Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Literature Management
2.2. Selection Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Descriptive Characteristics
3.3. Asthma and COVID-19 Mortality in Asia
3.4. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. COVID-19 Weekly Epidemiological Update. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---26-october-2022 (accessed on 26 October 2022).
- Sabu, J.M.; Zahid, I.; Jacob, N.; Alele, F.O.; Malau-Aduli, B.S. Effectiveness of the BNT162b2 (Pfizer-BioNTech) Vaccine in Children and Adolescents: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1880. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Purja, S.; Shin, H.; Kim, M.S.; Park, S.; Kronbichler, A.; Smith, L.; Eisenhut, M.; Shin, J.I.; Kim, E. Efficacy, Immunogenicity, and Safety of COVID-19 Vaccines in Randomized Control Trials in the Pre-Delta Era: A Systematic Review and Network Meta-Analysis. Vaccines 2022, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, R.; Yuan, Z.; Xu, Z.; Suo, L.; Wang, Q.; Li, Y.; Gao, Y.; Li, X.; Chen, X.; et al. Protective Effect of Inactivated COVID-19 Vaccines against Progression of SARS-CoV-2 Omicron and Delta Variant Infections to Pneumonia in Beijing, China, in 2022. Vaccines 2022, 10, 1215. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Zheng, D.; Yu, B.; Tan, X.; Chen, Q.; Wang, L.; Zhang, J.; Liu, Y.; Weng, H.; Cai, Y.; et al. Effectiveness of Inactivated COVID-19 Vaccines against COVID-19 Caused by the SARS-CoV-2 Delta and Omicron Variants: A Retrospective Cohort Study. Vaccines 2022, 10, 1753. [Google Scholar] [CrossRef] [PubMed]
- Hardgrave, H.; Wells, A.; Nigh, J.; Klutts, G.; Krinock, D.; Osborn, T.; Bhusal, S.; Rude, M.K.; Burdine, L.; Giorgakis, E. COVID-19 Mortality in Vaccinated vs. Unvaccinated Liver & Kidney Transplant Recipients: A Single-Center United States Propensity Score Matching Study on Historical Data. Vaccines 2022, 10, 1921. [Google Scholar]
- Arbel, R.; Pliskin, J. Vaccinations versus Lockdowns to Prevent COVID-19 Mortality. Vaccines 2022, 10, 1347. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Haddadi, S.; Tahvildari, A.; Farsi, Y.; Arbabi, M.; Hasanzadeh, S.; Jamshidi, P.; Murthi, M.; Mirsaeidi, M. COVID-19 Clinical Characteristics, and Sex-Specific Risk of Mortality: Systematic Review and Meta-Analysis. Front. Med. 2020, 7, 459. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Liang, X.; Shi, L.; Wang, Y. Autoimmune diseases are independently associated with COVID-19 severity: Evidence based on adjusted effect estimates. J. Infect. 2021, 82, e23–e26. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Castagna, F.; Kataria, R.; Madan, S.; Ali, S.Z.; Diab, K.; Leyton, C.; Arfaras-Melainis, A.; Kim, P.; Giorgi, F.M.; Vukelic, S.; et al. A History of Heart Failure Is an Independent Risk Factor for Death in Patients Admitted with Coronavirus 19 Disease. J. Cardiovasc. Dev. Dis. 2021, 8, 77. [Google Scholar] [CrossRef]
- Bajči, M.P.; Lendak, D.F.; Ristić, M.; Drljača, M.M.; Brkić, S.; Turkulov, V.; Petrović, V. COVID-19 Breakthrough Infections among Patients Aged ≥65 Years in Serbia: Morbidity and Mortality Overview. Vaccines 2022, 10, 1818. [Google Scholar]
- Nasrullah, A.; Gangu, K.; Shumway, N.B.; Cannon, H.R.; Garg, I.; Shuja, H.; Bobba, A.; Chourasia, P.; Sheikh, A.B.; Shekhar, R. COVID-19 and Pulmonary Embolism Outcomes among Hospitalized Patients in the United States: A Propensity-Matched Analysis of National Inpatient Sample. Vaccines 2022, 10, 2104. [Google Scholar] [CrossRef]
- Terry, P.D.; Heidel, R.E.; Dhand, R. Asthma in Adult Patients with COVID-19. Prevalence and Risk of Severe Disease. Am. J. Respir. Crit. Care Med. 2021, 203, 893–905. [Google Scholar] [CrossRef]
- Hou, H.; Xu, J.; Li, Y.; Wang, Y.; Yang, H. The Association of Asthma With COVID-19 Mortality: An Updated Meta-Analysis Based on Adjusted Effect Estimates. J. Allergy Clin. Immunol. Pract. 2021, 9, 3944–3968.e5. [Google Scholar] [CrossRef]
- Hussein, M.H.; Elshazli, R.M.; Attia, A.S.; Nguyen, T.P.; Aboueisha, M.; Munshi, R.; Toraih, E.A.; Fawzy, M.S.; Kandil, E. Asthma and COVID-19; different entities, same outcome: A meta-analysis of 107,983 patients. J. Asthma 2021, 59, 851–858. [Google Scholar] [CrossRef]
- Sitek, A.N.; Ade, J.M.; Chiarella, S.E.; Divekar, R.D.; Pitlick, M.M.; Iyer, V.N.; Wang, Z.; Joshi, A.Y. Outcomes among patients with COVID-19 and asthma: A systematic review and meta-analysis. Allergy Asthma Proc. 2021, 42, 267–273. [Google Scholar] [CrossRef]
- Sunjaya, A.P.; Allida, S.M.; Di Tanna, G.L.; Jenkins, C. Asthma and risk of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. J. Asthma 2021, 59, 866–879. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Y.; Du, T.; Zhi, Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 693–701. [Google Scholar] [CrossRef]
- Shi, L.; Xu, J.; Xiao, W.; Wang, Y.; Jin, Y.; Chen, S.; Duan, G.; Yang, H.; Wang, Y. Asthma in patients with coronavirus disease 2019: A systematic review and meta-analysis. Ann. Allergy Asthma Immunol. 2021, 126, 524–534. [Google Scholar] [CrossRef]
- Reyes, F.M.; Hache-Marliere, M.; Karamanis, D.; Berto, C.G.; Estrada, R.; Langston, M.; Ntaios, G.; Gulani, P.; Shah, C.D.; Palaiodimos, L. Assessment of the Association of COPD and Asthma with In-Hospital Mortality in Patients with COVID-19. A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. J. Clin. Med. 2021, 10, 2087. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedtash, A.; Taherkhani, M.; Shokrishakib, S.; Nikpour, S.; Taherkhani, A. Association between Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers and Mortality in Patients with Hypertension Hospitalized with COVID-19. J. Tehran Heart Cent. 2021, 16, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, A.; Eslami, V.; Arab-Ahmadi, M.; Alahyari, S.; Azhideh, A.; Sanei-Taheri, M. Prognostic value of inflammatory biomarkers for predicting the extent of lung involvement and final clinical outcome in patients with COVID-19. J. Res. Med. Sci. 2021, 26, 115. [Google Scholar] [PubMed]
- AbuRuz, S.; Al-Azayzih, A.; ZainAlAbdin, S.; Beiram, R.; Al Hajjar, M. Clinical characteristics and risk factors for mortality among COVID-19 hospitalized patients in UAE: Does ethnic origin have an impact. PLoS ONE 2022, 17, e0264547. [Google Scholar] [CrossRef]
- Agrupis, K.A.; Smith, C.; Suzuki, S.; Villanueva, A.M.; Ariyoshi, K.; Solante, R.; Telan, E.F.; Estrada, K.A.; Uichanco, A.C.; Sagurit, J.; et al. Epidemiological and clinical characteristics of the first 500 confirmed COVID-19 inpatients in a tertiary infectious disease referral hospital in Manila, Philippines. Trop. Med. Health 2021, 49, 48. [Google Scholar] [CrossRef]
- Akhtar, H.; Khalid, S.; Rahman, F.U.; Ali, S.; Afridi, M.; Khader, Y.S.; Hassan, F.; Akhtar, N.; Khan, M.M.; Ikram, A. Delayed admissions and efficacy of steroid use in patients with critical and severe COVID-19: An apprehensive approach. J. Public Health 2021, 43 (Suppl. 3), iii43–iii48. [Google Scholar] [CrossRef]
- Aksel, G.; Islam, M.M.; Algin, A.; Eroglu, S.E.; Yasar, G.B.; Ademoglu, E.; Dolek, U.C. Early predictors of mortality for moderate to severely ill patients with Covid-19. Am. J. Emerg. Med. 2021, 45, 290–296. [Google Scholar] [CrossRef]
- Al Mutair, A.; Elhazmi, A.; Alhumaid, S.; Ahmad, G.Y.; Rabaan, A.A.; Alghdeer, M.A.; Chagla, H.; Tirupathi, R.; Sharma, A.; Dhama, K.; et al. Examining the Clinical Prognosis of Critically Ill Patients with COVID-19 Admitted to Intensive Care Units: A Nationwide Saudi Study. Medicina 2021, 57, 878. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.A.; Al-Raddadi, R.M.; Ramadan, I.K.; Mirza, A.A.; Alsaab, H.A.; Alobaidi, H.F.; Hayd, M.Y.B. Survival, mortality, and related comorbidities among COVID-19 patients in Saudi Arabia: A hospital-based retrospective cohort study. Saudi Med. J. 2022, 43, 915–926. [Google Scholar] [CrossRef]
- Alam, M.T.; Mehdi, A.; Timsaal, Y.; Rehan, M.; Kumar, A.; Shaikh, I.S.; Yasmin, F.; Memon, G.M.; Ahmed, N.; Asghar, M.S. The clinical course, biochemical markers, and clinical outcomes of COVID-19 positive patients from the third wave in Pakistan: A retrospective cohort study. Ann. Med. Surg. 2022, 77, 103599. [Google Scholar] [CrossRef]
- AlBahrani, S.; Al-Tawfiq, J.A.; Jebakumar, A.Z.; Alghamdi, M.; Zakary, N.; Seria, M.; Alrowis, A. Clinical Features and Outcome of Low and High Corticosteroids in Admitted COVID-19 Patients. J. Epidemiol. Glob. Health 2021, 11, 316–319. [Google Scholar] [CrossRef]
- Alhamar, G.; Maddaloni, E.; Al Shukry, A.; Al-Sabah, S.; Al-Haddad, M.; Al-Youha, S.; Jamal, M.; Almazeedi, S.; Al-Shammari, A.A.; Abu-Farha, M.; et al. Development of a clinical risk score to predict death in patients with COVID-19. Diabetes Metab. Res. Rev. 2022, 38, e3526. [Google Scholar] [CrossRef]
- Alhowaish, T.S.; Alhamadh, M.S.; Alhabeeb, A.Y.; Aldosari, S.F.; Masuadi, E.; Alrashid, A. Outcomes of COVID-19 in Inflammatory Rheumatic Diseases: A Retrospective Cohort Study. Cureus 2022, 14, e26343. [Google Scholar] [CrossRef]
- Alimohamadi, Y.; Sepandi, M.; Rashti, R.; Sedighinezhad, H.; Afrashteh, S. COVID-19: Clinical features, case fatality, and the effect of symptoms on mortality in hospitalized cases in Iran. J. Taibah Univ. Med. Sci. 2022, 17, 725–731. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Eskandarian, R.; Behjati, M.; Zahmatkesh, M.; Roshanzamir, M.; Izadi, N.H.; Shoeibi, A.; Haddadi, A.; Khozeimeh, F.; Sani, F.A.; et al. Factors associated with mortality in hospitalized cardiovascular disease patients infected with COVID-19. Immun. Inflamm. Dis. 2022, 10, e561. [Google Scholar] [CrossRef]
- Aljouie, A.F.; Almazroa, A.; Bokhari, Y.; Alawad, M.; Mahmoud, E.; Alawad, E.; Alsehawi, A.; Rashid, M.; Alomair, L.; Almozaai, S.; et al. Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning. J. Multidiscip. Healthc. 2021, 14, 2017–2033. [Google Scholar] [CrossRef]
- Almazeedi, S.; Al-Youha, S.; Jamal, M.H.; Al-Haddad, M.; Al-Muhaini, A.; Al-Ghimlas, F.; Al-Sabah, S. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. EClinicalMedicine 2020, 24, 100448. [Google Scholar] [CrossRef]
- Alshukry, A.; Ali, H.; Ali, Y.; Al-Taweel, T.; Abu-Farha, M.; AbuBaker, J.; Devarajan, S.; Dashti, A.A.; Bandar, A.; Taleb, H.; et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) patients in Kuwait. PLoS ONE 2020, 15, e0242768. [Google Scholar] [CrossRef]
- Alwafi, H.; Naser, A.Y.; Qanash, S.; Brinji, A.S.; Ghazawi, M.A.; Alotaibi, B.; Alghamdi, A.; Alrhmani, A.; Fatehaldin, R.; Alelyani, A.; et al. Predictors of Length of Hospital Stay, Mortality, and Outcomes Among Hospitalised COVID-19 Patients in Saudi Arabia: A Cross-Sectional Study. J. Multidiscip. Healthc. 2021, 14, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, M.A.; Almalki, F.; Aljohani, A.; Alharbi, B.; Alsulami, B.; Alhaddad, A.; Althubaiti, A.; Khawaji, B.; Farahat, F. The Association Between Vitamin D Serum Level and COVID-19 Patients’ Outcomes in a Tertiary Center in Saudi Arabia: A Retrospective Cohort Study. Cureus 2022, 14, e26266. [Google Scholar] [CrossRef]
- Araban, M.; Karimy, M.; Koohestani, H.; Montazeri, A.; Delaney, D. Epidemiological and clinical characteristics of patients with COVID-19 in Islamic Republic of Iran. East Mediterr. Health J. 2022, 28, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Argun Baris, S.; Boyaci, H.; Akhan, S.; Mutlu, B.; Deniz, M.; Basyigit, I. Charlson Comorbidity Index in Predicting Poor Clinical Outcomes and Mortality in Patients with COVID-19. Turk. Thorac. J. 2022, 23, 145–153. [Google Scholar] [CrossRef]
- Ayaz, A.; Arshad, A.; Malik, H.; Ali, H.; Hussain, E.; Jamil, B. Risk factors for intensive care unit admission and mortality in hospitalized COVID-19 patients. Acute Crit. Care 2020, 35, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Aydin Guclu, O.; Goktas, S.S.; Gorek Dilektasli, A.; Acet Ozturk, N.A.; Demirdogen, E.; Coskun, F.; Ediger, D.; Ursavas, A.; Uzaslan, E.; Erol, H.A.; et al. Pilot study for immunoglobulin E as a prognostic biomarker in coronavirus disease 2019. Intern. Med. J. 2022, 52, 1495–1504. [Google Scholar] [CrossRef]
- Ayed, M.; Borahmah, A.A.; Yazdani, A.; Sultan, A.; Mossad, A.; Rawdhan, H. Assessment of Clinical Characteristics and Mortality-Associated Factors in COVID-19 Critical Cases in Kuwait. Med. Princ. Pract. 2021, 30, 185–192. [Google Scholar] [CrossRef]
- Ayten, O.; Saylan, B. Retrospective analysis of severe COVID-19 pneumonia patients treated with lopinavir/ritonavir: A comparison with survivor and non-survivor patients. S. Afr. J. Infect. Dis. 2020, 35, 233. [Google Scholar] [CrossRef]
- Bae, S.; Kim, Y.; Hwang, S.; Kwon, K.T.; Chang, H.H.; Kim, S.W. New Scoring System for Predicting Mortality in Patients with COVID-19. Yonsei Med. J. 2021, 62, 806–813. [Google Scholar] [CrossRef]
- Bakhshwin, D.; Alotaibi, M.; Ali, A.S.; Althomali, A.; Alsuwat, A.; Alhamyani, A.; Alwathnani, A.; Alsaggaf, S.; Alrafiah, A. Mortality Predictors Among COVID-19 Elderly in Taif, Saudi Arabia. Infect. Drug Resist. 2022, 15, 3213–3223. [Google Scholar] [CrossRef]
- Basaran, N.C.; Ozdede, M.; Uyaroglu, O.A.; Sahin, T.K.; Ozcan, B.; Oral, H.; Ozisik, L.; Guven, G.S.; Tanriover, M.D. Independent predictors of in-hospital mortality and the need for intensive care in hospitalized non-critical COVID-19 patients: A prospective cohort study. Intern. Emerg. Med. 2022, 17, 1413–1424. [Google Scholar] [CrossRef]
- Bokhary, D.H.; Bokhary, N.H.; Seadawi, L.E.; Moafa, A.M.; Khairallah, H.H.; Bakhsh, A. The Role of Demographic, Clinical, and Laboratory Characteristics in Predicting the In-Hospital Outcomes of Patients With COVID-19. Cureus 2022, 14, e23418. [Google Scholar] [CrossRef]
- Burhamah, W.; Qahi, I.; Oroszlanyova, M.; Shuaibi, S.; Alhunaidi, R.; Alduwailah, M.; Alhenaidi, M.; Mohammad, Z. Prognostic Factors and Predictors of In-Hospital Mortality Among COVID-19 Patients Admitted to the Intensive Care Unit: An Aid for Triage, Counseling, and Resource Allocation. Cureus 2021, 13, e16577. [Google Scholar] [CrossRef]
- Cakir Guney, B.; Hayiroglu, M.; Senocak, D.; Cicek, V.; Cinar, T.; Kaplan, M. Evaluation of N/LP Ratio as a Predictor of Disease Progression and Mortality in COVID-19 Patients Admitted to the Intensive Care Unit. Medeni Med. J. 2021, 36, 241–248. [Google Scholar]
- Caliskan, T.; Saylan, B. Smoking and comorbidities are associated with COVID-19 severity and mortality in 565 patients treated in Turkey: A retrospective observational study. Rev. Assoc. Med. Bras. (1992) 2020, 66, 1679–1684. [Google Scholar] [CrossRef]
- Celik, I.; Eryilmaz-Eren, E.; Kilinc-Toker, A.; Eren, D.; Yildiz, M.; Kanat, A.; Topaloglu, U.S.; Guzeldag, S.; Kara, M.; Ulu-Kilic, A. Low-dose tocilizumab is associated with improved outcome and a low risk of secondary infection in severe COVID-19 pneumonia. Int. J. Clin. Pract. 2021, 75, e14997. [Google Scholar] [CrossRef]
- Chang, Y.; Jeon, J.; Song, T.J.; Kim, J. Association between the fatty liver index and the risk of severe complications in COVID-19 patients: A nationwide retrospective cohort study. BMC Infect. Dis. 2022, 22, 384. [Google Scholar] [CrossRef]
- Choi, H.G.; Wee, J.H.; Kim, S.Y.; Kim, J.H.; Il Kim, H.; Park, J.Y.; Park, S.; Il Hwang, Y.; Jang, S.H.; Jung, K.S. Association between asthma and clinical mortality/morbidity in COVID-19 patients using clinical epidemiologic data from Korean Disease Control and Prevention. Allergy 2021, 76, 921–924. [Google Scholar] [CrossRef]
- Choi, Y.J.; Park, J.Y.; Lee, H.S.; Suh, J.; Song, J.Y.; Byun, M.K.; Cho, J.H.; Kim, H.J.; Lee, J.H.; Park, J.W.; et al. Effect of asthma and asthma medication on the prognosis of patients with COVID-19. Eur. Respir. J. 2021, 57, 2002226. [Google Scholar] [CrossRef]
- Cilingir, B.M.; Askar, S.; Meral, A.; Askar, M. Can B-Type Natriuretic Peptide (BNP) Levels Serve as an Early Predictor of Clinical Severity in Patients with COVID-19 Pneumonia? Clin. Lab. 2022, 68, 207–213. [Google Scholar] [CrossRef]
- Cortez, K.J.C.; Demot, B.A.; Bartolo, S.S.; Feliciano, D.D.; Ciriaco, V.M.P.; Labi, I.I.E.; Viray, D.D.M.; Casuga, J.C.M.; Camonayan-Flor, K.A.B.; Gomez, P.M.A.; et al. Clinical characteristics and outcomes of COVID-19 patients in a tertiary hospital in Baguio City, Philippines. West. Pac. Surveill. Response J. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dana, N.; Nasirian, M.; Vaseghi, G.; Heshmat-Ghahdarijani, K.; Ataei, B.; Mosayebi, A.; Manteghinejad, A.; Javanmard, S.H. Vitamin D Level in Laboratory Confirmed COVID-19 and Disease Progression. Eurasian J. Med. 2022, 54, 206–212. [Google Scholar] [CrossRef]
- Deeb, A.; Khawaja, K.; Sakrani, N.; AlAkhras, A.; Al Mesabi, A.; Trehan, R.; Kumar, P.C.; Babiker, Z.; Nagelkerke, N.; Fru-Nsutebu, E. Impact of Ethnicity and Underlying Comorbidity on COVID-19 Inhospital Mortality: An Observational Study in Abu Dhabi, UAE. BioMed. Res. Int. 2021, 2021, 6695707. [Google Scholar] [CrossRef] [PubMed]
- Degerli, E.; Derin, S.; Oruc, K.; Sengul Samanci, N.; Bedir, S.; Celik, E.; Senturk Oztas, N.; Alkan, G.; Demirelli, F.H.; Demirci, N.S. The demographic characteristics, prognosis, and relationship with cancer subtypes of hospitalized COVID-19 patients with malignancy: A single-center experience. J. Med. Virol. 2021, 93, 5839–5845. [Google Scholar] [CrossRef] [PubMed]
- Doganay, F.; Ak, R. Performance of the CURB-65, ISARIC-4C and COVID-GRAM scores in terms of severity for COVID-19 patients. Int. J. Clin. Pract. 2021, 75, e14759. [Google Scholar] [CrossRef] [PubMed]
- Doganay, F.; Elkonca, F.; Seyhan, A.U.; Yilmaz, E.; Batirel, A.; Ak, R. Shock index as a predictor of mortality among the Covid-19 patients. Am. J. Emerg. Med. 2021, 40, 106–109. [Google Scholar] [CrossRef]
- Elhazmi, A.; Al-Omari, A.; Sallam, H.; Mufti, H.N.; Rabie, A.A.; Alshahrani, M.; Mady, A.; Alghamdi, A.; Altalaq, A.; Azzam, M.H.; et al. Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. J. Infect. Public Health 2022, 15, 826–834. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Akbari, A.; Yeganeh, B.S.; Rezaei, T.; Bakhtiari, H.; Pirbonyeh, N. Liver Biomarkers Assay in COVID-19 Cases: A Comparison Study between Alive and Dead Patients. Iran J. Public Health 2022, 51, 172–177. [Google Scholar] [CrossRef]
- He, C.; Liu, C.; Yang, J.; Tan, H.; Ding, X.; Gao, X.; Yang, Y.; Shen, Y.; Xiang, H.; Ke, J.; et al. Prognostic significance of day-by-day in-hospital blood pressure variability in COVID-19 patients with hypertension. J. Clin. Hypertens 2022, 24, 224–233. [Google Scholar] [CrossRef]
- Hesni, E.; Sayad, B.; Khosravi Shadmani, F.; Najafi, F.; Khodarahmi, R.; Rahimi, Z.; Bozorgomid, A.; Sayad, N. Demographics, clinical characteristics, and outcomes of 27,256 hospitalized COVID-19 patients in Kermanshah Province, Iran: A retrospective one-year cohort study. BMC Infect. Dis. 2022, 22, 319. [Google Scholar] [CrossRef]
- Islam, M.A.; Mazumder, M.A.; Akhter, N.; Huq, A.F.; Al-Mahtab, M.; Khan, M.S.I.; Akbar, S.M. Extraordinary Survival Benefits of Severe and Critical Patients with COVID-19 by Immune Modulators: The Outcome of a Clinical Trial in Bangladesh. Euroasian J. Hepatogastroenterol. 2020, 10, 68–75. [Google Scholar]
- Jalili, M.; Payandemehr, P.; Saghaei, A.; Sari, H.N.; Safikhani, H.; Kolivand, P. Characteristics and Mortality of Hospitalized Patients With COVID-19 in Iran: A National Retrospective Cohort Study. Ann. Intern. Med. 2021, 174, 125–127. [Google Scholar] [CrossRef]
- Jandaghian, S.; Vaezi, A.; Manteghinejad, A.; Nasirian, M.; Vaseghi, G.; Haghjooy Javanmard, S. Red Blood Cell Distribution Width (RDW) as a Predictor of In-Hospital Mortality in COVID-19 Patients; a Cross Sectional Study. Arch. Acad. Emerg. Med. 2021, 9, e67. [Google Scholar]
- Jin, M.; Chen, C.; Huang, J.; Zhang, F.; Dong, T.; Zhang, M.; Yue, H.; Liu, K.; Li, G.; Hu, K.; et al. Clinical characteristics of COVID-19 patients with asthma in Wuhan, China: A retrospective cohort study. J. Asthma 2020, 59, 230–238. [Google Scholar] [CrossRef]
- Jo, S.; Nam, H.K.; Kang, H.; Cho, S.I. Associations of symptom combinations with in-hospital mortality of coronavirus disease-2019 patients using South Korean National data. PLoS ONE 2022, 17, e0273654. [Google Scholar] [CrossRef]
- Jung, Y.; Wee, J.H.; Kim, J.H.; Choi, H.G. The Effects of Previous Asthma and COPD on the Susceptibility to and Severity of COVID-19: A Nationwide Cohort Study in South Korea. J. Clin. Med. 2021, 10, 4626. [Google Scholar] [CrossRef]
- Kaya, T.; Nalbant, A.; Kiliccioglu, G.K.; Cayir, K.T.; Yaylaci, S.; Varim, C. The prognostic significance of erythrocyte sedimentation rate in COVID-19. Rev. Assoc. Med. Bras. (1992) 2021, 67, 1305–1310. [Google Scholar] [CrossRef]
- Khalid, A.; Ali Jaffar, M.; Khan, T.; Abbas Lail, R.; Ali, S.; Aktas, G.; Waris, A.; Javaid, A.; Ijaz, N.; Muhammad, N. Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: A retrospective comparative analysis. Hematology 2021, 26, 529–542. [Google Scholar] [CrossRef]
- Khani, M.; Tavana, S.; Tabary, M.; Naseri Kivi, Z.; Khaheshi, I. Prognostic implications of biventricular strain measurement in COVID-19 patients by speckle-tracking echocardiography. Clin. Cardiol. 2021, 44, 1475–1481. [Google Scholar] [CrossRef]
- Kibar Akilli, I.; Bilge, M.; Uslu Guz, A.; Korkusuz, R.; Canbolat Unlu, E.; Kart Yasar, K. Comparison of Pneumonia Severity Indices, qCSI, 4C-Mortality Score and qSOFA in Predicting Mortality in Hospitalized Patients with COVID-19 Pneumonia. J. Pers. Med. 2022, 12, 801. [Google Scholar] [CrossRef]
- Kim, S.H.; Ji, E.; Won, S.H.; Cho, J.; Kim, Y.H.; Ahn, S.; Chang, Y.S. Association of asthma comorbidity with poor prognosis of coronavirus disease 2019. World Allergy Organ J. 2021, 14, 100576. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, S.M.; Kim, Y.K.; Kim, J.Y.; Lee, Y.M.; Kim, B.O.; Hwangbo, S.; Park, T. Clinical Characteristics and Outcomes of COVID-19 Cohort Patients in Daegu Metropolitan City Outbreak in 2020. J. Korean Med. Sci. 2021, 36, e12. [Google Scholar] [CrossRef] [PubMed]
- Kolivand, P.; Fathi, M.; Kheyrati, L.; Lak, M. Exposure to sulfur mustard increases the risk for mortality in patients with COVID-19 infection: A cohort study. Am. J. Emerg. Med. 2022, 51, 144–149. [Google Scholar] [CrossRef]
- Kong, K.A.; Jung, S.; Yu, M.; Park, J.; Kang, I.S. Association Between Cardiovascular Risk Factors and the Severity of Coronavirus Disease 2019: Nationwide Epidemiological Study in Korea. Front. Cardiovasc. Med. 2021, 8, 732518. [Google Scholar] [CrossRef] [PubMed]
- Kouhpeikar, H.; Khosaravizade Tabasi, H.; Khazir, Z.; Naghipour, A.; Mohammadi Moghadam, H.; Forouzanfar, H.; Abbasifard, M.; Kirichenko, T.V.; Reiner, Z.; Banach, M.; et al. Statin Use in COVID-19 Hospitalized Patients and Outcomes: A Retrospective Study. Front. Cardiovasc. Med. 2022, 9, 820260. [Google Scholar] [CrossRef]
- Kridin, K.; Schonmann, Y.; Tzur Bitan, D.; Damiani, G.; Weinstein, O.; Cohen, A.D. The Burden of Coronavirus Disease 2019 and Its Complications in Patients With Atopic Dermatitis-A Nested Case-Control Study. Dermatitis 2021, 32, S45–S52. [Google Scholar] [CrossRef]
- Kuwahara, M.; Kamigaito, M.; Murakami, H.; Sato, K.; Mambo, N.; Kobayashi, T.; Shirai, K.; Miyawaki, A.; Ohya, M.; Hirata, J.I. Prognostic Factors Associated With Mortality of Patients with COVID-19 Requiring Ventilator Management: A Retrospective Cohort Study. Cureus 2022, 14, e25374. [Google Scholar] [CrossRef]
- Kwok, W.C.; Tam, A.R.; Ho, J.C.M.; Lam, D.C.L.; Tam, T.C.C.; Chan, K.P.F.; Wang, J.K.L.; Ip, M.S.M.; Hung, I.F.N. Asthma, from mild to severe, is an independent prognostic factor for mild to severe Coronavirus disease 2019 (COVID-19). Clin. Respir. J. 2022, 16, 293–300. [Google Scholar] [CrossRef]
- Lee, S.C.; Son, K.J.; Han, C.H.; Jung, J.Y.; Park, S.C. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci. Rep. 2020, 10, 21805. [Google Scholar] [CrossRef]
- Lee, S.G.; Park, G.U.; Moon, Y.R.; Sung, K. Clinical Characteristics and Risk Factors for Fatality and Severity in Patients with Coronavirus Disease in Korea: A Nationwide Population-Based Retrospective Study Using the Korean Health Insurance Review and Assessment Service (HIRA) Database. Int. J. Environ. Res. Public Health 2020, 17, 8559. [Google Scholar] [CrossRef]
- Ma, X.; Li, A.; Jiao, M.; Shi, Q.; An, X.; Feng, Y.; Xing, L.; Liang, H.; Chen, J.; Li, H.; et al. Characteristic of 523 COVID-19 in Henan Province and a Death Prediction Model. Front. Public Health 2020, 8, 475. [Google Scholar] [CrossRef]
- Malundo, A.F.G.; Abad, C.L.R.; Salamat, M.S.S.; Sandejas, J.C.M.; Poblete, J.B.; Planta, J.E.G.; Morales, S.J.L.; Gabunada, R.R.W.; Evasan, A.L.M.; Canal, J.P.A.; et al. Predictors of mortality among inpatients with COVID-19 infection in a tertiary referral center in the Philippines. IJID Reg. 2022, 4, 134–142. [Google Scholar] [CrossRef]
- Moon, H.J.; Kim, K.; Kang, E.K.; Yang, H.-J.; Lee, E. Prediction of COVID-19-related Mortality and 30-Day and 60-Day Survival Probabilities Using a Nomogram. J. Korean Med. Sci. 2021, 36, e248. [Google Scholar] [CrossRef]
- Nakamura, S.; Kanemasa, Y.; Atsuta, Y.; Fujiwara, S.; Tanaka, M.; Fukushima, K.; Kobayashi, T.; Shimoyama, T.; Omuro, Y.; Sekiya, N.; et al. Characteristics and outcomes of coronavirus disease 2019 (COVID-19) patients with cancer: A single-center retrospective observational study in Tokyo, Japan. Int. J. Clin. Oncol. 2021, 26, 485–493. [Google Scholar] [CrossRef]
- Omar, S.M.; Musa, I.R.; Salah, S.E.; Elnur, M.M.; Al-Wutayd, O.; Adam, I. High Mortality Rate in Adult COVID-19 Inpatients in Eastern Sudan: A Retrospective Study. J. Multidiscip. Healthc. 2020, 13, 1887–1893. [Google Scholar] [CrossRef]
- Ong, A.N.; Tan, C.C.; Canete, M.T.; Lim, B.A.; Robles, J. Association Between Metformin Use and Mortality among Patients with Type 2 Diabetes Mellitus Hospitalized for COVID-19 Infection. J. ASEAN Fed. Endocr. Soc. 2021, 36, 133–141. [Google Scholar] [CrossRef]
- Ozger, H.S.; Karakus, R.; Kuscu, E.N.; Bagriacik, U.E.; Oruklu, N.; Yaman, M.; Turkoglu, M.; Erbas, G.; Atak, A.Y.; Senol, E. Serial measurement of cytokines strongly predict COVID-19 outcome. PLoS ONE 2021, 16, e0260623. [Google Scholar] [CrossRef]
- Pakdel, F.; Ahmadikia, K.; Salehi, M.; Tabari, A.; Jafari, R.; Mehrparvar, G.; Rezaie, Y.; Rajaeih, S.; Alijani, N.; Barac, A.; et al. Mucormycosis in patients with COVID-19: A cross-sectional descriptive multicentre study from Iran. Mycoses 2021, 64, 1238–1252. [Google Scholar] [CrossRef]
- Park, B.E.; Lee, J.H.; Park, H.K.; Kim, H.N.; Jang, S.Y.; Bae, M.H.; Yang, D.H.; Park, H.S.; Cho, Y.; Lee, B.Y.; et al. Impact of Cardiovascular Risk Factors and Cardiovascular Diseases on Outcomes in Patients Hospitalized with COVID-19 in Daegu Metropolitan City. J. Korean Med. Sci. 2021, 36, e15. [Google Scholar] [CrossRef]
- Parvin, S.; Islam, M.S.; Majumdar, T.K.; Ahmed, F. Clinicodemographic profile, intensive care unit utilization and mortality rate among COVID-19 patients admitted during the second wave in Bangladesh. IJID Reg. 2022, 2, 55–59. [Google Scholar] [CrossRef]
- Patgiri, P.R.; Rajendran, V.; Ahmed, A.B. Clinico-Epidemiological Profiles of COVID-19 Elderly Patients in Guwahati City, Assam, India: A Cross-Sectional Study. Cureus 2022, 14, e24043. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.; Gautam, P.L.; Sharma, S.; Kumar, J.; Gupta, A.; Sharma, M.; Khehra, A.S.; Paul, B.S.; Mohan, B. Analysis of trimodal pattern of mortality among hospitalized COVID-19 patients- Lessons from tertiary care hospital. J. Anaesthesiol. Clin. Pharmacol. 2022, 38 (Suppl. 1), S107–S114. [Google Scholar] [PubMed]
- Pramudita, A.; Rosidah, S.; Yudia, N.; Simatupang, J.; Sigit, W.P.; Novariani, R.; Myriarda, P.; Siswanto, B.B. Cardiometabolic Morbidity and Other Prognostic Factors for Mortality in Adult Hospitalized COVID-19 Patients in North Jakarta, Indonesia. Glob Heart 2022, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Puah, S.H.; Cove, M.E.; Phua, J.; Kansal, A.; Venkatachalam, J.; Ho, V.K.; Sewa, D.W.; Gokhale, R.S.; Liew, M.F.; Ho, B.C.H.; et al. Association between lung compliance phenotypes and mortality in COVID-19 patients with acute respiratory distress syndrome. Ann. Acad. Med. Singap. 2021, 50, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, P.; Amniati, S.; Farahmandrad, R.; Faiz, S.H.R.; Hedayati Emami, S.; Habibi, A. Clinical Characteristics of Critically Ill Patients Infected with COVID-19 in Rasoul Akram Hospital in Iran: A Single Center Study. Anesth Pain Med. 2020, 10, e107211. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.; Ranjan, A.; Ameet, H.; Pandey, S. Clinical and Laboratory Predictors of Mortality in COVID-19 Infection: A Retrospective Observational Study in a Tertiary Care Hospital of Eastern India. Cureus 2021, 13, e17660. [Google Scholar] [CrossRef]
- Rehman, S.; Rehman, N.; Mumtaz, A.; Jiang, J. Association of Mortality-Related Risk Factors in Patients with COVID-19: A Retrospective Cohort Study. Healthcare 2021, 9, 1468. [Google Scholar] [CrossRef]
- Ro, S.; Nishimura, N.; Imai, R.; Tomishima, Y.; So, C.; Murakami, M.; Okafuji, K.; Kitamura, A.; Jinta, T.; Tamura, T. Identification of patients with COVID-19 who are optimal for methylprednisolone pulse therapy. Multidiscip. Respir. Med. 2021, 16, 781. [Google Scholar] [CrossRef]
- Rohani-Rasaf, M.; Mirjalili, K.; Vatannejad, A.; Teimouri, M. Are lipid ratios and triglyceride-glucose index associated with critical care outcomes in COVID-19 patients? PLoS ONE 2022, 17, e0272000. [Google Scholar] [CrossRef]
- Safari, M.; Faradmal, J.; Bashirian, S.; Soltanian, A.R.; Khazaei, S.; Roshanaei, G. Identifying the Risk Factors for Mortality in Patients with Cancer and COVID-19 in Hamadan, the West of Iran. J. Gastrointest. Cancer 2021, 53, 614–622. [Google Scholar] [CrossRef]
- Saha, A.; Ahsan, M.M.; Quader, T.U.; Shohan, M.U.S.; Naher, S.; Dutta, P.; Akash, A.S.; Mehedi, H.M.H.; Chowdhury, A.A.U.; Karim, H.; et al. Characteristics, management and outcomes of critically ill COVID-19 patients admitted to ICU in hospitals in Bangladesh: A retrospective study. J. Prev. Med. Hyg. 2021, 62, E33–E45. [Google Scholar]
- Satici, C.; Demirkol, M.A.; Sargin Altunok, E.; Gursoy, B.; Alkan, M.; Kamat, S.; Demirok, B.; Surmeli, C.D.; Calik, M.; Cavus, Z.; et al. Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in patients with COVID-19. Int. J. Infect. Dis. 2020, 98, 84–89. [Google Scholar] [CrossRef]
- Satici, M.O.; Islam, M.M.; Satici, C.; Uygun, C.N.; Ademoglu, E.; Altunok, I.; Aksel, G.; Eroglu, S.E. The role of a noninvasive index ‘Spo2/ Fio2’ in predicting mortality among patients with COVID-19 pneumonia. Am. J. Emerg. Med. 2022, 57, 54–59. [Google Scholar] [CrossRef]
- Sehgal, T.; Gupta, N.; Kohli, S.; Khurana, A.; Dass, J.; Diwan, S.; Mahendran, A.J.; Khan, M.; Aggarwal, M.; Subramanian, A. A Prospective Study of Specialized Coagulation Parameters in Admitted COVID-19 Patients and Their Correlation With Acute Respiratory Distress Syndrome and Outcome. Cureus 2021, 13, e17463. [Google Scholar] [CrossRef]
- Sener, M.U.; Cicek, T.; Ozturk, A. Highlights of clinical and laboratory parameters among severe COVID-19 patients treated with tocilizumab: A retrospective observational study. Sao Paulo Med. J. 2022, 140, 627–635. [Google Scholar] [CrossRef]
- Serin, I.; Sari, N.D.; Dogu, M.H.; Acikel, S.D.; Babur, G.; Ulusoy, A.; Onar, M.I.; Gokce, E.C.; Altunok, O.; Yaylaci Mert, F.; et al. A new parameter in COVID-19 pandemic: Initial lactate dehydrogenase (LDH)/Lymphocyte ratio for diagnosis and mortality. J. Infect. Public Health 2020, 13, 1664–1670. [Google Scholar] [CrossRef]
- Shah, M.M.; Abbas, S.; Khan, J.Z.; Iftikhar, M.; Jamal, A.; Zeb Khan, J.; Ullah, S. Psychological and Clinical Predictors of COVID-19 Severity and Outcomes. Cureus 2021, 13, e19458. [Google Scholar] [CrossRef]
- Shesha, N.; Melebari, S.; Alghamdi, S.; Refaat, B.; Naffadi, H.; Alquthami, K. Associations of Clinical Factors and Blood Groups With the Severity of COVID-19 Infection in Makkah City, Saudi Arabia. Front. Cell Infect. Microbiol. 2022, 12, 870096. [Google Scholar] [CrossRef]
- Shin, E.; Jin, J.; Park, S.Y.; Yoo, Y.S.; Lee, J.H.; An, J.; Song, W.J.; Kwon, H.S.; Cho, Y.S.; Moon, H.B.; et al. Impact of asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap on the prognosis of coronavirus disease 2019. Asia Pac. Allergy 2022, 12, e21. [Google Scholar] [CrossRef]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Gorkom, K.N.; Zaki, N. Prediction of COVID-19 severity using laboratory findings on admission: Informative values, thresholds, ML model performance. BMJ Open 2021, 11, e044500. [Google Scholar] [CrossRef]
- Tanaka, C.; Tagami, T.; Nakayama, F.; Kudo, S.; Takehara, A.; Fukuda, R.; Kaneko, J.; Ishiki, Y.; Sato, S.; Shibata, A.; et al. Association between mortality and age among mechanically ventilated COVID-19 patients: A Japanese nationwide COVID-19 database study. Ann. Intensive Care 2021, 11, 171. [Google Scholar] [CrossRef]
- Trabulus, S.; Karaca, C.; Balkan, I.I.; Dincer, M.T.; Murt, A.; Ozcan, S.G.; Karaali, R.; Mete, B.; Bakir, A.; Kuskucu, M.A.; et al. Kidney function on admission predicts in-hospital mortality in COVID-19. PLoS ONE 2020, 15, e0238680. [Google Scholar] [CrossRef] [PubMed]
- Ucan, E.S.; Ozgen Alpaydin, A.; Ozuygur, S.S.; Ercan, S.; Unal, B.; Sayiner, A.A.; Ergan, B.; Gokmen, N.; Savran, Y.; Kilinc, O.; et al. Pneumonia severity indices predict prognosis in coronavirus disease-2019. Respir. Med. Res. 2021, 79, 100826. [Google Scholar] [CrossRef] [PubMed]
- Zarei, J.; Jamshidnezhad, A.; Haddadzadeh Shoushtari, M.; Mohammad Hadianfard, A.; Cheraghi, M.; Sheikhtaheri, A. Machine Learning Models to Predict In-Hospital Mortality among Inpatients with COVID-19: Underestimation and Overestimation Bias Analysis in Subgroup Populations. J. Healthc. Eng. 2022, 2022, 1644910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Cao, Y.Y.; Tan, G.; Dong, X.; Wang, B.C.; Lin, J.; Yan, Y.Q.; Liu, G.H.; Akdis, M.; Akdis, C.A.; et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2021, 76, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, C.; Hu, Y.; Lv, W.; Ai, T.; Xia, L. Chest CT imaging features and severity scores as biomarkers for prognostic prediction in patients with COVID-19. Ann. Transl. Med. 2020, 8, 1449. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Busse, W.W.; Lemanske, R.F., Jr.; Gern, J.E. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010, 376, 826–834. [Google Scholar] [CrossRef]
- Kumar, K.; Hinks, T.S.C.; Singanayagam, A. Treatment of COVID-19-exacerbated asthma: Should systemic corticosteroids be used? Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L1244–L1247. [Google Scholar] [CrossRef]
- Brough, H.A.; Kalayci, O.; Sediva, A.; Untersmayr, E.; Munblit, D.; Rodriguez Del Rio, P.; Vazquez-Ortiz, M.; Arasi, S.; Alvaro-Lozano, M.; Tsabouri, S.; et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics—The 2020 COVID-19 pandemic: A statement from the EAACI-section on pediatrics. Pediatr. Allergy Immunol. 2020, 31, 442–448. [Google Scholar] [CrossRef]
- Johnston, S.L. Asthma and COVID-19: Is asthma a risk factor for severe outcomes? Allergy 2020, 75, 1543–1545. [Google Scholar] [CrossRef]
- Cakebread, J.A.; Xu, Y.; Grainge, C.; Kehagia, V.; Howarth, P.H.; Holgate, S.T.; Davies, D.E. Exogenous IFN-beta has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus. J. Allergy Clin. Immunol. 2011, 127, 1148–1154.e9. [Google Scholar] [CrossRef]
- Zhu, J.; Message, S.D.; Mallia, P.; Kebadze, T.; Contoli, M.; Ward, C.K.; Barnathan, E.S.; Mascelli, M.A.; Kon, O.M.; Papi, A.; et al. Bronchial mucosal IFN-alpha/beta and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. J. Allergy Clin. Immunol. 2019, 143, 114–125.e4. [Google Scholar] [CrossRef] [Green Version]
- Konopka, K.E.; Wilson, A.; Myers, J.L. Postmortem Lung Findings in a Patient With Asthma and Coronavirus Disease 2019. Chest 2020, 158, e99–e101. [Google Scholar] [CrossRef]
Author | Country | Study Design | Setting | Cases | Male (%) | Mean/Median Age | Asthma | Non-Asthma | Comorbidity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dead | Alive | Dead | Alive | Hypertension | Diabetes | |||||||
Lee SC [90] | Korea | Retrospective | All patients | 7272 | 40.3 | 45.3 | 44 | 642 | 183 | 6403 | 19.3 | 14.3 |
Choi YJ [60] | Korea | Retrospective | All patients | 7590 | 40.8 | 46.6 (27.1–61) | 17 | 201 | 210 | 7162 | NA | NA |
Trabulus S [123] | Turkey | Retrospective | Hospitalized | 336 | 57.1 | 55.0 ± 16.0 | 1 | 19 | 42 | 274 | 35.7 | 18.8 |
Aksel G [30] | Turkey | Prospective | Hospitalized | 168 | 53.6 | 59.5 (48.3–76) | 2 | 12 | 30 | 124 | 48.2 | 25.6 |
Serin I [117] | Turkey | Retrospective | All patients | 2217 | 53.0 | 47.66 ± 17.23 | 0 | 103 | 68 | 2046 | 20.6 | 16.2 |
Ayaz A [46] | Pakistan | Retrospective | Hospitalized | 66 | 61.0 | 50.6 ± 19.1 | 0 | 2 | 9 | 55 | 45.5 | 37.9 |
Ayed M [48] | Kuwait | Retrospective | ICU patients | 103 | 85.5 | 53 (44–63) | 8 | 4 | 39 | 52 | 35.0 | 39.2 |
Lee SG [91] | Korea | Retrospective | All patients | 7339 | 40.1 | 47.1 ± 19.0 | 21 | 376 | 206 | 6736 | 18.6 | 11.6 |
Choi HG [59] | Korea | Retrospective | Hospitalized | 4057 | 42.5 | 54.1 | 8 | 88 | 118 | 3843 | 20.4 | 12.1 |
Zhou S [127] | China | Retrospective | Hospitalized | 134 | 63.4 | 59.04 ± 17.74 | 14 | 6 | 58 | 56 | 28.4 | 13.4 |
Omar SM [96] | Saudi Arabia | Retrospective | Hospitalized | 88 | 81.8 | 62 (55–70) | 4 | 3 | 29 | 52 | 25.0 | 20.5 |
Caliskan T [56] | Turkey | Retrospective | Hospitalized | 565 | NA | 48 ± 19.66 | 4 | 17 | 71 | 473 | 22.7 | 12.7 |
Kim SW [83] | Korea | Retrospective | Hospitalized | 2254 | 35.8 | 58 (42–70) | 9 | 57 | 170 | 2018 | 28.7 | 16.6 |
Park BE [100] | Korea | Retrospective | Hospitalized | 2269 | 35.9 | 55.5 ± 20.2 | 9 | 58 | 155 | 2047 | 28.8 | 17.0 |
Alwafi H [42] | Saudi Arabia | Retrospective | Hospitalized | 706 | 68.5 | 48.0 ± 15.6 | OR (95% CI): 0.80 (0.07–8.82) | 30.2 | 36.0 | |||
Kridin K [87] | Israel | Retrospective | Hospitalized | 3618 | 39.7 | 38.6 ± 17.7 | 8 | 504 | 32 | 3074 | NA | NA |
Kim SH [82] | Korea | Retrospective | All patients | 7590 | 40.8 | 45.87 ± 19.77 | 48 | 716 | 179 | 6647 | NA | 13.9 |
Bae S [50] | Korea | Retrospective | Hospitalized | 1760 | 63.6 | 60.9 ± 18.6 | 9 | 52 | 159 | 1540 | 33.1 | 19.3 |
Moon HJ [94] | Korea | Retrospective | Hospitalized | 4426 | 42.1 | 51 (30.2–63.7) | 8 | 92 | 118 | 4208 | 21.4 | 12.3 |
Kong KA [85] | Korea | Retrospective | Hospitalized | 5307 | 40.8 | 52.1 (33.7–64.5) | 13 | 113 | 228 | 4953 | 22.6 | 12.9 |
Akhtar H [29] | Pakistan | Retrospective | Hospitalized | 659 | 68.6 | 53.8 | 53 | 11 | 416 | 179 | 57.2 | 50.2 |
Al Mutair A [31] | Saudi Arabia | Retrospective | ICU patients | 1470 | 74.0 | 55.9 ± 15.1 | 45 | 83 | 569 | 773 | 46.0 | 52.4 |
Sehgal T [115] | India | Prospective | Hospitalized | 68 | 63.2 | 48 (20–85) | 0 | 2 | 9 | 57 | 22.1 | 20.6 |
Rai D [107] | India | Retrospective | Hospitalized | 984 | 77.4 | 50.73 ± 16.50 | 16 | 21 | 238 | 709 | 31.1 | 33.5 |
Jung Y [77] | Korea | Retrospective | Hospitalized | 4066 | 37.5 | 53.38 | 24 | 338 | 108 | 3596 | 29.2 | NA |
Kolivand P [84] | Iran | Prospective | Hospitalized | 960 | 100.0 | 56.99 ± 6.71 | 7 | 16 | 117 | 820 | NA | NA |
Rehman S [108] | Pakistan | Retrospective | Hospitalized | 2048 | 59.4 | 56 (18–88) | 77 | 58 | 513 | 1400 | 47.6 | 29.7 |
Tanaka C [122] | Japan | Retrospective | Hospitalized | 1529 | 79.1 | 66.69 ± 12.38 | 19 | 63 | 382 | 1065 | 48.7 | 35.8 |
Cakir Guney B [55] | Turkey | Retrospective | ICU patients | 134 | 60.4 | 68.90 ± 15.67 | 2 | 2 | 80 | 50 | 56.0 | 33.6 |
Ong AN [97] | Philippines | Retrospective | Hospitalized | 355 | 55.8 | 62.69 ± 12.21 | 5 | 22 | 85 | 243 | 74.6 | NA |
Kwok WC [89] | China | Retrospective | Hospitalized | 4498 | 48.8 | 47 | 10 | 155 | 60 | 4273 | 21.0 | 11.4 |
Abrishami A [26] | Iran | Retrospective | Hospitalized | 80 | 65.0 | 54.29 ± 15.21 | 1 | 6 | 12 | 61 | 25.0 | 15.0 |
Cilingir BM [61] | Turkey | Prospective | Hospitalized | 162 | 62.3 | 56.98 ± 17.79 | OR (95% CI): 0.214 (0.001–77.242) | NA | NA | |||
AbuRuz S [27] | United Arab Emirates | Retrospective | Hospitalized | 3296 | 76.3 | 44.3 ± 13.4 | 6 | 159 | 84 | 3047 | 28.6 | 27.4 |
Aydin Guclu O [47] | Turkey | Retrospective | Hospitalized | 202 | 50.5 | 50.17 ± 19.68 | OR (95% CI): 2.793 (0.750–10.402) | 30.2 | 16.3 | |||
Cortez KJC [62] | Philippines | Retrospective | Hospitalized | 280 | 36.1 | 48.4 ± 18.5 | 1 | 16 | 12 | 251 | 44.3 | 17.0 |
Kouhpeikar H [86] | Iran | Retrospective | Hospitalized | 583 | 52.3 | 61.4 ± 0.9 | 12 | 4 | 61 | 506 | 26.6 | 13.9 |
He C [70] | China | Retrospective | Hospitalized | 702 | 52.3 | 66.0 (58–73) | 3 | 34 | 19 | 646 | NA | 25.2 |
Pramudita A [104] | Indonesia | Retrospective | Hospitalized | 243 | 53.1 | 48.04 ± 14.43 | 0 | 6 | 32 | 205 | 32.5 | 20.6 |
Hesni E [71] | Iran | Retrospective | Hospitalized | 27,256 | 53.7 | 53.34 ± 22.74 | 26 | 284 | 2620 | 24,326 | 12.7 | 7.4 |
Chang Y [58] | Korea | Retrospective | All patients | 3122 | 30.7 | NA | OR (95% CI): 1.14 (0.68–1.90) | 32.8 | 14.8 | |||
Alam MT [33] | Pakistan | Retrospective | All patients | 209 | 71.3 | 56 (50–65) | 2 | 8 | 58 | 141 | 50.2 | 40.2 |
Araban M [44] | Iran | Retrospective | All patients | 3181 | 47.2 | 52.6 ± 20.8 | 10 | 84 | 300 | 2787 | 14.8 | 16.2 |
Patgiri P [102] | India | Cross-sectional | Hospitalized | 165 | 75.8 | 68.4 ± 6.9 | 1 | 2 | 38 | 124 | 37.6 | 24.2 |
Alimohamadi Y [37] | Iran | Retrospective | Hospitalized | 3759 | 57.1 | 57.48 ± 17.27 | 8 | 111 | 305 | 3335 | 29.5 | 24.7 |
Shin E [120] | Korea | Retrospective | Hospitalized | 5625 | 41.2 | NA | 11 | 108 | 230 | 5276 | 21.4 | 12.3 |
Basaran NC [52] | Turkey | Prospective | Hospitalized | 368 | 46.5 | 57 | 2 | 29 | 37 | 300 | 38.0 | 24.2 |
Kibar Akilli I [81] | Turkey | Retrospective | Hospitalized | 1511 | 58.2 | 60.1 ± 14.7 | 12 | 123 | 121 | 1255 | 48.0 | 33.3 |
Malundo AFG [93] | Philippines | Retrospective | Hospitalized | 1215 | 52.5 | 55 (42–66) | 9 | 78 | 212 | 916 | 48.0 | 25.6 |
Alhowaish T [36] | Saudi Arabia | Retrospective | Hospitalized | 122 | 18.9 | 48.3 ± 16 | 1 | 6 | 13 | 102 | 32.0 | 27.9 |
Rohani-Rasaf M [110] | Iran | Cross-sectional | Hospitalized | 1228 | 49.8 | 58.8 ± 16.2 | 8 | 80 | 80 | 1060 | NA | 23.7 |
Dana N [63] | Iran | Cross-sectional | Hospitalized | 831 | 54.3 | 63.9 ± 16.2 | OR (95% CI): 0.67 (0.08–5.41) | 39.1 | 32.6 | |||
Jalili M [73] | Iran | Retrospective | Hospitalized | 28,981 | 56.0 | 57.33 ± 17.67 | 141 | 432 | 5552 | 22,856 | NA | 11.3 |
Nakamura S [95] | Japan | Retrospective | Hospitalized | 32 | 69.0 | 74.5 (24–90) | 1 | 1 | 10 | 20 | 40.6 | 21.9 |
Saha A [112] | Bangladesh | Retrospective | ICU patients | 168 | 79.8 | 56.26 (45.68–75.33) | 3 | 12 | 92 | 61 | 41.1 | 52.4 |
Almazeedi S [40] | Kuwait | Retrospective | All patients | 1096 | 81.0 | 41 (25–75) | 4 | 39 | 15 | 1038 | 16.1 | 14.1 |
Alshukry A [41] | Kuwait | Retrospective | Hospitalized | 417 | 63.0 | 45.39 ± 17.06 | 12 | 29 | 48 | 328 | 29.5 | 23.3 |
Jin M [75] | China | Retrospective | Hospitalized | 121 | 33.9 | 57.52 ± 14.71 | 1 | 20 | 2 | 98 | 26.5 | 13.2 |
Rahimzadeh P [106] | Iran | Case series | ICU patients | 70 | 66.0 | 66.22 ± 14.36 | 5 | 0 | 51 | 14 | 50.0 | 42.0 |
Zhang JJ [126] | China | Retrospective | Hospitalized | 289 | 53.4 | 56 ± 11.56 | 1 | 0 | 48 | 240 | 28.0 | 9.3 |
Aljouie AF [39] | Saudi Arabia | Retrospective | Hospitalized | 1513 | 56.8 | 54.83 ± 17.00 | 8 | 135 | 128 | 1242 | 40.0 | 40.2 |
Agrupis KA [28] | Philippines | Retrospective | Hospitalized | 367 | 57.0 | 51 ± 18 | 0 | 15 | 60 | 292 | 38.1 | 20.2 |
Islam MA [72] | Bangladesh | Clinical trial | Hospitalized | 199 | 79.0 | 64.0 (53.0–70.0) | 2 | 0 | 75 | 122 | 77.9 | 9.5 |
Khalid A [79] | Pakistan | Retrospective | Hospitalized | 317 | 62.5 | NA | 2 | 11 | 55 | 249 | 39.1 | 35.3 |
Safari M [111] | Iran | Retrospective | Hospitalized | 66 | 60.6 | 61.6 ± 13.5 | 16 | 20 | 9 | 21 | 24.4 | 21.2 |
Pakdel F [99] | Iran | Cross-sectional | Hospitalized | 15 | 66.0 | 47.25 ± 16.39 | 1 | 1 | 6 | 7 | 46.0 | 86.0 |
Satici C [113] | Turkey | Retrospective | Hospitalized | 681 | 51.0 | 56.9 ± 15.7 | 1 | 42 | 54 | 584 | 34.4 | 28.0 |
Doganay F [66] | Turkey | Retrospective | Hospitalized | 481 | 53.0 | 67 (52–79) | 4 | 20 | 116 | 341 | 32.0 | 25.2 |
Ucan ES [124] | Turkey | Retrospective | Hospitalized | 298 | 49.7 | 61.85 ± 20.01 | 2 | 16 | 42 | 238 | 45.6 | 16.8 |
Statsenko Y [121] | United Arab Emirates | Retrospective | ICU patients | 72 | 80.6 | 58.66 ± 13.02 | 6 | 1 | 9 | 56 | 31.9 | 37.5 |
Burhamah W [54] | Kuwait | Retrospective | ICU patients | 133 | 68.0 | 59 (49–68) | 10 | 3 | 68 | 52 | 55.0 | 57.0 |
Khani M [80] | Iran | Prospective | Hospitalized | 207 | 57.5 | 54.5 ± 14.8 | 0 | 10 | 22 | 175 | 38.2 | 25.1 |
Doganay F [67] | Turkey | Retrospective | Hospitalized | 489 | 51.7 | 59.33 ± 19.42 | 7 | 24 | 147 | 311 | 36.6 | 26.0 |
Degerli E [65] | Turkey | Retrospective | Hospitalized | 45 | 51.0 | 60.3 ± 15.65 | 2 | 1 | 28 | 14 | 24.0 | 20.0 |
Ayten O [49] | Turkey | Retrospective | Hospitalized | 73 | 64.4 | 56.9 ± 13.3 | 1 | 0 | 26 | 46 | 45.2 | 20.5 |
Puah SH [105] | Singapore | Prospective | Hospitalized | 102 | 73.5 | 62 (54–68) | 1 | 3 | 14 | 84 | 62.7 | 37.3 |
Celik I [57] | Turkey | Retrospective | Hospitalized | 160 | 65.6 | 53 (24–65) | 2 | 14 | 37 | 107 | 33.1 | 23.8 |
Jandaghian S [74] | Iran | Cross-sectional | Hospitalized | 4152 | 56.2 | 61.10 ± 16.97 | 10 | 98 | 467 | 3577 | 33.9 | 28.9 |
Ozger HS [98] | Turkey | Prospective | Hospitalized | 37 | 64.9 | 61 (50–72) | 2 | 3 | 6 | 26 | 54.1 | 27.0 |
Kaya T [78] | Turkey | Retrospective | Hospitalized | 148 | 45.3 | 63.2 ± 16.9 | 3 | 7 | 39 | 99 | 45.3 | 29.7 |
Ma X [92] | China | Retrospective | Hospitalized | 459 | 55.3 | 44 (32–54) | 0 | 3 | 15 | 441 | 15.9 | 9.1 |
AlBahrani S [34] | Saudi Arabia | Retrospective | Hospitalized | 169 | 60.9 | 53.1 ± 16.7 | 0 | 6 | 3 | 160 | 43.2 | 12.4 |
Ro S [109] | Japan | Retrospective | Hospitalized | 17 | 64.7 | 73.71 ± 21.30 | 1 | 1 | 6 | 9 | 47.1 | 35.3 |
Deeb A [64] | United Arab Emirates | Retrospective | Hospitalized | 1075 | 90.4 | 46.0 ± 12.3 | 2 | 28 | 99 | 946 | 23.7 | 31.1 |
Shah M [118] | Pakistan | Prospective | Hospitalized | 250 | 66.0 | 54.22 ± 12.56 | 1 | 6 | 56 | 187 | 34.0 | 32.8 |
Satici MO [114] | Turkey | Retrospective | Hospitalized | 272 | 58.1 | 64.7 ± 14.7 | 8 | 23 | 78 | 163 | 52.7 | 34.6 |
Bokhary DH [53] | Saudi Arabia | Retrospective | Hospitalized | 656 | 63.3 | 50 ± 19.4 | 2 | 21 | 130 | 503 | NA | 35.9 |
Argun Barıs S [45] | Turkey | Retrospective | Hospitalized | 213 | 50.2 | 50.75 ± 13.61 | 0 | 11 | 6 | 196 | 21.6 | 15.0 |
Alhamar G [35] | Kuwait | Retrospective | Hospitalized | 417 | 62.8 | 45.38 ± 17.07 | 12 | 29 | 48 | 328 | 29.5 | 23.3 |
Alizadehsani R [38] | Iran | Retrospective | Hospitalized | 660 | 56.6 | 68 ± 14 | 2 | 19 | 100 | 539 | 40.2 | 32.3 |
Emami A [69] | Iran | Retrospective | Hospitalized | 2625 | 55.5 | 56.85 ± 18.84 | 35 | 210 | 840 | 1540 | 37.7 | 34.0 |
Abedtash A [25] | Iran | Retrospective | Hospitalized | 180 | 36.7 | 67.76 ± 18.72 | 1 | 4 | 70 | 105 | 40.0 | 35.6 |
Parvin S [101] | Bangladesh | Cross-sectional | Hospitalized | 972 | 64.1 | 54.47 ± 12.73 | 15 | 80 | 146 | 731 | 43.6 | 42.2 |
Bakhshwin D [51] | Saudi Arabia | Retrospective | Hospitalized | 145 | 55.2 | 69.22 ± 8.12 | 1 | 5 | 15 | 124 | 41.4 | 57.9 |
Zarei J [125] | Iran | Retrospective | Hospitalized | 10,657 | 52.7 | 55.88 ± 18.46 | 28 | 198 | 1683 | 8748 | 5.5 | 18.3 |
Elhazmi A [68] | Saudi Arabia | Prospective | ICU patients | 1468 | 74.0 | 55.9 ± 15.1 | 37 | 91 | 503 | 837 | 48.6 | 54.8 |
Kuwahara M [88] | Japan | Retrospective | ICU patients | 70 | 71.4 | 67 (38–84) | 4 | 2 | 25 | 39 | 41.4 | 59.4 |
Shesha N [119] | Saudi Arabia | Retrospective | Hospitalized | 1583 | 61.8 | 50.8 ± 15.8 | 6 | 30 | 172 | 1375 | 12.2 | 19.1 |
Sener MU [116] | Turkey | Retrospective | Hospitalized | 58 | 70.7 | 66.5 (57–71) | 3 | 0 | 32 | 23 | 62.1 | 32.8 |
Alzahrani MA [43] | Saudi Arabia | Retrospective | Hospitalized | 536 | 53.4 | 54.3 ± 16.6 | 5 | 40 | 27 | 464 | 44.9 | 44.9 |
ALGhamdi MA [32] | Saudi Arabia | Retrospective | Hospitalized | 248 | 75.8 | 49.38 ± 15.46 | 3 | 3 | 42 | 200 | 29.8 | 34.7 |
Jo S [76] | Korea | Retrospective | Hospitalized | 5153 | 41.5 | 49.3 (33.2–65.7) | 13 | 109 | 212 | 4819 | 22.2 | 13.0 |
Paul G [103] | India | Retrospective | Hospitalized | 690 | 65.4 | 60.5 (46.7–80.2) | 4 | 2 | 342 | 342 | 38.7 | 52.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ren, J.; Wang, Y.; Feng, H.; Liu, F.; Yang, H. Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis. Vaccines 2023, 11, 89. https://doi.org/10.3390/vaccines11010089
Shi L, Ren J, Wang Y, Feng H, Liu F, Yang H. Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis. Vaccines. 2023; 11(1):89. https://doi.org/10.3390/vaccines11010089
Chicago/Turabian StyleShi, Liqin, Jiahao Ren, Yujia Wang, Huifen Feng, Fang Liu, and Haiyan Yang. 2023. "Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis" Vaccines 11, no. 1: 89. https://doi.org/10.3390/vaccines11010089
APA StyleShi, L., Ren, J., Wang, Y., Feng, H., Liu, F., & Yang, H. (2023). Comorbid Asthma Increased the Risk for COVID-19 Mortality in Asia: A Meta-Analysis. Vaccines, 11(1), 89. https://doi.org/10.3390/vaccines11010089