The Post-Vaccination Quantitative Total Immunoglobulin Levels against SARS-CoV-2 in Healthcare Workers: A Multi-Centric Cohort Study in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Institutions
2.2. Study Design and Participants
2.3. Study Cohorts
2.4. Study Group for Cut-Off Value Determination for ELISA Testing
2.5. Blood Samples and Biosafety
2.6. Antibody Measurement by Ig Total ELISA
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Technical Guidance. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance (accessed on 16 July 2022).
- Ministry of Health and Family Welfare, Government of India Revised Guidelines for Implementation of National COVID Vaccination Program. Available online: https://www.mohfw.gov.in/pdf/RevisedVaccinationGuidelines.pdf (accessed on 17 March 2021).
- Kumar, V.M.; Pandi-Perumal, S.R.; Trakht, I.; Thyagarajan, S.P. Strategy for COVID-19 Vaccination in India: The Country with the Second Highest Population and Number of Cases. Npj Vaccines 2021, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Family Welfare, Government of India COVID-19 Vaccines Operational Guidelines (Updated as of 28 December 2020). Available online: https://www.mohfw.gov.in/pdf/COVID19VaccineOG111Chapter16.pdf (accessed on 5 February 2021).
- Van Elslande, J.; Houben, E.; Depypere, M.; Brackenier, A.; Desmet, S.; André, E.; Van Ranst, M.; Lagrou, K.; Vermeersch, P. Diagnostic Performance of Seven Rapid IgG/IgM Antibody Tests and the Euroimmun IgA/IgG ELISA in COVID-19 Patients. Clin. Microbiol. Infect. 2020, 26, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Salvagno, G.L.; Pegoraro, M.; Militello, V.; Caloi, C.; Peretti, A.; Gaino, S.; Bassi, A.; Bovo, C.; Lo Cascio, G. Assessment of Immune Response to SARS-CoV-2 with Fully Automated MAGLUMI 2019-NCoV IgG and IgM Chemiluminescence Immunoassays. Clin. Chem. Lab. Med. 2020, 58, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, I.; Gruson, D.; Kabamba, B.; Dahma, H.; Van den Wijngaert, S.; Reza, S.; Carbone, V.; Vandenberg, O.; Gulbis, B.; Wolff, F.; et al. Evaluation of Two Automated and Three Rapid Lateral Flow Immunoassays for the Detection of Anti-SARS-CoV-2 Antibodies. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2020, 128, 104413. [Google Scholar] [CrossRef]
- Padoan, A.; Cosma, C.; Sciacovelli, L.; Faggian, D.; Plebani, M. Analytical Performances of a Chemiluminescence Immunoassay for SARS-CoV-2 IgM/IgG and Antibody Kinetics. Clin. Chem. Lab. Med. 2020, 58, 1081–1088. [Google Scholar] [CrossRef]
- Indian Council of Medical Research. Public Notice from CDSCO Regarding the COVID 19 Vaccine Approved in India as of February 2022. Available online: https://cdsco.gov.in/opencms/opencms/en/Notifications/Public-Notices/ (accessed on 5 March 2022).
- World Health Organization. Laboratory Biosafety Guidance Related to Coronavirus Disease (COVID-19): Interim Guidance, 13 May 2020; World Health Organization: Geneva, Switzerland, 2020; pp. 1–11. Available online: https://www.who.int/publications/i/item/WHO-WPE-GIH-2021.1 (accessed on 10 January 2021).
- Lardeux, F.; Torrico, G.; Aliaga, C. Calculation of the ELISA’s Cut-off Based on the Change-Point Analysis Method for Detection of Trypanosoma Cruzi Infection in Bolivian Dogs in the Absence of Controls. Mem. Inst. Oswaldo Cruz 2016, 111, 501–504. [Google Scholar] [CrossRef]
- Kochhar, S.; Salmon, D.A. Planning for COVID-19 Vaccines Safety Surveillance. Vaccine 2020, 38, 6194–6198. [Google Scholar] [CrossRef]
- Singh, A.K.; Phatak, S.R.; Singh, R.; Bhattacharjee, K.; Singh, N.K.; Gupta, A.; Sharma, A. Antibody Response after First and Second-Dose of ChAdOx1-NCOV (CovishieldTM®) and BBV-152 (CovaxinTM®) among Health Care Workers in India: The Final Results of Cross-Sectional Coronavirus Vaccine-Induced Antibody Titre (COVAT) Study. Vaccine 2021, 39, 6492–6509. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and Immunogenicity of the ChAdOx1 NCoV-19 Vaccine against SARS-CoV-2: A Preliminary Report of a Phase 1/2, Single-Blind, Randomised Controlled Trial. Lancet Lond. Engl. 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Single-Dose Administration and the Influence of the Timing of the Booster Dose on Immunogenicity and Efficacy of ChAdOx1 NCoV-19 (AZD1222) Vaccine: A Pooled Analysis of Four Randomised Trials. Lancet 2021, 397, 881–891. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and Efficacy of the ChAdOx1 NCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A Comprehensive Status Report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef] [PubMed]
- Lo Sasso, B.; Giglio, R.V.; Vidali, M.; Scazzone, C.; Bivona, G.; Gambino, C.M.; Ciaccio, A.M.; Agnello, L.; Ciaccio, M. Evaluation of Anti-SARS-Cov-2 S-RBD IgG Antibodies after COVID-19 MRNA BNT162b2 Vaccine. Diagnostics 2021, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- Zinkernagel, R.M. On Natural and Artificial Vaccinations. Annu. Rev. Immunol. 2003, 21, 515–546. [Google Scholar] [CrossRef] [PubMed]
- Decru, B.; Van Elslande, J.; Steels, S.; Van Pottelbergh, G.; Godderis, L.; Van Holm, B.; Bossuyt, X.; Van Weyenbergh, J.; Maes, P.; Vermeersch, P. IgG Anti-Spike Antibodies and Surrogate Neutralizing Antibody Levels Decline Faster 3 to 10 Months after BNT162b2 Vaccination Than After SARS-CoV-2 Infection in Healthcare Workers. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef]
- Long, Q.-X.; Liu, B.-Z.; Deng, H.-J.; Wu, G.-C.; Deng, K.; Chen, Y.-K.; Liao, P.; Qiu, J.-F.; Lin, Y.; Cai, X.-F.; et al. Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Vikaspedia COVID 19 Vaccines in India. Available online: https://vikaspedia.in/health/health-campaigns/all-about-covid-vaccines/covid-19-vaccines-in-india (accessed on 16 July 2022).
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and Immunogenicity of ChAdOx1 NCoV-19 Vaccine Administered in a Prime-Boost Regimen in Young and Old Adults (COV002): A Single-Blind, Randomised, Controlled, Phase 2/3 Trial. Lancet Lond. Engl. 2020, 396, 1979–1993. [Google Scholar] [CrossRef]
- Stebbings, R.; Jones, C.; Cotton, P.; Armour, G.; Maguire, S.; Skellett, V.; Tang, C.-M.; Goodman, J.; Brady, T.; Takahashi, V.; et al. SARS-CoV-2 Spike Protein Expression In Vitro and Hematologic Effects in Mice Vaccinated with AZD1222 (ChAdOx1 NCoV-19). Front. Immunol. 2022, 13, 836492. [Google Scholar] [CrossRef]
- World Health Organization Background Document on the AZD1222 Vaccine against COVID-19 Developed by Oxford University and Astra Zeneca. 2021. Available online: https://www.who.int/publications-detail-redirect/background-document-on-the-azd1222-vaccine-against-covid-19-developed-by-oxford-university-and-astrazeneca (accessed on 18 April 2021).
- Chansaenroj, J.; Yorsaeng, R.; Puenpa, J.; Wanlapakorn, N.; Chirathaworn, C.; Sudhinaraset, N.; Sripramote, M.; Chalongviriyalert, P.; Jirajariyavej, S.; Kiatpanabhikul, P.; et al. Long-Term Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein-Specific and Neutralizing Antibodies in Recovered COVID-19 Patients. PLoS ONE 2022, 17, e0267102. [Google Scholar] [CrossRef]
- Ella, R.; Reddy, S.; Blackwelder, W.; Potdar, V.; Yadav, P.; Sarangi, V.; Aileni, V.K.; Kanungo, S.; Rai, S.; Reddy, P.; et al. Efficacy, Safety, and Lot-to-Lot Immunogenicity of an Inactivated SARS-CoV-2 Vaccine (BBV152): Interim Results of a Randomised, Double-Blind, Controlled, Phase 3 Trial. Lancet 2021, 398, 2173–2184. [Google Scholar] [CrossRef]
Participants | Characteristics | Vaccine | |
---|---|---|---|
AZD1222 N = 88 | BBV152 N = 45 | ||
Age, years | Range | 18.00–56.00 | 19.00–52.00 |
Mean age (SD) | 33.1 (6.7) | 29.8 (9.4) | |
Median age (IQR) | 34 (29.00–37.00) | 26 (22–36) | |
Age, years | <20 (N, %) | 2 (2.3) | 1 (2.2) |
20–29 | 22 (25) | 25 (55.6) | |
30–39 | 53 (60.2) | 11 (24.4) | |
>40 (N, %) | 11 (12.5) | 8 (17.8) | |
Gender | Male (N, %) | 51 (57.9) | 21 (46.7) |
Female (N, %) | 37 (42.1) | 24 (53.3) |
Characteristics | SARS-CoV-2 Naïve Participant # | Odds Ratio, [95% CI], p Value | Relative Risk | |
---|---|---|---|---|
AZD1222 Vaccine | BBV152 Vaccine | [95% CI] | ||
4 weeks after the first dose Seropositivity rate (%) | 71/88, (80.7) | 13/45, (28.9) | 10.28 [4.46, 23.67] * p < 0.0001 | 2.79 [1.75, 4.47] |
4 weeks after the second dose Seropositivity rate (%) | 79/88, (89.8) | 16/45, (35.6) | 15.91[6.33, 39.96] * p < 0.0001 | 2.53 [1.69, 3.77] |
Characteristics | SARS-CoV-2 Naïve Participant # | p Value | |
---|---|---|---|
AZD1222 Vaccine, N = 84 | BBV152 Vaccine, N = 17 (Four Weeks after First Dose) N = 25 (Four Weeks after Second Dose) | ||
Antibody Titer, Geometric Mean (SD) [95% CI], in U/mL | Antibody Titer, Geometric Mean (SD) [95% CI], in U/mL | ||
4 weeks after the first dose | 6392.93 (4.92) | 1480.47 (9.32) | 0.0001 |
[6391.88–6393.98] | [1476.04–1484.9] | ||
4 weeks after the second dose | 6398.82 (3.24) | 990.38 (5.26) | 0.0013 |
[6398.13–6399.51] | [988.31–992.44] |
Immune Response to Vaccine Twenty-Four Weeks after the Second Dose of Vaccine | Seroconverted | |
---|---|---|
Yes | No | |
AZD1222 | 3 (15.8%) | 16 (84.2%) |
BBV152 | 6 (22.2%) | 21 (77.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babu, M.V.; Debnath, D.J.; Tripathi, M.; Samatha, Y.; Shankar, S.; Kattimani, V.; Manikam, D.V.; Kumar, P. The Post-Vaccination Quantitative Total Immunoglobulin Levels against SARS-CoV-2 in Healthcare Workers: A Multi-Centric Cohort Study in India. Vaccines 2022, 10, 1535. https://doi.org/10.3390/vaccines10091535
Babu MV, Debnath DJ, Tripathi M, Samatha Y, Shankar S, Kattimani V, Manikam DV, Kumar P. The Post-Vaccination Quantitative Total Immunoglobulin Levels against SARS-CoV-2 in Healthcare Workers: A Multi-Centric Cohort Study in India. Vaccines. 2022; 10(9):1535. https://doi.org/10.3390/vaccines10091535
Chicago/Turabian StyleBabu, Mangayarkarasi V., Dhrubajyoti J. Debnath, Mukesh Tripathi, Yalamanchili Samatha, Sumita Shankar, Vivekanand Kattimani, Dhanasekar Voloya Manikam, and Pradeep Kumar. 2022. "The Post-Vaccination Quantitative Total Immunoglobulin Levels against SARS-CoV-2 in Healthcare Workers: A Multi-Centric Cohort Study in India" Vaccines 10, no. 9: 1535. https://doi.org/10.3390/vaccines10091535