asthma and asthma medication on the prognosis of patients with COVID-19. Eur. Respir. J. 2021, 57, 2002226. [Google Scholar] [CrossRef]
- Cilingir, B.M.; Askar, S.; Meral, A.; Askar, M. Can B-Type Natriuretic Peptide (BNP) Levels Serve as an Early Predictor of Clinical Severity in Patients with COVID-19 Pneumonia? Clin. Lab. 2022, 68, 207–213. [Google Scholar] [CrossRef]
- Cortez, K.J.C.; Demot, B.A.; Bartolo, S.S.; Feliciano, D.D.; Ciriaco, V.M.P.; Labi, I.I.E.; Viray, D.D.M.; Casuga, J.C.M.; Camonayan-Flor, K.A.B.; Gomez, P.M.A.; et al. Clinical characteristics and outcomes of COVID-19 patients in a tertiary hospital in Baguio City, Philippines. West. Pac. Surveill. Response J. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dana, N.; Nasirian, M.; Vaseghi, G.; Heshmat-Ghahdarijani, K.; Ataei, B.; Mosayebi, A.; Manteghinejad, A.; Javanmard, S.H. Vitamin D Level in Laboratory Confirmed COVID-19 and Disease Progression. Eurasian J. Med. 2022, 54, 206–212. [Google Scholar] [CrossRef]
- Deeb, A.; Khawaja, K.; Sakrani, N.; AlAkhras, A.; Al Mesabi, A.; Trehan, R.; Kumar, P.C.; Babiker, Z.; Nagelkerke, N.; Fru-Nsutebu, E. Impact of Ethnicity and Underlying Comorbidity on COVID-19 Inhospital Mortality: An Observational Study in Abu Dhabi, UAE. BioMed. Res. Int. 2021, 2021, 6695707. [Google Scholar] [CrossRef] [PubMed]
- Degerli, E.; Derin, S.; Oruc, K.; Sengul Samanci, N.; Bedir, S.; Celik, E.; Senturk Oztas, N.; Alkan, G.; Demirelli, F.H.; Demirci, N.S. The demographic characteristics, prognosis, and relationship with cancer subtypes of hospitalized COVID-19 patients with malignancy: A single-center experience. J. Med. Virol. 2021, 93, 5839–5845. [Google Scholar] [CrossRef] [PubMed]
- Doganay, F.; Ak, R. Performance of the CURB-65, ISARIC-4C and COVID-GRAM scores in terms of severity for COVID-19 patients. Int. J. Clin. Pract. 2021, 75, e14759. [Google Scholar] [CrossRef] [PubMed]
- Doganay, F.; Elkonca, F.; Seyhan, A.U.; Yilmaz, E.; Batirel, A.; Ak, R. Shock index as a predictor of mortality among the Covid-19 patients. Am. J. Emerg. Med. 2021, 40, 106–109. [Google Scholar] [CrossRef]
- Elhazmi, A.; Al-Omari, A.; Sallam, H.; Mufti, H.N.; Rabie, A.A.; Alshahrani, M.; Mady, A.; Alghamdi, A.; Altalaq, A.; Azzam, M.H.; et al. Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. J. Infect. Public Health 2022, 15, 826–834. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Akbari, A.; Yeganeh, B.S.; Rezaei, T.; Bakhtiari, H.; Pirbonyeh, N. Liver Biomarkers Assay in COVID-19 Cases: A Comparison Study between Alive and Dead Patients. Iran J. Public Health 2022, 51, 172–177. [Google Scholar] [CrossRef]
- He, C.; Liu, C.; Yang, J.; Tan, H.; Ding, X.; Gao, X.; Yang, Y.; Shen, Y.; Xiang, H.; Ke, J.; et al. Prognostic significance of day-by-day in-hospital blood pressure variability in COVID-19 patients with hypertension. J. Clin. Hypertens 2022, 24, 224–233. [Google Scholar] [CrossRef]
- Hesni, E.; Sayad, B.; Khosravi Shadmani, F.; Najafi, F.; Khodarahmi, R.; Rahimi, Z.; Bozorgomid, A.; Sayad, N. Demographics, clinical characteristics, and outcomes of 27,256 hospitalized COVID-19 patients in Kermanshah Province, Iran: A retrospective one-year cohort study. BMC Infect. Dis. 2022, 22, 319. [Google Scholar] [CrossRef]
- Islam, M.A.; Mazumder, M.A.; Akhter, N.; Huq, A.F.; Al-Mahtab, M.; Khan, M.S.I.; Akbar, S.M. Extraordinary Survival Benefits of Severe and Critical Patients with COVID-19 by Immune Modulators: The Outcome of a Clinical Trial in Bangladesh. Euroasian J. Hepatogastroenterol. 2020, 10, 68–75. [Google Scholar]
- Jalili, M.; Payandemehr, P.; Saghaei, A.; Sari, H.N.; Safikhani, H.; Kolivand, P. Characteristics and Mortality of Hospitalized Patients With COVID-19 in Iran: A National Retrospective Cohort Study. Ann. Intern. Med. 2021, 174, 125–127. [Google Scholar] [CrossRef]
- Jandaghian, S.; Vaezi, A.; Manteghinejad, A.; Nasirian, M.; Vaseghi, G.; Haghjooy Javanmard, S. Red Blood Cell Distribution Width (RDW) as a Predictor of In-Hospital Mortality in COVID-19 Patients; a Cross Sectional Study. Arch. Acad. Emerg. Med. 2021, 9, e67. [Google Scholar]
- Jin, M.; Chen, C.; Huang, J.; Zhang, F.; Dong, T.; Zhang, M.; Yue, H.; Liu, K.; Li, G.; Hu, K.; et al. Clinical characteristics of COVID-19 patients with asthma in Wuhan, China: A retrospective cohort study. J. Asthma 2020, 59, 230–238. [Google Scholar] [CrossRef]
- Jo, S.; Nam, H.K.; Kang, H.; Cho, S.I. Associations of symptom combinations with in-hospital mortality of coronavirus disease-2019 patients using South Korean National data. PLoS ONE 2022, 17, e0273654. [Google Scholar] [CrossRef]
- Jung, Y.; Wee, J.H.; Kim, J.H.; Choi, H.G. The Effects of Previous Asthma and COPD on the Susceptibility to and Severity of COVID-19: A Nationwide Cohort Study in South Korea. J. Clin. Med. 2021, 10, 4626. [Google Scholar] [CrossRef]
- Kaya, T.; Nalbant, A.; Kiliccioglu, G.K.; Cayir, K.T.; Yaylaci, S.; Varim, C. The prognostic significance of erythrocyte sedimentation rate in COVID-19. Rev. Assoc. Med. Bras. (1992) 2021, 67, 1305–1310. [Google Scholar] [CrossRef]
- Khalid, A.; Ali Jaffar, M.; Khan, T.; Abbas Lail, R.; Ali, S.; Aktas, G.; Waris, A.; Javaid, A.; Ijaz, N.; Muhammad, N. Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: A retrospective comparative analysis. Hematology 2021, 26, 529–542. [Google Scholar] [CrossRef]
- Khani, M.; Tavana, S.; Tabary, M.; Naseri Kivi, Z.; Khaheshi, I. Prognostic implications of biventricular strain measurement in COVID-19 patients by speckle-tracking echocardiography. Clin. Cardiol. 2021, 44, 1475–1481. [Google Scholar] [CrossRef]
- Kibar Akilli, I.; Bilge, M.; Uslu Guz, A.; Korkusuz, R.; Canbolat Unlu, E.; Kart Yasar, K. Comparison of Pneumonia Severity Indices, qCSI, 4C-Mortality Score and qSOFA in Predicting Mortality in Hospitalized Patients with COVID-19 Pneumonia. J. Pers. Med. 2022, 12, 801. [Google Scholar] [CrossRef]
- Kim, S.H.; Ji, E.; Won, S.H.; Cho, J.; Kim, Y.H.; Ahn, S.; Chang, Y.S. Association of asthma comorbidity with poor prognosis of coronavirus disease 2019. World Allergy Organ J. 2021, 14, 100576. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, S.M.; Kim, Y.K.; Kim, J.Y.; Lee, Y.M.; Kim, B.O.; Hwangbo, S.; Park, T. Clinical Characteristics and Outcomes of COVID-19 Cohort Patients in Daegu Metropolitan City Outbreak in 2020. J. Korean Med. Sci. 2021, 36, e12. [Google Scholar] [CrossRef] [PubMed]
- Kolivand, P.; Fathi, M.; Kheyrati, L.; Lak, M. Exposure to sulfur mustard increases the risk for mortality in patients with COVID-19 infection: A cohort study. Am. J. Emerg. Med. 2022, 51, 144–149. [Google Scholar] [CrossRef]
- Kong, K.A.; Jung, S.; Yu, M.; Park, J.; Kang, I.S. Association Between Cardiovascular Risk Factors and the Severity of Coronavirus Disease 2019: Nationwide Epidemiological Study in Korea. Front. Cardiovasc. Med. 2021, 8, 732518. [Google Scholar] [CrossRef] [PubMed]
- Kouhpeikar, H.; Khosaravizade Tabasi, H.; Khazir, Z.; Naghipour, A.; Mohammadi Moghadam, H.; Forouzanfar, H.; Abbasifard, M.; Kirichenko, T.V.; Reiner, Z.; Banach, M.; et al. Statin Use in COVID-19 Hospitalized Patients and Outcomes: A Retrospective Study. Front. Cardiovasc. Med. 2022, 9, 820260. [Google Scholar] [CrossRef]
- Kridin, K.; Schonmann, Y.; Tzur Bitan, D.; Damiani, G.; Weinstein, O.; Cohen, A.D. The Burden of Coronavirus Disease 2019 and Its Complications in Patients With Atopic Dermatitis-A Nested Case-Control Study. Dermatitis 2021, 32, S45–S52. [Google Scholar] [CrossRef]
- Kuwahara, M.; Kamigaito, M.; Murakami, H.; Sato, K.; Mambo, N.; Kobayashi, T.; Shirai, K.; Miyawaki, A.; Ohya, M.; Hirata, J.I. Prognostic Factors Associated With Mortality of Patients with COVID-19 Requiring Ventilator Management: A Retrospective Cohort Study. Cureus 2022, 14, e25374. [Google Scholar] [CrossRef]
- Kwok, W.C.; Tam, A.R.; Ho, J.C.M.; Lam, D.C.L.; Tam, T.C.C.; Chan, K.P.F.; Wang, J.K.L.; Ip, M.S.M.; Hung, I.F.N. Asthma, from mild to severe, is an independent prognostic factor for mild to severe Coronavirus disease 2019 (COVID-19). Clin. Respir. J. 2022, 16, 293–300. [Google Scholar] [CrossRef]
- Lee, S.C.; Son, K.J.; Han, C.H.; Jung, J.Y.; Park, S.C. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci. Rep. 2020, 10, 21805. [Google Scholar] [CrossRef]
- Lee, S.G.; Park, G.U.; Moon, Y.R.; Sung, K. Clinical Characteristics and Risk Factors for Fatality and Severity in Patients with Coronavirus Disease in Korea: A Nationwide Population-Based Retrospective Study Using the Korean Health Insurance Review and Assessment Service (HIRA) Database. Int. J. Environ. Res. Public Health 2020, 17, 8559. [Google Scholar] [CrossRef]
- Ma, X.; Li, A.; Jiao, M.; Shi, Q.; An, X.; Feng, Y.; Xing, L.; Liang, H.; Chen, J.; Li, H.; et al. Characteristic of 523 COVID-19 in Henan Province and a Death Prediction Model. Front. Public Health 2020, 8, 475. [Google Scholar] [CrossRef]
- Malundo, A.F.G.; Abad, C.L.R.; Salamat, M.S.S.; Sandejas, J.C.M.; Poblete, J.B.; Planta, J.E.G.; Morales, S.J.L.; Gabunada, R.R.W.; Evasan, A.L.M.; Canal, J.P.A.; et al. Predictors of mortality among inpatients with COVID-19 infection in a tertiary referral center in the Philippines. IJID Reg. 2022, 4, 134–142. [Google Scholar] [CrossRef]
- Moon, H.J.; Kim, K.; Kang, E.K.; Yang, H.-J.; Lee, E. Prediction of COVID-19-related Mortality and 30-Day and 60-Day Survival Probabilities Using a Nomogram. J. Korean Med. Sci. 2021, 36, e248. [Google Scholar] [CrossRef]
- Nakamura, S.; Kanemasa, Y.; Atsuta, Y.; Fujiwara, S.; Tanaka, M.; Fukushima, K.; Kobayashi, T.; Shimoyama, T.; Omuro, Y.; Sekiya, N.; et al. Characteristics and outcomes of coronavirus disease 2019 (COVID-19) patients with cancer: A single-center retrospective observational study in Tokyo, Japan. Int. J. Clin. Oncol. 2021, 26, 485–493. [Google Scholar] [CrossRef]
- Omar, S.M.; Musa, I.R.; Salah, S.E.; Elnur, M.M.; Al-Wutayd, O.; Adam, I. High Mortality Rate in Adult COVID-19 Inpatients in Eastern Sudan: A Retrospective Study. J. Multidiscip. Healthc. 2020, 13, 1887–1893. [Google Scholar] [CrossRef]
- Ong, A.N.; Tan, C.C.; Canete, M.T.; Lim, B.A.; Robles, J. Association Between Metformin Use and Mortality among Patients with Type 2 Diabetes Mellitus Hospitalized for COVID-19 Infection. J. ASEAN Fed. Endocr. Soc. 2021, 36, 133–141. [Google Scholar] [CrossRef]
- Ozger, H.S.; Karakus, R.; Kuscu, E.N.; Bagriacik, U.E.; Oruklu, N.; Yaman, M.; Turkoglu, M.; Erbas, G.; Atak, A.Y.; Senol, E. Serial measurement of cytokines strongly predict COVID-19 outcome. PLoS ONE 2021, 16, e0260623. [Google Scholar] [CrossRef]
- Pakdel, F.; Ahmadikia, K.; Salehi, M.; Tabari, A.; Jafari, R.; Mehrparvar, G.; Rezaie, Y.; Rajaeih, S.; Alijani, N.; Barac, A.; et al. Mucormycosis in patients with COVID-19: A cross-sectional descriptive multicentre study from Iran. Mycoses 2021, 64, 1238–1252. [Google Scholar] [CrossRef]
- Park, B.E.; Lee, J.H.; Park, H.K.; Kim, H.N.; Jang, S.Y.; Bae, M.H.; Yang, D.H.; Park, H.S.; Cho, Y.; Lee, B.Y.; et al. Impact of Cardiovascular Risk Factors and Cardiovascular Diseases on Outcomes in Patients Hospitalized with COVID-19 in Daegu Metropolitan City. J. Korean Med. Sci. 2021, 36, e15. [Google Scholar] [CrossRef]
- Parvin, S.; Islam, M.S.; Majumdar, T.K.; Ahmed, F. Clinicodemographic profile, intensive care unit utilization and mortality rate among COVID-19 patients admitted during the second wave in Bangladesh. IJID Reg. 2022, 2, 55–59. [Google Scholar] [CrossRef]
- Patgiri, P.R.; Rajendran, V.; Ahmed, A.B. Clinico-Epidemiological Profiles of COVID-19 Elderly Patients in Guwahati City, Assam, India: A Cross-Sectional Study. Cureus 2022, 14, e24043. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.; Gautam, P.L.; Sharma, S.; Kumar, J.; Gupta, A.; Sharma, M.; Khehra, A.S.; Paul, B.S.; Mohan, B. Analysis of trimodal pattern of mortality among hospitalized COVID-19 patients- Lessons from tertiary care hospital. J. Anaesthesiol. Clin. Pharmacol. 2022, 38 (Suppl. 1), S107–S114. [Google Scholar] [PubMed]
- Pramudita, A.; Rosidah, S.; Yudia, N.; Simatupang, J.; Sigit, W.P.; Novariani, R.; Myriarda, P.; Siswanto, B.B. Cardiometabolic Morbidity and Other Prognostic Factors for Mortality in Adult Hospitalized COVID-19 Patients in North Jakarta, Indonesia. Glob Heart 2022, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Puah, S.H.; Cove, M.E.; Phua, J.; Kansal, A.; Venkatachalam, J.; Ho, V.K.; Sewa, D.W.; Gokhale, R.S.; Liew, M.F.; Ho, B.C.H.; et al. Association between lung compliance phenotypes and mortality in COVID-19 patients with acute respiratory distress syndrome. Ann. Acad. Med. Singap. 2021, 50, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, P.; Amniati, S.; Farahmandrad, R.; Faiz, S.H.R.; Hedayati Emami, S.; Habibi, A. Clinical Characteristics of Critically Ill Patients Infected with COVID-19 in Rasoul Akram Hospital in Iran: A Single Center Study. Anesth Pain Med. 2020, 10, e107211. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.; Ranjan, A.; Ameet, H.; Pandey, S. Clinical and Laboratory Predictors of Mortality in COVID-19 Infection: A Retrospective Observational Study in a Tertiary Care Hospital of Eastern India. Cureus 2021, 13, e17660. [Google Scholar] [CrossRef]
- Rehman, S.; Rehman, N.; Mumtaz, A.; Jiang, J. Association of Mortality-Related Risk Factors in Patients with COVID-19: A Retrospective Cohort Study. Healthcare 2021, 9, 1468. [Google Scholar] [CrossRef]
- Ro, S.; Nishimura, N.; Imai, R.; Tomishima, Y.; So, C.; Murakami, M.; Okafuji, K.; Kitamura, A.; Jinta, T.; Tamura, T. Identification of patients with COVID-19 who are optimal for methylprednisolone pulse therapy. Multidiscip. Respir. Med. 2021, 16, 781. [Google Scholar] [CrossRef]
- Rohani-Rasaf, M.; Mirjalili, K.; Vatannejad, A.; Teimouri, M. Are lipid ratios and triglyceride-glucose index associated with critical care outcomes in COVID-19 patients? PLoS ONE 2022, 17, e0272000. [Google Scholar] [CrossRef]
- Safari, M.; Faradmal, J.; Bashirian, S.; Soltanian, A.R.; Khazaei, S.; Roshanaei, G. Identifying the Risk Factors for Mortality in Patients with Cancer and COVID-19 in Hamadan, the West of Iran. J. Gastrointest. Cancer 2021, 53, 614–622. [Google Scholar] [CrossRef]
- Saha, A.; Ahsan, M.M.; Quader, T.U.; Shohan, M.U.S.; Naher, S.; Dutta, P.; Akash, A.S.; Mehedi, H.M.H.; Chowdhury, A.A.U.; Karim, H.; et al. Characteristics, management and outcomes of critically ill COVID-19 patients admitted to ICU in hospitals in Bangladesh: A retrospective study. J. Prev. Med. Hyg. 2021, 62, E33–E45. [Google Scholar]
- Satici, C.; Demirkol, M.A.; Sargin Altunok, E.; Gursoy, B.; Alkan, M.; Kamat, S.; Demirok, B.; Surmeli, C.D.; Calik, M.; Cavus, Z.; et al. Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in patients with COVID-19. Int. J. Infect. Dis. 2020, 98, 84–89. [Google Scholar] [CrossRef]
- Satici, M.O.; Islam, M.M.; Satici, C.; Uygun, C.N.; Ademoglu, E.; Altunok, I.; Aksel, G.; Eroglu, S.E. The role of a noninvasive index ‘Spo2/ Fio2’ in predicting mortality among patients with COVID-19 pneumonia. Am. J. Emerg. Med. 2022, 57, 54–59. [Google Scholar] [CrossRef]
- Sehgal, T.; Gupta, N.; Kohli, S.; Khurana, A.; Dass, J.; Diwan, S.; Mahendran, A.J.; Khan, M.; Aggarwal, M.; Subramanian, A. A Prospective Study of Specialized Coagulation Parameters in Admitted COVID-19 Patients and Their Correlation With Acute Respiratory Distress Syndrome and Outcome. Cureus 2021, 13, e17463. [Google Scholar] [CrossRef]
- Sener, M.U.; Cicek, T.; Ozturk, A. Highlights of clinical and laboratory parameters among severe COVID-19 patients treated with tocilizumab: A retrospective observational study. Sao Paulo Med. J. 2022, 140, 627–635. [Google Scholar] [CrossRef]
- Serin, I.; Sari, N.D.; Dogu, M.H.; Acikel, S.D.; Babur, G.; Ulusoy, A.; Onar, M.I.; Gokce, E.C.; Altunok, O.; Yaylaci Mert, F.; et al. A new parameter in COVID-19 pandemic: Initial lactate dehydrogenase (LDH)/Lymphocyte ratio for diagnosis and mortality. J. Infect. Public Health 2020, 13, 1664–1670. [Google Scholar] [CrossRef]
- Shah, M.M.; Abbas, S.; Khan, J.Z.; Iftikhar, M.; Jamal, A.; Zeb Khan, J.; Ullah, S. Psychological and Clinical Predictors of COVID-19 Severity and Outcomes. Cureus 2021, 13, e19458. [Google Scholar] [CrossRef]
- Shesha, N.; Melebari, S.; Alghamdi, S.; Refaat, B.; Naffadi, H.; Alquthami, K. Associations of Clinical Factors and Blood Groups With the Severity of COVID-19 Infection in Makkah City, Saudi Arabia. Front. Cell Infect. Microbiol. 2022, 12, 870096. [Google Scholar] [CrossRef]
- Shin, E.; Jin, J.; Park, S.Y.; Yoo, Y.S.; Lee, J.H.; An, J.; Song, W.J.; Kwon, H.S.; Cho, Y.S.; Moon, H.B.; et al. Impact of asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap on the prognosis of coronavirus disease 2019. Asia Pac. Allergy 2022, 12, e21. [Google Scholar] [CrossRef]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Gorkom, K.N.; Zaki, N. Prediction of COVID-19 severity using laboratory findings on admission: Informative values, thresholds, ML model performance. BMJ Open 2021, 11, e044500. [Google Scholar] [CrossRef]
- Tanaka, C.; Tagami, T.; Nakayama, F.; Kudo, S.; Takehara, A.; Fukuda, R.; Kaneko, J.; Ishiki, Y.; Sato, S.; Shibata, A.; et al. Association between mortality and age among mechanically ventilated COVID-19 patients: A Japanese nationwide COVID-19 database study. Ann. Intensive Care 2021, 11, 171. [Google Scholar] [CrossRef]
- Trabulus, S.; Karaca, C.; Balkan, I.I.; Dincer, M.T.; Murt, A.; Ozcan, S.G.; Karaali, R.; Mete, B.; Bakir, A.; Kuskucu, M.A.; et al. Kidney function on admission predicts in-hospital mortality in COVID-19. PLoS ONE 2020, 15, e0238680. [Google Scholar] [CrossRef] [PubMed]
- Ucan, E.S.; Ozgen Alpaydin, A.; Ozuygur, S.S.; Ercan, S.; Unal, B.; Sayiner, A.A.; Ergan, B.; Gokmen, N.; Savran, Y.; Kilinc, O.; et al. Pneumonia severity indices predict prognosis in coronavirus disease-2019. Respir. Med. Res. 2021, 79, 100826. [Google Scholar] [CrossRef] [PubMed]
- Zarei, J.; Jamshidnezhad, A.; Haddadzadeh Shoushtari, M.; Mohammad Hadianfard, A.; Cheraghi, M.; Sheikhtaheri, A. Machine Learning Models to Predict In-Hospital Mortality among Inpatients with COVID-19: Underestimation and Overestimation Bias Analysis in Subgroup Populations. J. Healthc. Eng. 2022, 2022, 1644910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Cao, Y.Y.; Tan, G.; Dong, X.; Wang, B.C.; Lin, J.; Yan, Y.Q.; Liu, G.H.; Akdis, M.; Akdis, C.A.; et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2021, 76, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, C.; Hu, Y.; Lv, W.; Ai, T.; Xia, L. Chest CT imaging features and severity scores as biomarkers for prognostic prediction in patients with COVID-19. Ann. Transl. Med. 2020, 8, 1449. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Busse, W.W.; Lemanske, R.F., Jr.; Gern, J.E. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010, 376, 826–834. [Google Scholar] [CrossRef]
- Kumar, K.; Hinks, T.S.C.; Singanayagam, A. Treatment of COVID-19-exacerbated asthma: Should systemic corticosteroids be used? Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L1244–L1247. [Google Scholar] [CrossRef]
- Brough, H.A.; Kalayci, O.; Sediva, A.; Untersmayr, E.; Munblit, D.; Rodriguez Del Rio, P.; Vazquez-Ortiz, M.; Arasi, S.; Alvaro-Lozano, M.; Tsabouri, S.; et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics—The 2020 COVID-19 pandemic: A statement from the EAACI-section on pediatrics. Pediatr. Allergy Immunol. 2020, 31, 442–448. [Google Scholar] [CrossRef]
- Johnston, S.L. Asthma and COVID-19: Is asthma a risk factor for severe outcomes? Allergy 2020, 75, 1543–1545. [Google Scholar] [CrossRef]
- Cakebread, J.A.; Xu, Y.; Grainge, C.; Kehagia, V.; Howarth, P.H.; Holgate, S.T.; Davies, D.E. Exogenous IFN-beta has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus. J. Allergy Clin. Immunol. 2011, 127, 1148–1154.e9. [Google Scholar] [CrossRef]
- Zhu, J.; Message, S.D.; Mallia, P.; Kebadze, T.; Contoli, M.; Ward, C.K.; Barnathan, E.S.; Mascelli, M.A.; Kon, O.M.; Papi, A.; et al. Bronchial mucosal IFN-alpha/beta and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. J. Allergy Clin. Immunol. 2019, 143, 114–125.e4. [Google Scholar] [CrossRef]
- Konopka, K.E.; Wilson, A.; Myers, J.L. Postmortem Lung Findings in a Patient With Asthma and Coronavirus Disease 2019. Chest 2020, 158, e99–e101. [Google Scholar] [CrossRef]
Author | Country | Study Design | Setting | Cases | Male (%) | Mean/Median Age | Asthma | Non-Asthma | Comorbidity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dead | Alive | Dead | Alive | Hypertension | Diabetes | |||||||
Lee SC [90] | Korea | Retrospective | All patients | 7272 | 40.3 | 45.3 | 44 | 642 | 183 | 6403 | 19.3 | 14.3 |
Choi YJ [60] | Korea | Retrospective | All patients | 7590 | 40.8 | 46.6 (27.1–61) | 17 | 201 | 210 | 7162 | NA | NA |
Trabulus S [123] | Turkey | Retrospective | Hospitalized | 336 | 57.1 | 55.0 ± 16.0 | 1 | 19 | 42 | 274 | 35.7 | 18.8 |
Aksel G [30] | Turkey | Prospective | Hospitalized | 168 | 53.6 | 59.5 (48.3–76) | 2 | 12 | 30 | 124 | 48.2 | 25.6 |
Serin I [117] | Turkey | Retrospective | All patients | 2217 | 53.0 | 47.66 ± 17.23 | 0 | 103 | 68 | 2046 | 20.6 | 16.2 |
Ayaz A [46] | Pakistan | Retrospective | Hospitalized | 66 | 61.0 | 50.6 ± 19.1 | 0 | 2 | 9 | 55 | 45.5 | 37.9 |
Ayed M [48] | Kuwait | Retrospective | ICU patients | 103 | 85.5 | 53 (44–63) | 8 | 4 | 39 | 52 | 35.0 | 39.2 |
Lee SG [91] | Korea | Retrospective | All patients | 7339 | 40.1 | 47.1 ± 19.0 | 21 | 376 | 206 | 6736 | 18.6 | 11.6 |
Choi HG [59] | Korea | Retrospective | Hospitalized | 4057 | 42.5 | 54.1 | 8 | 88 | 118 | 3843 | 20.4 | 12.1 |
Zhou S [127] | China | Retrospective | Hospitalized | 134 | 63.4 | 59.04 ± 17.74 | 14 | 6 | 58 | 56 | 28.4 | 13.4 |
Omar SM [96] | Saudi Arabia | Retrospective | Hospitalized | 88 | 81.8 | 62 (55–70) | 4 | 3 | 29 | 52 | 25.0 | 20.5 |
Caliskan T [56] | Turkey | Retrospective | Hospitalized | 565 | NA | 48 ± 19.66 | 4 | 17 | 71 | 473 | 22.7 | 12.7 |
Kim SW [83] | Korea | Retrospective | Hospitalized | 2254 | 35.8 | 58 (42–70) | 9 | 57 | 170 | 2018 | 28.7 | 16.6 |
Park BE [100] | Korea | Retrospective | Hospitalized | 2269 | 35.9 | 55.5 ± 20.2 | 9 | 58 | 155 | 2047 | 28.8 | 17.0 |
Alwafi H [42] | Saudi Arabia | Retrospective | Hospitalized | 706 | 68.5 | 48.0 ± 15.6 | OR (95% CI): 0.80 (0.07–8.82) | 30.2 | 36.0 | |||
Kridin K [87] | Israel | Retrospective | Hospitalized | 3618 | 39.7 | 38.6 ± 17.7 | 8 | 504 | 32 | 3074 | NA | NA |
Kim SH [82] | Korea | Retrospective | All patients | 7590 | 40.8 | 45.87 ± 19.77 | 48 | 716 | 179 | 6647 | NA | 13.9 |
Bae S [50] | Korea | Retrospective | Hospitalized | 1760 | 63.6 | 60.9 ± 18.6 | 9 | 52 | 159 | 1540 | 33.1 | 19.3 |
Moon HJ [94] | Korea | Retrospective | Hospitalized | 4426 | 42.1 | 51 (30.2–63.7) | 8 | 92 | 118 | 4208 | 21.4 | 12.3 |
Kong KA [85] | Korea | Retrospective | Hospitalized | 5307 | 40.8 | 52.1 (33.7–64.5) | 13 | 113 | 228 | 4953 | 22.6 | 12.9 |
Akhtar H [29] | Pakistan | Retrospective | Hospitalized | 659 | 68.6 | 53.8 | 53 | 11 | 416 | 179 | 57.2 | 50.2 |
Al Mutair A [31] | Saudi Arabia | Retrospective | ICU patients | 1470 | 74.0 | 55.9 ± 15.1 | 45 | 83 | 569 | 773 | 46.0 | 52.4 |
Sehgal T [115] | India | Prospective | Hospitalized | 68 | 63.2 | 48 (20–85) | 0 | 2 | 9 | 57 | 22.1 | 20.6 |
Rai D [107] | India | Retrospective | Hospitalized | 984 | 77.4 | 50.73 ± 16.50 | 16 | 21 | 238 | 709 | 31.1 | 33.5 |
Jung Y [77] | Korea | Retrospective | Hospitalized | 4066 | 37.5 | 53.38 | 24 | 338 | 108 | 3596 | 29.2 | NA |
Kolivand P [84] | Iran | Prospective | Hospitalized | 960 | 100.0 | 56.99 ± 6.71 | 7 | 16 | 117 | 820 | NA | NA |
Rehman S [108] | Pakistan | Retrospective | Hospitalized | 2048 | 59.4 | 56 (18–88) | 77 | 58 | 513 | 1400 | 47.6 | 29.7 |
Tanaka C [122] | Japan | Retrospective | Hospitalized | 1529 | 79.1 | 66.69 ± 12.38 | 19 | 63 | 382 | 1065 | 48.7 | 35.8 |
Cakir Guney B [55] | Turkey | Retrospective | ICU patients | 134 | 60.4 | 68.90 ± 15.67 | 2 | 2 | 80 | 50 | 56.0 | 33.6 |
Ong AN [97] | Philippines | Retrospective | Hospitalized | 355 | 55.8 | 62.69 ± 12.21 | 5 | 22 | 85 | 243 | 74.6 | NA |
Kwok WC [89] | China | Retrospective | Hospitalized | 4498 | 48.8 | 47 | 10 | 155 | 60 | 4273 | 21.0 | 11.4 |
Abrishami A [26] | Iran | Retrospective | Hospitalized | 80 | 65.0 | 54.29 ± 15.21 | 1 | 6 | 12 | 61 | 25.0 | 15.0 |
Cilingir BM [61] | Turkey | Prospective | Hospitalized | 162 | 62.3 | 56.98 ± 17.79 | OR (95% CI): 0.214 (0.001–77.242) | NA | NA | |||
AbuRuz S [27] | United Arab Emirates | Retrospective | Hospitalized | 3296 | 76.3 | 44.3 ± 13.4 | 6 | 159 | 84 | 3047 | 28.6 | 27.4 |
Aydin Guclu O [47] | Turkey | Retrospective | Hospitalized | 202 | 50.5 | 50.17 ± 19.68 | OR (95% CI): 2.793 (0.750–10.402) | 30.2 | 16.3 | |||
Cortez KJC [62] | Philippines | Retrospective | Hospitalized | 280 | 36.1 | 48.4 ± 18.5 | 1 | 16 | 12 | 251 | 44.3 | 17.0 |
Kouhpeikar H [86] | Iran | Retrospective | Hospitalized | 583 | 52.3 | 61.4 ± 0.9 | 12 | 4 | 61 | 506 | 26.6 | 13.9 |
He C [70] | China | Retrospective | Hospitalized | 702 | 52.3 | 66.0 (58–73) | 3 | 34 | 19 | 646 | NA | 25.2 |
Pramudita A [104] | Indonesia | Retrospective | Hospitalized | 243 | 53.1 | 48.04 ± 14.43 | 0 | 6 | 32 | 205 | 32.5 | 20.6 |
Hesni E [71] | Iran | Retrospective | Hospitalized | 27,256 | 53.7 | 53.34 ± 22.74 | 26 | 284 | 2620 | 24,326 | 12.7 | 7.4 |
Chang Y [58] | Korea | Retrospective | All patients | 3122 | 30.7 | NA | OR (95% CI): 1.14 (0.68–1.90) | 32.8 | 14.8 | |||
Alam MT [33] | Pakistan | Retrospective | All patients | 209 | 71.3 | 56 (50–65) | 2 | 8 | 58 | 141 | 50.2 | 40.2 |
Araban M [44] | Iran | Retrospective | All patients | 3181 | 47.2 | 52.6 ± 20.8 | 10 | 84 | 300 | 2787 | 14.8 | 16.2 |
Patgiri P [102] | India | Cross-sectional | Hospitalized | 165 | 75.8 | 68.4 ± 6.9 | 1 | 2 | 38 | 124 | 37.6 | 24.2 |
Alimohamadi Y [37] | Iran | Retrospective | Hospitalized | 3759 | 57.1 | 57.48 ± 17.27 | 8 | 111 | 305 | 3335 | 29.5 | 24.7 |
Shin E [120] | Korea | Retrospective | Hospitalized | 5625 | 41.2 | NA | 11 | 108 | 230 | 5276 | 21.4 | 12.3 |
Basaran NC [52] | Turkey | Prospective | Hospitalized | 368 | 46.5 | 57 | 2 | 29 | 37 | 300 | 38.0 | 24.2 |
Kibar Akilli I [81] | Turkey | Retrospective | Hospitalized | 1511 | 58.2 | 60.1 ± 14.7 | 12 | 123 | 121 | 1255 | 48.0 | 33.3 |
Malundo AFG [93] | Philippines | Retrospective | Hospitalized | 1215 | 52.5 | 55 (42–66) | 9 | 78 | 212 | 916 | 48.0 | 25.6 |
Alhowaish T [36] | Saudi Arabia | Retrospective | Hospitalized | 122 | 18.9 | 48.3 ± 16 | 1 | 6 | 13 | 102 | 32.0 | 27.9 |
Rohani-Rasaf M [110] | Iran | Cross-sectional | Hospitalized | 1228 | 49.8 | 58.8 ± 16.2 | 8 | 80 | 80 | 1060 | NA | 23.7 |
Dana N [63] | Iran | Cross-sectional | Hospitalized | 831 | 54.3 | 63.9 ± 16.2 | OR (95% CI): 0.67 (0.08–5.41) | 39.1 | 32.6 | |||
Jalili M [73] | Iran | Retrospective | Hospitalized | 28,981 | 56.0 | 57.33 ± 17.67 | 141 | 432 | 5552 | 22,856 | NA | 11.3 |
Nakamura S [95] | Japan | Retrospective | Hospitalized | 32 | 69.0 | 74.5 (24–90) | 1 | 1 | 10 | 20 | 40.6 | 21.9 |
Saha A [112] | Bangladesh | Retrospective | ICU patients | 168 | 79.8 | 56.26 (45.68–75.33) | 3 | 12 | 92 | 61 | 41.1 | 52.4 |
Almazeedi S [40] | Kuwait | Retrospective | All patients | 1096 | 81.0 | 41 (25–75) | 4 | 39 | 15 | 1038 | 16.1 | 14.1 |
Alshukry A [41] | Kuwait | Retrospective | Hospitalized | 417 | 63.0 | 45.39 ± 17.06 | 12 | 29 | 48 | 328 | 29.5 | 23.3 |
Jin M [75] | China | Retrospective | Hospitalized | 121 | 33.9 | 57.52 ± 14.71 | 1 | 20 | 2 | 98 | 26.5 | 13.2 |
Rahimzadeh P [106] | Iran | Case series | ICU patients | 70 | 66.0 | 66.22 ± 14.36 | 5 | 0 | 51 | 14 | 50.0 | 42.0 |
Zhang JJ [126] | China | Retrospective | Hospitalized | 289 | 53.4 | 56 ± 11.56 | 1 | 0 | 48 | 240 | 28.0 | 9.3 |
Aljouie AF [39] | Saudi Arabia | Retrospective | Hospitalized | 1513 | 56.8 | 54.83 ± 17.00 | 8 | 135 | 128 | 1242 | 40.0 | 40.2 |
Agrupis KA [28] | Philippines | Retrospective | Hospitalized | 367 | 57.0 | 51 ± 18 | 0 | 15 | 60 | 292 | 38.1 | 20.2 |
Islam MA [72] | Bangladesh | Clinical trial | Hospitalized | 199 | 79.0 | 64.0 (53.0–70.0) | 2 | 0 | 75 | 122 | 77.9 | 9.5 |
Khalid A [79] | Pakistan | Retrospective | Hospitalized | 317 | 62.5 | NA | 2 | 11 | 55 | 249 | 39.1 | 35.3 |
Safari M [111] | Iran | Retrospective | Hospitalized | 66 | 60.6 | 61.6 ± 13.5 | 16 | 20 | 9 | 21 | 24.4 | 21.2 |
Pakdel F [99] | Iran | Cross-sectional | Hospitalized | 15 | 66.0 | 47.25 ± 16.39 | 1 | 1 | 6 | 7 | 46.0 | 86.0 |
Satici C [113] | Turkey | Retrospective | Hospitalized | 681 | 51.0 | 56.9 ± 15.7 | 1 | 42 | 54 | 584 | 34.4 | 28.0 |
Doganay F [66] | Turkey | Retrospective | Hospitalized | 481 | 53.0 | 67 (52–79) | 4 | 20 | 116 | 341 | 32.0 | 25.2 |
Ucan ES [124] | Turkey | Retrospective | Hospitalized | 298 | 49.7 | 61.85 ± 20.01 | 2 | 16 | 42 | 238 | 45.6 | 16.8 |
Statsenko Y [121] | United Arab Emirates | Retrospective | ICU patients | 72 | 80.6 | 58.66 ± 13.02 | 6 | 1 | 9 | 56 | 31.9 | 37.5 |
Burhamah W [54] | Kuwait | Retrospective | ICU patients | 133 | 68.0 | 59 (49–68) | 10 | 3 | 68 | 52 | 55.0 | 57.0 |
Khani M [80] | Iran | Prospective | Hospitalized | 207 | 57.5 | 54.5 ± 14.8 | 0 | 10 | 22 | 175 | 38.2 | 25.1 |
Doganay F [67] | Turkey | Retrospective | Hospitalized | 489 | 51.7 | 59.33 ± 19.42 | 7 | 24 | 147 | 311 | 36.6 | 26.0 |
Degerli E [65] | Turkey | Retrospective | Hospitalized | 45 | 51.0 | 60.3 ± 15.65 | 2 | 1 | 28 | 14 | 24.0 | 20.0 |
Ayten O [49] | Turkey | Retrospective | Hospitalized | 73 | 64.4 | 56.9 ± 13.3 | 1 | 0 | 26 | 46 | 45.2 | 20.5 |
Puah SH [105] | Singapore | Prospective | Hospitalized | 102 | 73.5 | 62 (54–68) | 1 | 3 | 14 | 84 | 62.7 | 37.3 |
Celik I [57] | Turkey | Retrospective | Hospitalized | 160 | 65.6 | 53 (24–65) | 2 | 14 | 37 | 107 | 33.1 | 23.8 |
Jandaghian S [74] | Iran | Cross-sectional | Hospitalized | 4152 | 56.2 | 61.10 ± 16.97 | 10 | 98 | 467 | 3577 | 33.9 | 28.9 |
Ozger HS [98] | Turkey | Prospective | Hospitalized | 37 | 64.9 | 61 (50–72) | 2 | 3 | 6 | 26 | 54.1 | 27.0 |
Kaya T [78] | Turkey | Retrospective | Hospitalized | 148 | 45.3 | 63.2 ± 16.9 | 3 | 7 | 39 | 99 | 45.3 | 29.7 |
Ma X [92] | China | Retrospective | Hospitalized | 459 | 55.3 | 44 (32–54) | 0 | 3 | 15 | 441 | 15.9 | 9.1 |
AlBahrani S [34] | Saudi Arabia | Retrospective | Hospitalized | 169 | 60.9 | 53.1 ± 16.7 | 0 | 6 | 3 | 160 | 43.2 | 12.4 |
Ro S [109] | Japan | Retrospective | Hospitalized | 17 | 64.7 | 73.71 ± 21.30 | 1 | 1 | 6 | 9 | 47.1 | 35.3 |
Deeb A [64] | United Arab Emirates | Retrospective | Hospitalized | 1075 | 90.4 | 46.0 ± 12.3 | 2 | 28 | 99 | 946 | 23.7 | 31.1 |
Shah M [118] | Pakistan | Prospective | Hospitalized | 250 | 66.0 | 54.22 ± 12.56 | 1 | 6 | 56 | 187 | 34.0 | 32.8 |
Satici MO [114] | Turkey | Retrospective | Hospitalized | 272 | 58.1 | 64.7 ± 14.7 | 8 | 23 | 78 | 163 | 52.7 | 34.6 |
Bokhary DH [53] | Saudi Arabia | Retrospective | Hospitalized | 656 | 63.3 | 50 ± 19.4 | 2 | 21 | 130 | 503 | NA | 35.9 |
Argun Barıs S [45] | Turkey | Retrospective | Hospitalized | 213 | 50.2 | 50.75 ± 13.61 | 0 | 11 | 6 | 196 | 21.6 | 15.0 |
Alhamar G [35] | Kuwait | Retrospective | Hospitalized | 417 | 62.8 | 45.38 ± 17.07 | 12 | 29 | 48 | 328 | 29.5 | 23.3 |
Alizadehsani R [38] | Iran | Retrospective | Hospitalized | 660 | 56.6 | 68 ± 14 | 2 | 19 | 100 | 539 | 40.2 | 32.3 |
Emami A [69] | Iran | Retrospective | Hospitalized | 2625 | 55.5 | 56.85 ± 18.84 | 35 | 210 | 840 | 1540 | 37.7 | 34.0 |
Abedtash A [25] | Iran | Retrospective | Hospitalized | 180 | 36.7 | 67.76 ± 18.72 | 1 | 4 | 70 | 105 | 40.0 | 35.6 |
Parvin S [101] | Bangladesh | Cross-sectional | Hospitalized | 972 | 64.1 | 54.47 ± 12.73 | 15 | 80 | 146 | 731 | 43.6 | 42.2 |
Bakhshwin D [51] | Saudi Arabia | Retrospective | Hospitalized | 145 | 55.2 | 69.22 ± 8.12 | 1 | 5 | 15 | 124 | 41.4 | 57.9 |
Zarei J [125] | Iran | Retrospective | Hospitalized | 10,657 | 52.7 | 55.88 ± 18.46 | 28 | 198 | 1683 | 8748 | 5.5 | 18.3 |
Elhazmi A [68] | Saudi Arabia | Prospective | ICU patients | 1468 | 74.0 | 55.9 ± 15.1 | 37 | 91 | 503 | 837 | 48.6 | 54.8 |
Kuwahara M [88] | Japan | Retrospective | ICU patients | 70 | 71.4 | 67 (38–84) | 4 | 2 | 25 | 39 | 41.4 | 59.4 |
Shesha N [119] | Saudi Arabia | Retrospective | Hospitalized | 1583 | 61.8 | 50.8 ± 15.8 | 6 | 30 | 172 | 1375 | 12.2 | 19.1 |
Sener MU [116] | Turkey | Retrospective | Hospitalized | 58 | 70.7 | 66.5 (57–71) | 3 | 0 | 32 | 23 | 62.1 | 32.8 |
Alzahrani MA [43] | Saudi Arabia | Retrospective | Hospitalized | 536 | 53.4 | 54.3 ± 16.6 | 5 | 40 | 27 | 464 | 44.9 | 44.9 |
ALGhamdi MA [32] | Saudi Arabia | Retrospective | Hospitalized | 248 | 75.8 | 49.38 ± 15.46 | 3 | 3 | 42 | 200 | 29.8 | 34.7 |
Jo S [76] | Korea | Retrospective | Hospitalized | 5153 | 41.5 | 49.3 (33.2–65.7) | 13 | 109 | 212 | 4819 | 22.2 | 13.0 |
Paul G [103] | India | Retrospective | Hospitalized | 690 | 65.4 | 60.5 (46.7–80.2) | 4 | 2 | 342 | 342 | 38.7 | 52.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ren, J.; Wang, Y.; Feng, H.; Liu, F.; Yang, H. Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis. Vaccines 2023, 11, 89. https://doi.org/10.3390/vaccines11010089
Shi L, Ren J, Wang Y, Feng H, Liu F, Yang H. Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis. Vaccines. 2023; 11(1):89. https://doi.org/10.3390/vaccines11010089
Chicago/Turabian StyleShi, Liqin, Jiahao Ren, Yujia Wang, Huifen Feng, Fang Liu, and Haiyan Yang. 2023. "Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis" Vaccines 11, no. 1: 89. https://doi.org/10.3390/vaccines11010089
APA StyleShi, L., Ren, J., Wang, Y., Feng, H., Liu, F., & Yang, H. (2023). Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis. Vaccines, 11(1), 89. https://doi.org/10.3390/vaccines11010089